JP2019201142A - Chip resistor and manufacturing method of chip resistor - Google Patents

Chip resistor and manufacturing method of chip resistor Download PDF

Info

Publication number
JP2019201142A
JP2019201142A JP2018095499A JP2018095499A JP2019201142A JP 2019201142 A JP2019201142 A JP 2019201142A JP 2018095499 A JP2018095499 A JP 2018095499A JP 2018095499 A JP2018095499 A JP 2018095499A JP 2019201142 A JP2019201142 A JP 2019201142A
Authority
JP
Japan
Prior art keywords
resistor
trimming groove
meandering
adjustment
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018095499A
Other languages
Japanese (ja)
Other versions
JP7152184B2 (en
Inventor
和久 牛山
Kazuhisa Ushiyama
和久 牛山
夏希 井口
Natsuki Iguchi
夏希 井口
泰弘 上條
Yasuhiro Kamijo
泰弘 上條
久和 永田
Hisakazu Nagata
久和 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2018095499A priority Critical patent/JP7152184B2/en
Priority to CN201980027009.2A priority patent/CN112005323B/en
Priority to DE112019002509.0T priority patent/DE112019002509T5/en
Priority to PCT/JP2019/015269 priority patent/WO2019220811A1/en
Priority to US17/049,486 priority patent/US11170918B2/en
Priority to TW108113038A priority patent/TWI687942B/en
Publication of JP2019201142A publication Critical patent/JP2019201142A/en
Application granted granted Critical
Publication of JP7152184B2 publication Critical patent/JP7152184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/22Elongated resistive element being bent or curved, e.g. sinusoidal, helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

To provide a chip resistor capable of improving a surge characteristic and finely adjusting a resistance value with high accuracy.SOLUTION: A chip resistor 1 includes a resistor 5 which is printed so that a first meander part 6 and a second meander part 7 are continued while nipping a rectangular adjustment part 8. By forming a first trimming groove 9 in the adjustment part 8, a surge characteristic is improved by increasing a current path of the resistor 5, a resistance value of the resistor 5 is roughly adjusted so as to approach a target resistance value. By forming a second trimming groove 10 in a region having less of a current distribution in the second meander part 7, the resistance value of the resistor 5 is finely adjusted so as to be matched to the target resistance value in accordance with a cutting amount of the second trimming groove 10.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁基板上に設けられた抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器と、そのようなチップ抵抗器の製造方法に関するものである。     The present invention relates to a chip resistor whose resistance value is adjusted by forming a trimming groove in a resistor provided on an insulating substrate, and a method for manufacturing such a chip resistor.

チップ抵抗器は、直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を橋絡する端面電極と、対をなす表電極どうしを橋絡する抵抗体と、抵抗体を覆う保護膜等によって主に構成されている。   The chip resistor includes a rectangular parallelepiped insulating substrate, a pair of front electrodes disposed opposite to each other on the surface of the insulating substrate with a predetermined interval, and a pair of opposing electrodes disposed on the rear surface of the insulating substrate with a predetermined interval. It is mainly configured by a back electrode, an end face electrode that bridges the front electrode and the back electrode, a resistor that bridges the paired front electrodes, a protective film that covers the resistor, and the like.

一般的に、このようなチップ抵抗器を製造する場合、大判基板に対して多数個分の電極や抵抗体や保護コート層等を一括して形成した後、この大判基板を格子状の分割ライン(例えば分割溝)に沿って分割してチップ抵抗器を多数個取りするようにしている。かかるチップ抵抗器の製造過程で、大判基板の片面には抵抗ペーストを印刷・焼成することにより多数の抵抗体が形成されるが、印刷時の位置ずれや滲み、あるいは焼成炉内の温度むら等の影響により、各抵抗体の大きさや膜厚に若干のばらつきを生じることは避け難いため、大判基板の状態で各抵抗体にトリミング溝を形成して所望の抵抗値に設定するという抵抗値調整作業が行われる。   In general, when manufacturing such a chip resistor, a large number of electrodes, resistors, protective coating layers, etc. are collectively formed on a large substrate, and then the large substrate is formed into a grid-like divided line. A plurality of chip resistors are obtained by dividing along (for example, dividing grooves). In the manufacturing process of such a chip resistor, a large number of resistors are formed on one side of a large substrate by printing and baking a resistor paste. However, misalignment or bleeding during printing, temperature unevenness in the baking furnace, etc. Because it is difficult to avoid slight variations in the size and film thickness of each resistor due to the influence of the resistor, the resistance value adjustment is such that a trimming groove is formed in each resistor in the state of a large substrate and set to a desired resistance value. Work is done.

このような構成のチップ抵抗器において、静電気や電源ノイズ等で発生するサージ電圧が印加すると、過剰な電気的ストレスにより抵抗器の特性に影響を与えることになり、最悪の場合に抵抗器が破壊されてしまうことがある。サージ特性を向上させるためには、抵抗体を蛇行形状(ミアンダ形状)にして全長を長くすれば、電位降下がなだらかになってサージ特性を改善できることが知られている。   When a surge voltage generated due to static electricity or power supply noise is applied to a chip resistor with such a configuration, it will affect the characteristics of the resistor due to excessive electrical stress, and in the worst case the resistor will break down. It may be done. In order to improve the surge characteristics, it is known that if the resistor has a meandering shape (a meander shape) and the entire length is increased, the potential drop becomes gentle and the surge characteristics can be improved.

この種の従来技術として、図4に示すように、絶縁基板100の両端部に設けた一対の表電極101間に2ターン蛇行する抵抗体102を印刷形成した後、その中央部にレーザトリミング法により1本のトリミング溝103を形成することにより、3ターン蛇行する抵抗体102を得るようにしたチップ抵抗器が提案されている(特許文献1参照)。   As a conventional technique of this type, as shown in FIG. 4, after forming a resistor 102 meandering two turns between a pair of front electrodes 101 provided at both ends of an insulating substrate 100, a laser trimming method is performed at the center thereof. A chip resistor has been proposed in which one trimming groove 103 is formed to obtain a resistor 102 meandering three turns (see Patent Document 1).

また、他の従来技術として、図5に示すように、絶縁基板100の両端部に設けた一対の表電極101間に、一対の表電極101に接続される矩形部102aとこの矩形部102a間に位置する略S字部102bとからなる抵抗体102を印刷形成した後、両端の矩形部102aにトリミング溝103を形成したチップ抵抗器が提案されている(特許文献2参照)。   As another prior art, as shown in FIG. 5, between a pair of front electrodes 101 provided at both ends of an insulating substrate 100, a rectangular portion 102a connected to the pair of front electrodes 101 and a space between the rectangular portions 102a. There is proposed a chip resistor in which a trimming groove 103 is formed in a rectangular portion 102a at both ends after a resistor 102 composed of a substantially S-shaped portion 102b positioned at a position is printed (see Patent Document 2).

特開平9−205004号公報JP-A-9-205004 特開2001−338801号公報JP 2001-338801 A

特許文献1に記載された従来技術では、印刷技法とトリミング加工を併用することで抵抗体102の全長が長くなるため、サージ特性を良好なものにすることができると共に、トリミング溝103の形成が抵抗値調整を兼ねているため、抵抗値精度を高めることができる。しかし、トリミング溝103は抵抗体102における電流の断面積を狭める方向に形成されるため、トリミング溝103の切込み量に伴って上昇する抵抗値の変化量が大きくなり、抵抗値精度をある程度は高めることができるものの、抵抗値を高精度に微調整することはできない。   In the conventional technique described in Patent Document 1, since the total length of the resistor 102 is increased by using both the printing technique and the trimming process, the surge characteristics can be improved and the trimming groove 103 can be formed. Since the resistance value is also adjusted, the resistance value accuracy can be improved. However, since the trimming groove 103 is formed in a direction that narrows the cross-sectional area of the current in the resistor 102, the amount of change in the resistance value that increases with the cutting amount of the trimming groove 103 increases, and the resistance value accuracy is increased to some extent. However, the resistance value cannot be finely adjusted with high accuracy.

一方、特許文献2に記載された従来技術では、抵抗体102の略S字部102bを挟んだ両端の矩形部102aにそれぞれトリミング溝103を形成できるため、特許文献1に記載されたチップ抵抗器に比べると抵抗値の調整倍率を大きくすることはできるが、このものもトリミング溝103が抵抗体102における電流の断面積を狭める方向に形成されるため、抵抗値を高精度に微調整することはできない。   On the other hand, in the prior art described in Patent Document 2, since the trimming grooves 103 can be formed in the rectangular portions 102a at both ends sandwiching the substantially S-shaped portion 102b of the resistor 102, the chip resistor described in Patent Document 1 is provided. Compared to the above, the adjustment ratio of the resistance value can be increased. However, since the trimming groove 103 is formed in the direction of narrowing the cross-sectional area of the current in the resistor 102, the resistance value can be finely adjusted with high accuracy. I can't.

本発明は、このような従来技術の実情に鑑みてなされたもので、第1の目的は、サージ特性を向上させることができると共に、抵抗値を高精度に微調整することができるチップ抵抗器を提供することにあり、第2の目的は、そのようなチップ抵抗器の製造方法を提供することにある。   The present invention has been made in view of such a state of the art, and a first object is to provide a chip resistor that can improve surge characteristics and finely adjust a resistance value with high accuracy. The second object is to provide a method of manufacturing such a chip resistor.

上記第1の目的を達成するために、本発明によるチップ抵抗器は、絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器において、前記抵抗体は、前記一対の電極に接続される接続部と、これら両接続部の間に位置する矩形状の調整部とが連続する印刷形成体からなると共に、少なくとも一方の前記接続部がターン形状の蛇行部となっており、前記調整部に前記抵抗体の電流経路を長くする粗調整用の第1トリミング溝が形成されていると共に、前記蛇行部に微調整用の第2トリミング溝が形成されており、前記一対の電極の電極間方向をX方向、このX方向と直交する方向をY方向としたとき、前記蛇行部は、Y方向に延びる引延部と、X方向に延びて前記引延部の一端と前記電極間を接続する外側ターン部と、X方向に延びて前記引延部の他端と前記調整部間を接続する内側ターン部とを有し、前記第2トリミング溝は、前記外側ターン部と前記内側ターン部のいずれか一方を始端位置としてY方向に延びていると共に、その先端が前記外側ターン部と前記内側ターン部を最短距離で結ぶ仮想線に達していないことを特徴としている。   In order to achieve the first object, a chip resistor according to the present invention includes an insulating substrate, a pair of electrodes opposed to each other at a predetermined interval on the insulating substrate, and a bridge between the pair of electrodes. A chip resistor, the resistance of which is adjusted by forming a trimming groove in the resistor, the resistor is connected to the pair of electrodes, and both of these connections And a rectangular adjustment portion located between the two portions, and a continuous printed forming body, and at least one of the connection portions is a turn-shaped meandering portion, and the current path of the resistor is connected to the adjustment portion. The first trimming groove for coarse adjustment to be lengthened is formed, and the second trimming groove for fine adjustment is formed in the meandering portion. The inter-electrode direction of the pair of electrodes is the X direction, and this X direction The direction orthogonal to the Y direction The meandering portion includes an extending portion extending in the Y direction, an outer turn portion extending in the X direction and connecting one end of the extending portion and the electrode, and extending in the X direction in addition to the extending portion. And the second trimming groove extends in the Y direction with either one of the outer turn portion and the inner turn portion as a starting end position, and the second trimming groove has an inner turn portion connecting the end and the adjustment portion. It is characterized in that the tip does not reach an imaginary line connecting the outer turn part and the inner turn part with the shortest distance.

このように構成されたチップ抵抗器では、調整部に抵抗体の電流経路を長くする第1トリミング溝を形成することで、第1トリミング溝の切込み量に伴って抵抗値が上昇するため、サージ特性を向上させた上で抵抗値を粗調整することができると共に、蛇行部における電流分布の少ない領域に第2トリミング溝を形成することで、抵抗値を高精度に微調整することができる。   In the chip resistor configured as described above, the first trimming groove that lengthens the current path of the resistor is formed in the adjustment unit, and the resistance value increases with the cut amount of the first trimming groove. The resistance value can be coarsely adjusted while improving the characteristics, and the second trimming groove is formed in a region where the current distribution is small in the meandering portion, whereby the resistance value can be finely adjusted with high accuracy.

上記構成のチップ抵抗器において、一対の電極に接続する2つの接続部の一方のみがターン形状の蛇行部となっていても良いが、2つの接続部が両方共にターン形状の蛇行部となっており、これら両蛇行部のいずれか一方に第2トリミング溝が形成されていると、抵抗値全体の長さが長くなって、サージ特性をより向上させることができて好ましい。   In the chip resistor having the above-described configuration, only one of the two connection portions connected to the pair of electrodes may be a turn-shaped meander portion, but both of the two connection portions are turn-shaped meander portions. In addition, it is preferable that the second trimming groove is formed in either one of these meandering portions because the entire resistance value becomes long and surge characteristics can be further improved.

また、上記第2の目的を達成するために、本発明によるチップ抵抗器の製造方法は、絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器の製造方法において、前記抵抗体は、前記一対の電極に接続される接続部と、これら両接続部の間に位置する矩形状の調整部とが連続する印刷形成体からなると共に、少なくとも一方の前記接続部がターン形状の蛇行部となっており、前記一対の電極の電極間方向をX方向、このX方向と直交する方向をY方向としたとき、前記蛇行部は、Y方向に延びる引延部と、X方向に延びて前記引延部の一端と前記電極間を接続する外側ターン部と、X方向に延びて前記引延部の他端と前記調整部間を接続する内側ターン部とを有しており、前記調整部に前記抵抗体の電流経路を長くする粗調整用の第1トリミング溝を形成した後、前記外側ターン部と前記内側ターン部のいずれか一方を始端位置としてY方向に延びる微調整用の第2トリミング溝を形成し、この第2トリミング溝の先端を前記外側ターン部と前記内側ターン部を最短距離で結ぶ仮想線に達しない位置に設定したことを特徴としている。   In order to achieve the second object, a method for manufacturing a chip resistor according to the present invention includes an insulating substrate, a pair of electrodes disposed opposite to each other on the insulating substrate at a predetermined interval, and the pair of electrodes. In a method of manufacturing a chip resistor in which a resistance value is adjusted by forming a trimming groove in the resistor, the resistor is connected to the pair of electrodes. And a rectangular adjustment portion positioned between the two connection portions, and at least one of the connection portions is a turn-shaped meandering portion. When the inter-electrode direction of the electrodes is the X direction, and the direction orthogonal to the X direction is the Y direction, the meandering portion extends in the Y direction, extends in the X direction, and one end of the extending portion In the X direction, the outer turn part connecting the electrodes And a first trimming groove for coarse adjustment that lengthens the current path of the resistor in the adjustment part. The adjustment part has an inner turn part that connects the other end of the extension part and the adjustment part. Then, a second trimming groove for fine adjustment extending in the Y direction is formed with one of the outer turn portion and the inner turn portion as a starting end position, and the tip of the second trimming groove is connected to the outer turn portion and the It is characterized in that it is set at a position that does not reach the imaginary line that connects the inner turn portions at the shortest distance.

このような工程を含むチップ抵抗器の製造方法では、少なくとも1つの蛇行部と調整部が連続するミアンダ形状の抵抗体を印刷形成した後、調整部に抵抗体の電流経路を長くする第1トリミング溝を形成することで、第1トリミング溝の切込み量に伴って抵抗値が上昇するため、サージ特性を向上させた上で抵抗値を粗調整することができると共に、第1トリミング溝の形成後に一方の蛇行部における電流分布の少ない領域に第2トリミング溝を形成することで、抵抗値を高精度に微調整することができる。   In the manufacturing method of the chip resistor including such a process, after printing and forming a meander-shaped resistor in which at least one meandering portion and the adjustment portion are continuous, the first trimming is performed to lengthen the current path of the resistor in the adjustment portion. By forming the groove, the resistance value increases with the cut amount of the first trimming groove, so that the resistance value can be roughly adjusted while improving the surge characteristics, and after the first trimming groove is formed. The resistance value can be finely adjusted with high accuracy by forming the second trimming groove in the region where the current distribution is small in one meandering portion.

本発明によれば、サージ特性を向上させることができると共に、抵抗値を高精度に微調整することができるチップ抵抗器を提供することができる。   According to the present invention, it is possible to provide a chip resistor that can improve surge characteristics and finely adjust a resistance value with high accuracy.

本発明の第1実施形態に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 1st embodiment of the present invention. 第1実施形態に係るチップ抵抗器の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the chip resistor which concerns on 1st Embodiment. 本発明の第2実施形態に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a 2nd embodiment of the present invention. 従来例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning a conventional example. 他の従来例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor concerning other conventional examples.

以下、発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の第1実施形態に係るチップ抵抗器の平面図である。図1に示すように、第1実施形態に係るチップ抵抗器1は、直方体形状の絶縁基板2と、この絶縁基板2の表面の長手方向両端部に設けられた第1表電極3および第2表電極4と、これら一対の表電極3,4に接続するように絶縁基板2の表面に設けられ抵抗体5と、この抵抗体5を覆うように設けられた保護コート層(図示せず)等によって主に構成されている。なお、図示省略されているが、絶縁基板2の裏面には第1および第2表電極3,4に対応するように一対の裏電極が設けられており、絶縁基板2の長手方向の両端面には対応する表電極と裏電極を橋絡する端面電極が設けられている。   FIG. 1 is a plan view of the chip resistor according to the first embodiment of the present invention. As shown in FIG. 1, the chip resistor 1 according to the first embodiment includes a rectangular parallelepiped insulating substrate 2 and first and second surface electrodes 3 and 2 provided at both longitudinal ends of the surface of the insulating substrate 2. A front electrode 4, a resistor 5 provided on the surface of the insulating substrate 2 so as to be connected to the pair of front electrodes 3, 4, and a protective coating layer (not shown) provided so as to cover the resistor 5 Etc. are mainly composed. Although not shown, a pair of back electrodes is provided on the back surface of the insulating substrate 2 so as to correspond to the first and second front electrodes 3 and 4, and both end surfaces in the longitudinal direction of the insulating substrate 2. Are provided with end face electrodes that bridge the corresponding front and back electrodes.

抵抗体5は、中央の調整部8を挟んで両端の第1蛇行部6と第2蛇行部7が連続するミアンダ形状に形成されており、このようなミアンダ形状は抵抗体ペーストの印刷形状によって規定されている。図1において、第1および第2表電極3,4の電極間方向をX方向、このX方向と直交する方向をY方向としたとき、第1蛇行部6は、Y方向に延びる引延部6aと、X方向に延びて引延部6aの下端と図示左側の第1表電極3間を接続する外側ターン部6bと、X方向に延びて引延部6aの上端と調整部8間を接続する内側ターン部6cとを有しており、これら引延部6aと外側ターン部6bおよび内側ターン部6cのパターン幅は全て同じに設定されている。   The resistor 5 is formed in a meander shape in which the first meandering portion 6 and the second meandering portion 7 at both ends are sandwiched across the adjustment portion 8 at the center. Such a meander shape depends on the printing shape of the resistor paste. It is prescribed. In FIG. 1, when the interelectrode direction of the first and second surface electrodes 3 and 4 is the X direction, and the direction orthogonal to the X direction is the Y direction, the first meandering portion 6 is an extending portion extending in the Y direction. 6a, an outer turn portion 6b extending in the X direction and connecting the lower end of the extending portion 6a and the first front electrode 3 on the left side of the drawing, and between the upper end of the extending portion 6a and the adjusting portion 8 extending in the X direction. The extending part 6a, the outer turn part 6b, and the inner turn part 6c are all set to have the same pattern width.

第2蛇行部7は、Y方向に延びる引延部7aと、X方向に延びて引延部7aの下端と図示右側の第2表電極4間を接続する外側ターン部7bと、X方向に延びて引延部7aの上端と調整部8間を接続する内側ターン部7cとを有しており、これら外側ターン部7bと内側ターン部7cのパターン幅は第1蛇行部6と同じに設定されている。ただし、引延部7aのパターン幅は第1蛇行部6の引延部6aのパターン幅に比べて幅広(約2倍)に設定されている。   The second meandering portion 7 includes an extending portion 7a extending in the Y direction, an outer turn portion 7b extending in the X direction and connecting the lower end of the extending portion 7a and the second surface electrode 4 on the right side of the drawing, and in the X direction. It has an inner turn part 7c that extends and connects between the upper end of the extending part 7a and the adjusting part 8, and the pattern width of these outer turn part 7b and inner turn part 7c is set to be the same as that of the first meandering part 6. Has been. However, the pattern width of the extending portion 7 a is set to be wider (about twice) than the pattern width of the extending portion 6 a of the first meandering portion 6.

調整部8は第1蛇行部6と第2蛇行部7のパターン幅に比べて幅広な矩形状に形成されており、この調整部8の相対向する上端側辺に第1蛇行部6の内側ターン部6cと第2蛇行部7の内側ターン部7cが接続されている。そして、調整部8の上辺からY方向に沿って2本の第1トリミング溝9を形成し、これら第1トリミング溝9をIカット形状に延ばして抵抗体5の電流経路を長くすることにより、抵抗体5の抵抗値が目標抵抗値に近づくように粗調整されている。なお、このような第1トリミング溝9を調整部8に形成すると、2つの蛇行部6,7を有する印刷形状に形成された抵抗体5が3ターン蛇行する形状となるため、その分だけ抵抗体5の全長を長くすることができる。   The adjustment portion 8 is formed in a rectangular shape that is wider than the pattern width of the first meandering portion 6 and the second meandering portion 7, and the inner side of the first meandering portion 6 is on the opposite upper side of the adjustment portion 8. The turn part 6c and the inner turn part 7c of the second meandering part 7 are connected. Then, by forming two first trimming grooves 9 along the Y direction from the upper side of the adjustment portion 8 and extending the first trimming grooves 9 into an I-cut shape to lengthen the current path of the resistor 5, The resistance value of the resistor 5 is roughly adjusted so as to approach the target resistance value. When such a first trimming groove 9 is formed in the adjustment portion 8, the resistor 5 formed in the printed shape having the two meandering portions 6 and 7 has a shape of meandering for three turns. The overall length of the body 5 can be increased.

ただし、調整部8に形成される第1トリミング溝9の数は2本に限定されず、1本または3本以上であっても良い。その場合、第1トリミング溝9を形成した後の調整部8の電流経路幅が、印刷によって規定されたトリミング溝の形成されない電流経路幅(6a,6b,6c,7b,7c)の最小パターン幅より広くなるように第1トリミング溝9を形成すると、パターン内での負荷集中を印刷によって形成された部分に集中させることができるため、第1トリミング溝9にマイクロクラックが発生したとしても、抵抗値への影響を少なくすることができる。   However, the number of the first trimming grooves 9 formed in the adjustment unit 8 is not limited to two, and may be one or three or more. In this case, the current path width of the adjustment unit 8 after the first trimming groove 9 is formed is the minimum pattern width of the current path width (6a, 6b, 6c, 7b, 7c) where the trimming groove defined by printing is not formed. If the first trimming groove 9 is formed so as to be wider, the load concentration in the pattern can be concentrated on the portion formed by printing. Therefore, even if microcracks occur in the first trimming groove 9, the resistance is reduced. The influence on the value can be reduced.

また、第2蛇行部7における内側ターン部7cの上辺から引延部7aの内部に向けてLカット形状の第2トリミング溝10が形成されており、この第2トリミング溝10の先端は外側ターン部7bと内側ターン部7cを最短距離で結ぶ仮想線Eを超えない位置に設定されている。ここで、引延部7a内で電流が最も多く流れる部位は仮想線Eであり、第2トリミング溝10は第2蛇行部7における電流分布の少ない領域内に形成されるため、第2トリミング溝10の切込み量に伴う抵抗値変化量は非常に少なく、第2トリミング溝10によって抵抗体5の抵抗値を目標抵抗値と一致するように高精度に微調整することができる。   Further, an L-cut second trimming groove 10 is formed from the upper side of the inner turn portion 7c in the second meandering portion 7 toward the inside of the extending portion 7a, and the tip of the second trimming groove 10 is the outer turn. It is set at a position that does not exceed an imaginary line E that connects the portion 7b and the inner turn portion 7c with the shortest distance. Here, the portion where the current flows most in the extending portion 7a is the imaginary line E, and the second trimming groove 10 is formed in a region where the current distribution in the second meandering portion 7 is small. The amount of change in resistance value associated with the depth of cut of 10 is very small, and the second trimming groove 10 can finely adjust the resistance value of the resistor 5 with high accuracy so as to match the target resistance value.

なお、第2トリミング溝10の形状はLカットに限定されず、Iカット形状の第2トリミング溝10であっても良い。その場合、第2トリミング溝10を形成した後の第2蛇行部7の引延部7aの電流経路幅が、印刷によって規定されたトリミング溝の形成されない電流経路幅(6a,6b,6c,7b,7c)の最小パターン幅より広くなるように第2トリミング溝10を形成すると、パターン内での負荷集中を印刷によって形成された部分に集中させることができるため、第1トリミング溝9にマイクロクラックが発生したとしても、抵抗値への影響を少なくすることができる。   The shape of the second trimming groove 10 is not limited to the L-cut, and may be the I-cut second trimming groove 10. In that case, the current path width of the extending portion 7a of the second meandering portion 7 after the second trimming groove 10 is formed is the current path width (6a, 6b, 6c, 7b) where the trimming groove defined by printing is not formed. 7c), when the second trimming groove 10 is formed so as to be wider than the minimum pattern width, the load concentration in the pattern can be concentrated on the portion formed by printing. Even if this occurs, the influence on the resistance value can be reduced.

次に、上記のごとく構成されたチップ抵抗器1の製造工程について、図2を参照しながら説明する。   Next, the manufacturing process of the chip resistor 1 configured as described above will be described with reference to FIG.

まず、絶縁基板2が多数個取りされる大判基板を準備する。この大判基板には予め縦横に延びる1次分割溝と2次分割溝が格子状に設けられており、両分割溝によって区切られたマス目の1つ1つが1個分のチップ領域となる。図2には1個分のチップ領域に相当する大判基板2Aが代表して示されているが、実際は多数個分のチップ領域に相当する大判基板に対して以下に説明する各工程が一括して行われる。   First, a large-sized substrate from which many insulating substrates 2 are taken is prepared. In this large substrate, primary division grooves and secondary division grooves extending in the vertical and horizontal directions are provided in a lattice shape, and each of the squares divided by both division grooves is a chip area. In FIG. 2, a large substrate 2A corresponding to one chip area is shown as a representative, but in reality, the steps described below are collectively performed for a large substrate corresponding to many chip areas. Done.

すなわち、図2(a)に示すように、この大判基板2Aの表面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成して対をなす第1表電極3と第2表電極4を形成する(表電極形成工程)。なお、この電極形成工程と同時あるいは前後して、大判基板2Aの裏面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成して図示せぬ裏電極を形成する(裏電極形成工程)。   That is, as shown in FIG. 2 (a), after the Ag-based paste is screen-printed on the surface of the large substrate 2A, the first and second surface electrodes 3 and 4 are paired by drying and firing. Form (surface electrode forming step). At the same time as or before or after this electrode formation step, an Ag-based paste is screen-printed on the back surface of the large substrate 2A, and then dried and fired to form a back electrode (not shown) (back electrode formation step).

次に、図2(b)に示すように、大判基板2Aの表面にCu−Niや酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、長手方向の両端部が第1表電極3と第2表電極4に重なる抵抗体5を形成する(抵抗体形成工程)。この抵抗体5は、第1表電極3に接続する第1蛇行部6と、第2表電極4に接続する第2蛇行部7と、第1表電極3と第2表電極4の間に位置する矩形状の調整部8とを有し、これら第1表電極3と第2表電極4および調整部8は互いに連続してミアンダ形状に形成されている。   Next, as shown in FIG. 2B, a resistor paste such as Cu—Ni or ruthenium oxide is screen-printed on the surface of the large substrate 2A, dried and fired, so that both ends in the longitudinal direction are first. A resistor 5 is formed to overlap the surface electrode 3 and the second surface electrode 4 (resistor forming step). The resistor 5 includes a first meandering portion 6 connected to the first table electrode 3, a second meandering portion 7 connected to the second table electrode 4, and between the first table electrode 3 and the second table electrode 4. The first and second front electrodes 3 and 4 and the adjusting portion 8 are formed in a meander shape continuously with each other.

ここで、図2において、2次分割溝の延出方向をX方向、1次分割溝の延出方向をY方向とすると、第1蛇行部6は、Y方向に延びる引延部6aと、X方向に延びて引延部6aの下端と図示左側の第1表電極3間を接続する外側ターン部6bと、X方向に延びて引延部6aの上端と調整部8の上端左側辺間を接続する内側ターン部6cとを有している。また、第2蛇行部7は、Y方向に延びる引延部7aと、X方向に延びて引延部7aの下端と図示右側の第2表電極4間を接続する外側ターン部7bと、X方向に延びて引延部7aの上端と調整部8の上端右側辺間を接続する内側ターン部7cとを有している。   Here, in FIG. 2, when the extending direction of the secondary dividing groove is the X direction and the extending direction of the primary dividing groove is the Y direction, the first meandering portion 6 includes an extending portion 6 a extending in the Y direction, An outer turn portion 6b extending in the X direction and connecting the lower end of the extending portion 6a and the first front electrode 3 on the left side of the drawing, and between the upper end of the extending portion 6a and the upper left end of the adjusting portion 8 extending in the X direction And an inner turn portion 6c for connecting the two. The second meandering portion 7 includes an extending portion 7a extending in the Y direction, an outer turn portion 7b extending in the X direction and connecting the lower end of the extending portion 7a and the second surface electrode 4 on the right side of the drawing, An inner turn portion 7c that extends in the direction and connects between the upper end of the extending portion 7a and the upper right side of the adjusting portion 8 is provided.

次に、抵抗体5の上からガラスペーストをスクリーン印刷して乾燥・焼成することにより、抵抗体5を覆うプリコート層(図示省略)を形成した後、このプリコート層の上からレーザ光を照射することにより、図2(c)に示すように、調整部8にIカット形状の第1トリミング溝9を2本形成して(第1トリミング形成工程)、抵抗体5の抵抗値を目標抵抗値よりも若干低い値に粗調整する。これら第1トリミング溝9は調整部8の上辺から下辺に向かってY方向へ延びるように形成されており、このような第1トリミング溝9を調整部8に形成することによって抵抗体5全体の電流経路が長くなるため、この時点で2つの蛇行部6,7を有するように印刷形状に形成された抵抗体5が3ターン蛇行するミアンダ形状となる。なお、調整部8に形成される第1トリミング溝9の数は2本に限定されず、1本または3本以上であっても良い。   Next, a glass paste is screen-printed from above the resistor 5, dried and fired to form a precoat layer (not shown) that covers the resistor 5, and then laser light is irradiated from above the precoat layer. Thus, as shown in FIG. 2C, two I-cut first trimming grooves 9 are formed in the adjusting portion 8 (first trimming forming step), and the resistance value of the resistor 5 is set to the target resistance value. Coarse adjustment to a slightly lower value. These first trimming grooves 9 are formed so as to extend in the Y direction from the upper side to the lower side of the adjusting portion 8. By forming such first trimming grooves 9 in the adjusting portion 8, the entire resistor 5 is formed. Since the current path becomes long, the resistor 5 formed in the printed shape so as to have the two meandering portions 6 and 7 at this time has a meander shape that meanders three turns. The number of the first trimming grooves 9 formed in the adjustment unit 8 is not limited to two, and may be one or three or more.

引き続いて、図2(d)に示すように、第2蛇行部7にLカット形状の第2トリミング溝10を形成して(第2トリミング形成工程)、抵抗体5の抵抗値を目標抵抗値と一致するように微調整する。この第2トリミング溝10は引延部7aの上辺から下辺に向かってY方向へ延びるように形成されるが、その先端が外側ターン部7bと内側ターン部7cを最短距離で結ぶ仮想線Eを超えないように配慮されている。ここで、第2トリミング溝10が形成される部位は第2蛇行部7における電流分布の少ない領域であり、当該領域はトリミング量あたりの抵抗値変化量が非常に少ないため、第2トリミング溝10によって抵抗体5の抵抗値を高精度に微調整することができる。なお、第2トリミング溝10の先端が仮想線Eを超えなければ、第2トリミング溝10の形状はLカットに限定されず、Iカット形状の第2トリミング溝10であっても良い。   Subsequently, as shown in FIG. 2D, an L-cut second trimming groove 10 is formed in the second meandering portion 7 (second trimming forming step), and the resistance value of the resistor 5 is set to the target resistance value. Tweak to match. The second trimming groove 10 is formed so as to extend in the Y direction from the upper side to the lower side of the extending portion 7a. Care is taken not to exceed. Here, the portion where the second trimming groove 10 is formed is a region where the current distribution in the second meandering portion 7 is small, and the region has a very small resistance value change amount per trimming amount. Thus, the resistance value of the resistor 5 can be finely adjusted with high accuracy. If the tip of the second trimming groove 10 does not exceed the imaginary line E, the shape of the second trimming groove 10 is not limited to the L cut, and may be the I trimmed second trimming groove 10.

次に、第1トリミング溝9と第2トリミング溝10の上からエポキシ系の樹脂ペーストをスクリーン印刷して加熱硬化することにより、抵抗体5の全体を覆う図示せぬ保護コート層を形成する(保護コート層形成工程)。   Next, an epoxy resin paste is screen printed from above the first trimming groove 9 and the second trimming groove 10 and heat-cured to form a protective coating layer (not shown) that covers the entire resistor 5 ( Protective coat layer forming step).

ここまでの各工程は多数個取り用の大判基板2Aに対する一括処理であるが、次なる工程では、大判基板2Aを1次分割溝に沿って短冊状に分割するという1次ブレーク加工を行うことより、複数個分のチップ領域が設けられた図示せぬ短冊状基板を得る(1次分割工程)。次いで、短冊状基板の分割面にAgペーストを塗布して乾燥・焼成したり、Agペーストの代わりにNi/Crをスパッタすることにより、第1および第2表電極3,4と対応する裏電極とを橋絡する図示せぬ端面電極を形成する(端面電極形成工程)。   Each process so far is a batch process for a large-sized substrate 2A for taking a large number of pieces, but in the next step, a primary break process is performed in which the large-sized substrate 2A is divided into strips along the primary dividing groove. Thus, a strip-shaped substrate (not shown) provided with a plurality of chip regions is obtained (primary division step). Next, a back electrode corresponding to the first and second front electrodes 3 and 4 is formed by applying an Ag paste to the dividing surface of the strip-shaped substrate and drying and baking, or sputtering Ni / Cr instead of the Ag paste. An end face electrode (not shown) that bridges the two is formed (end face electrode forming step).

しかる後、短冊状基板を2次分割溝に沿って分割するという2次ブレーク加工を行うことにより、チップ抵抗器1と同等の大きさのチップ単体を得る(2次分割工程)。最後に、個片化された各チップ単体の絶縁基板2の長手方向両端部にNiとAuやSn等の電解メッキを施し、端面電極と裏電極ならびに保護コート層から露出する第1および第2表電極3,4を覆う図示せぬ外部電極を形成することにより、図1に示すようなチップ抵抗器1が得られる。   Thereafter, a chip break having a size equivalent to that of the chip resistor 1 is obtained by performing a secondary break process of dividing the strip-shaped substrate along the secondary dividing grooves (secondary dividing step). Finally, electrolytic plating of Ni, Au, Sn, or the like is applied to both ends in the longitudinal direction of the insulating substrate 2 of each individual chip, and the first and second exposed from the end face electrode, the back electrode, and the protective coating layer. By forming an external electrode (not shown) that covers the surface electrodes 3 and 4, a chip resistor 1 as shown in FIG. 1 is obtained.

以上説明したように、第1実施形態に係るチップ抵抗器1では、矩形状の調整部8を挟んで第1蛇行部6と第2蛇行部7が連続するミアンダ形状の抵抗体5を印刷形成した後、調整部8に第1トリミング溝9を形成することにより、抵抗体5の電流経路を長くしてサージ特性を向上させた上で、抵抗体5の抵抗値を目標抵抗値に近づけるように粗調整することができ、その後に第2蛇行部7における電流分布の少ない領域に第2トリミング溝10を形成することにより、第2トリミング溝10の切込み量に伴って抵抗体の抵抗値を目標抵抗値と一致するように微調整することができるため、サージ特性を向上させた上で抵抗値を高精度に調整することができる。   As described above, in the chip resistor 1 according to the first embodiment, the meander-shaped resistor 5 in which the first meandering portion 6 and the second meandering portion 7 are continuous with the rectangular adjustment portion 8 interposed therebetween is formed by printing. After that, the first trimming groove 9 is formed in the adjusting unit 8 so that the current path of the resistor 5 is lengthened to improve the surge characteristic, and the resistance value of the resistor 5 is brought close to the target resistance value. Then, the second trimming groove 10 is formed in an area where the current distribution in the second meandering portion 7 is small, so that the resistance value of the resistor can be adjusted in accordance with the cut amount of the second trimming groove 10. Since the fine adjustment can be made so as to coincide with the target resistance value, the resistance value can be adjusted with high accuracy while improving the surge characteristics.

図3は本発明の第2実施形態に係るチップ抵抗器20の平面図であり、図1に対応する部分には同一符号を付すことにより、重複する説明を適宜省略する。
してある。
FIG. 3 is a plan view of the chip resistor 20 according to the second embodiment of the present invention. The same reference numerals are given to portions corresponding to those in FIG.
It is.

この第2実施形態が第1実施形態と相違する点は、第1トリミング溝9の形成によって狭くなった調整部8のパターン幅が第1蛇行部6のパターンと同程度になっていることにあり、それ以外の構成は図1に示すチップ抵抗器1と基本的に同様である。   The second embodiment is different from the first embodiment in that the pattern width of the adjustment portion 8 narrowed by the formation of the first trimming groove 9 is approximately the same as the pattern of the first meandering portion 6. The other configuration is basically the same as that of the chip resistor 1 shown in FIG.

すなわち、図3に示すように、矩形状に印刷された調整部8が1本の第1トリミング溝9を形成することで蛇行形状となっており、第1蛇行部6のパターン幅をWとすると、第1トリミング溝9が形成される前の調整部8の幅寸法は約2Wとなっている。そして、調整部8の中央部にIカット形状の第1トリミング溝9を形成して抵抗値の粗調整を行うことにより、矩形状の調整部8が蛇行形状となって幅寸法は半分の約Wとなる。   That is, as shown in FIG. 3, the adjustment portion 8 printed in a rectangular shape has a meandering shape by forming one first trimming groove 9, and the pattern width of the first meandering portion 6 is W. Then, the width dimension of the adjustment portion 8 before the first trimming groove 9 is formed is about 2W. Then, the first trimming groove 9 having an I-cut shape is formed at the center of the adjustment portion 8 to perform rough adjustment of the resistance value, whereby the rectangular adjustment portion 8 becomes a meandering shape and the width dimension is about half. W.

このように構成された第2実施形態に係るチップ抵抗器20では、矩形状に印刷された調整部8に第1トリミング溝9を形成することにより、第1蛇行部6から調整部8を経て第2蛇行部7の内側ターン部7cに至る部分がほぼ同程度のパターン幅Wとなるため、ホットスポットを分散して抵抗体5のパターン全体へ均熱化することができる。   In the chip resistor 20 according to the second embodiment configured as described above, the first trimming groove 9 is formed in the adjustment portion 8 printed in a rectangular shape, so that the first meandering portion 6 passes through the adjustment portion 8. Since the portion of the second meandering portion 7 that reaches the inner turn portion 7c has a pattern width W that is substantially the same, the hot spots can be dispersed and the temperature of the resistor 5 can be uniformed over the entire pattern.

なお、第2実施形態に係るチップ抵抗器20において、調整部8に形成される第1トリミング溝9の数を2本以上にすることも可能であり、その場合、第1トリミング溝9の本数に応じて印刷形成時の調整部8の幅寸法を変更すれば良い。   In the chip resistor 20 according to the second embodiment, the number of the first trimming grooves 9 formed in the adjusting unit 8 can be two or more. In that case, the number of the first trimming grooves 9 is also possible. Accordingly, the width dimension of the adjustment unit 8 at the time of printing may be changed.

また、上記各実施形態では、第2蛇行部7における内側ターン部7cの上辺から引延部7aの内部に向けて第2トリミング溝10を形成したが、第2トリミング溝10の先端が外側ターン部7bと内側ターン部7cを最短距離で結ぶ仮想線Eを超えなければ、第2蛇行部7における外側ターン部7bの下辺から引延部7aの内部に向けて第2トリミング溝10を形成しても良い。   Further, in each of the above embodiments, the second trimming groove 10 is formed from the upper side of the inner turn portion 7c in the second meandering portion 7 toward the inside of the extending portion 7a, but the tip of the second trimming groove 10 is the outer turn. The second trimming groove 10 is formed from the lower side of the outer turn portion 7b in the second meandering portion 7 toward the inside of the extending portion 7a unless the imaginary line E connecting the portion 7b and the inner turn portion 7c is shortest. May be.

また、上記各実施形態では、調整部8を挟んで連続する一対の第1蛇行部6と第2蛇行部7のうち、第2表電極4に接続する第2蛇行部7に第2トリミング溝10を形成した場合について説明したが、第1表電極3に接続する第1蛇行部6に第2トリミング溝10を形成して抵抗値を微調整するようししても良く、その場合は、第1蛇行部6における引延部6aのパターン幅を第2蛇行部7における引延部7aのパターン幅よりも幅広に設定することが好ましい。   In each of the above embodiments, the second trimming groove is formed in the second meandering portion 7 connected to the second surface electrode 4 out of the pair of the first meandering portion 6 and the second meandering portion 7 that are continuous with the adjustment portion 8 interposed therebetween. However, the resistance value may be finely adjusted by forming the second trimming groove 10 in the first meandering portion 6 connected to the first table electrode 3. The pattern width of the extending portion 6a in the first meandering portion 6 is preferably set wider than the pattern width of the extending portion 7a in the second meandering portion 7.

また、上記各実施形態では、第1表電極3と第2表電極4に接続する抵抗体5の2つの接続部が、両方共にターン形状の第1蛇行部6と第2蛇行部7となっているが、いずれか一方の接続部をターン形状に屈曲させずにストレート形状にしても良い。すなわち、図1に示すチップ抵抗器1において、第1蛇行部6の引延部6aと外側ターン部6bを省略し、第1表電極3と調整部8と間をX方向に延びる内側ターン部6cで接続するという構成にしても良い。   In each of the above embodiments, the two connecting portions of the resistor 5 connected to the first surface electrode 3 and the second surface electrode 4 are both the first meandering portion 6 and the second meandering portion 7 having a turn shape. However, any one of the connecting portions may be formed into a straight shape without being bent into a turn shape. That is, in the chip resistor 1 shown in FIG. 1, the extending portion 6a and the outer turn portion 6b of the first meandering portion 6 are omitted, and the inner turn portion extending between the first surface electrode 3 and the adjusting portion 8 in the X direction. You may make it the structure of connecting by 6c.

1,20 チップ抵抗器
2 絶縁基板
2A 大判基板
3 第1表電極
4 第2表電極
5 抵抗体
6 第1蛇行部
6a 引延部
6b 外側ターン部
6c 内側ターン部
7 第2蛇行部
7a 引延部
7b 外側ターン部
7c 内側ターン部
8 調整部
9 第1トリミング溝
10 第2トリミング溝
E 外側ターン部と内側ターン部を最短距離で結ぶ仮想線
1,20 Chip Resistor 2 Insulating Substrate 2A Large Format Substrate 3 First Table Electrode 4 Second Table Electrode 5 Resistor 6 First Meandering Part 6a Extending Part 6b Outer Turn Part 6c Inner Turn Part 7 Second Meandering Part 7a Extending Part 7b Outer turn part 7c Inner turn part 8 Adjustment part 9 First trimming groove 10 Second trimming groove E Virtual line connecting the outer turn part and the inner turn part at the shortest distance

Claims (3)

絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器において、
前記抵抗体は、前記一対の電極に接続される接続部と、これら両接続部の間に位置する矩形状の調整部とが連続する印刷形成体からなると共に、少なくとも一方の前記接続部がターン形状の蛇行部となっており、
前記調整部に前記抵抗体の電流経路を長くする粗調整用の第1トリミング溝が形成されていると共に、前記蛇行部に微調整用の第2トリミング溝が形成されており、
前記一対の電極の電極間方向をX方向、このX方向と直交する方向をY方向としたとき、前記蛇行部は、Y方向に延びる引延部と、X方向に延びて前記引延部の一端と前記電極間を接続する外側ターン部と、X方向に延びて前記引延部の他端と前記調整部間を接続する内側ターン部とを有し、
前記第2トリミング溝は、前記外側ターン部と前記内側ターン部のいずれか一方を始端位置としてY方向に延びていると共に、その先端が前記外側ターン部と前記内側ターン部を最短距離で結ぶ仮想線に達していないことを特徴とするチップ抵抗器。
An insulating substrate; a pair of electrodes opposed to each other with a predetermined interval on the insulating substrate; and a resistor that bridges the pair of electrodes, and a trimming groove is formed in the resistor. In the chip resistor whose resistance value is adjusted,
The resistor includes a print formed body in which a connection portion connected to the pair of electrodes and a rectangular adjustment portion positioned between the two connection portions are continuous, and at least one of the connection portions is turned. It is a meandering part of the shape,
A first trimming groove for coarse adjustment that lengthens the current path of the resistor is formed in the adjustment portion, and a second trimming groove for fine adjustment is formed in the meandering portion,
When the inter-electrode direction of the pair of electrodes is the X direction and the direction perpendicular to the X direction is the Y direction, the meandering portion extends in the Y direction and extends in the X direction. An outer turn portion connecting one end and the electrode, and an inner turn portion extending in the X direction and connecting the other end of the extending portion and the adjustment portion,
The second trimming groove extends in the Y direction starting from one of the outer turn portion and the inner turn portion, and the tip of the second trimming groove connects the outer turn portion and the inner turn portion with the shortest distance. Chip resistor characterized by not reaching the wire.
請求項1に記載のチップ抵抗器において、一対の前記接続部が両方共にターン形状の蛇行部となっており、前記第2トリミング溝はいずれか一方の前記蛇行部に形成されていることを特徴とするチップ抵抗器。   2. The chip resistor according to claim 1, wherein both of the pair of connection portions are turn-shaped meandering portions, and the second trimming groove is formed in one of the meandering portions. And chip resistor. 絶縁基板と、この絶縁基板上に所定間隔を存して対向配置された一対の電極と、これら一対の電極間を橋絡する抵抗体とを備え、前記抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器の製造方法において、
前記抵抗体は、前記一対の電極に接続される接続部と、これら両接続部の間に位置する矩形状の調整部とが連続する印刷形成体からなると共に、少なくとも一方の前記接続部がターン形状の蛇行部となっており、
前記一対の電極の電極間方向をX方向、このX方向と直交する方向をY方向としたとき、前記蛇行部は、Y方向に延びる引延部と、X方向に延びて前記引延部の一端と前記電極間を接続する外側ターン部と、X方向に延びて前記引延部の他端と前記調整部間を接続する内側ターン部とを有しており、
前記調整部に前記抵抗体の電流経路を長くする粗調整用の第1トリミング溝を形成した後、前記外側ターン部と前記内側ターン部のいずれか一方を始端位置としてY方向に延びる微調整用の第2トリミング溝を形成し、この第2トリミング溝の先端を前記外側ターン部と前記内側ターン部を最短距離で結ぶ仮想線に達しない位置に設定したことを特徴とするチップ抵抗器の製造方法。
An insulating substrate; a pair of electrodes opposed to each other with a predetermined interval on the insulating substrate; and a resistor that bridges the pair of electrodes, and a trimming groove is formed in the resistor. In the manufacturing method of the chip resistor in which the resistance value is adjusted,
The resistor includes a print formed body in which a connection portion connected to the pair of electrodes and a rectangular adjustment portion positioned between the two connection portions are continuous, and at least one of the connection portions is turned. It is a meandering part of the shape,
When the inter-electrode direction of the pair of electrodes is the X direction and the direction perpendicular to the X direction is the Y direction, the meandering portion extends in the Y direction and extends in the X direction. An outer turn part connecting one end and the electrode, and an inner turn part extending in the X direction and connecting the other end of the extension part and the adjustment part,
After the first trimming groove for coarse adjustment that makes the current path of the resistor long in the adjustment portion is formed, for fine adjustment that extends in the Y direction with one of the outer turn portion and the inner turn portion as a start position The chip trimming groove is formed, and the tip of the second trimming groove is set at a position that does not reach the imaginary line connecting the outer turn part and the inner turn part at the shortest distance. Method.
JP2018095499A 2018-05-17 2018-05-17 CHIP RESISTOR AND CHIP RESISTOR MANUFACTURING METHOD Active JP7152184B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018095499A JP7152184B2 (en) 2018-05-17 2018-05-17 CHIP RESISTOR AND CHIP RESISTOR MANUFACTURING METHOD
CN201980027009.2A CN112005323B (en) 2018-05-17 2019-04-08 Chip resistor and method for manufacturing chip resistor
DE112019002509.0T DE112019002509T5 (en) 2018-05-17 2019-04-08 CHIP RESISTOR AND METHOD FOR MAKING A CHIP RESISTOR
PCT/JP2019/015269 WO2019220811A1 (en) 2018-05-17 2019-04-08 Chip resistor and chip resistor production method
US17/049,486 US11170918B2 (en) 2018-05-17 2019-04-08 Chip resistor and chip resistor production method
TW108113038A TWI687942B (en) 2018-05-17 2019-04-15 Chip resistor and method for manufacturing chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018095499A JP7152184B2 (en) 2018-05-17 2018-05-17 CHIP RESISTOR AND CHIP RESISTOR MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2019201142A true JP2019201142A (en) 2019-11-21
JP7152184B2 JP7152184B2 (en) 2022-10-12

Family

ID=68540240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018095499A Active JP7152184B2 (en) 2018-05-17 2018-05-17 CHIP RESISTOR AND CHIP RESISTOR MANUFACTURING METHOD

Country Status (6)

Country Link
US (1) US11170918B2 (en)
JP (1) JP7152184B2 (en)
CN (1) CN112005323B (en)
DE (1) DE112019002509T5 (en)
TW (1) TWI687942B (en)
WO (1) WO2019220811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022107876A1 (en) 2021-04-05 2022-10-06 Koa Corporation Chip resistor and method of making a chip resistor
CN115376768A (en) * 2021-05-20 2022-11-22 Koa株式会社 Chip resistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695122B2 (en) * 2015-10-15 2020-05-20 サンコール株式会社 Manufacturing method of shunt resistor
JP2023021533A (en) * 2021-08-02 2023-02-14 Koa株式会社 Resistor and method of manufacturing the same
CN116959827A (en) 2022-04-13 2023-10-27 国巨电子(中国)有限公司 Method for manufacturing ignition resistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205004A (en) * 1996-01-26 1997-08-05 Taiyoushiya Denki Kk Chip resistor and its manufacturing method
JP2001338801A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Resistor and its manufacturing method
JP2002237401A (en) * 2001-02-13 2002-08-23 Matsushita Electric Ind Co Ltd Resistor
JP2005093718A (en) * 2003-09-17 2005-04-07 Rohm Co Ltd Chip resistor and its manufacturing method
JP2008305985A (en) * 2007-06-07 2008-12-18 Taiyosha Electric Co Ltd Chip resistor
JP2018010987A (en) * 2016-07-14 2018-01-18 Koa株式会社 Chip resistor and manufacturing method of chip resistor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041440A (en) * 1976-05-13 1977-08-09 General Motors Corporation Method of adjusting resistance of a thick-film thermistor
US4306217A (en) * 1977-06-03 1981-12-15 Angstrohm Precision, Inc. Flat electrical components
FR2398374A1 (en) * 1977-07-19 1979-02-16 Lignes Telegraph Telephon ADJUSTING RESISTORS FOR HYBRID CIRCUITS
JPH0620810A (en) * 1992-06-30 1994-01-28 Unisia Jecs Corp Printed resistor trimming method
US5420562A (en) * 1993-09-28 1995-05-30 Motorola, Inc. Resistor having geometry for enhancing radio frequency performance
TW340944B (en) * 1996-03-11 1998-09-21 Matsushita Electric Ind Co Ltd Resistor and method of making the same
US7286039B2 (en) * 2003-09-17 2007-10-23 Rohm Co., Ltd. Chip resistor and method of manufacturing the same
JP2005093717A (en) * 2003-09-17 2005-04-07 Rohm Co Ltd Chip resistor and its manufacturing method
TWI366837B (en) * 2004-02-27 2012-06-21 Rohm Co Ltd Chip resistor and method for manufacturing the same
JP5166140B2 (en) * 2008-07-03 2013-03-21 ローム株式会社 Chip resistor and manufacturing method thereof
JP6371187B2 (en) * 2014-10-03 2018-08-08 Koa株式会社 Resistor trimming method
JP2016152301A (en) * 2015-02-17 2016-08-22 ローム株式会社 Chip resistor and manufacturing method thereof
CN107533889B (en) * 2015-04-24 2019-11-05 釜屋电机株式会社 Rectangular chip resistor device and its manufacturing method
JP2017152431A (en) * 2016-02-22 2017-08-31 Koa株式会社 Chip resistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205004A (en) * 1996-01-26 1997-08-05 Taiyoushiya Denki Kk Chip resistor and its manufacturing method
JP2001338801A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Resistor and its manufacturing method
JP2002237401A (en) * 2001-02-13 2002-08-23 Matsushita Electric Ind Co Ltd Resistor
JP2005093718A (en) * 2003-09-17 2005-04-07 Rohm Co Ltd Chip resistor and its manufacturing method
JP2008305985A (en) * 2007-06-07 2008-12-18 Taiyosha Electric Co Ltd Chip resistor
JP2018010987A (en) * 2016-07-14 2018-01-18 Koa株式会社 Chip resistor and manufacturing method of chip resistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022107876A1 (en) 2021-04-05 2022-10-06 Koa Corporation Chip resistor and method of making a chip resistor
US11646136B2 (en) 2021-04-05 2023-05-09 Koa Corporation Chip resistor and method of manufacturing chip resistor
CN115376768A (en) * 2021-05-20 2022-11-22 Koa株式会社 Chip resistor
DE102022112306A1 (en) 2021-05-20 2022-11-24 Koa Corporation CHIP RESISTOR
US11742116B2 (en) 2021-05-20 2023-08-29 Koa Corporation Chip resistor
CN115376768B (en) * 2021-05-20 2023-12-19 Koa株式会社 chip resistor

Also Published As

Publication number Publication date
TWI687942B (en) 2020-03-11
JP7152184B2 (en) 2022-10-12
US20210249164A1 (en) 2021-08-12
CN112005323B (en) 2022-02-18
US11170918B2 (en) 2021-11-09
TW201947617A (en) 2019-12-16
CN112005323A (en) 2020-11-27
DE112019002509T5 (en) 2021-03-04
WO2019220811A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019220811A1 (en) Chip resistor and chip resistor production method
JPH1126204A (en) Resistor and manufacture thereof
WO2016051939A1 (en) Resistor trimming method
WO2007029635A1 (en) Chip resistor and method for producing the same
JP6479361B2 (en) Chip resistor
JP2018010987A (en) Chip resistor and manufacturing method of chip resistor
JP2015079872A (en) Chip resistor
JP6371080B2 (en) Manufacturing method of chip resistor
JP7014563B2 (en) Manufacturing method of chip resistors and chip resistors
US11742116B2 (en) Chip resistor
JP2574499Y2 (en) Surge protector
CN115206609B (en) Chip resistor and method for manufacturing chip resistor
TWI839733B (en) Chip Resistors
JP2000269012A (en) Chip-type electronic components with resistance element and its manufacture
JP2019016643A (en) Chip resistor and method of manufacturing chip resistor
US11164688B2 (en) Chip resistor
JP2018107374A (en) Chip resistor
JP2018107373A (en) Chip resistor
JP2018107375A (en) Chip resistor
JPH0497501A (en) Resistor and its manufacture
JPH0677021A (en) Adjusting method for resistance value of resistor
JP2018088497A (en) Chip resistor and manufacturing method for the same
JP2015204417A (en) chip resistor
JP2014086629A (en) Multiple chip resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220929

R150 Certificate of patent or registration of utility model

Ref document number: 7152184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150