JP2002313355A - Solid polymer fuel cell and separator for it - Google Patents

Solid polymer fuel cell and separator for it

Info

Publication number
JP2002313355A
JP2002313355A JP2001113742A JP2001113742A JP2002313355A JP 2002313355 A JP2002313355 A JP 2002313355A JP 2001113742 A JP2001113742 A JP 2001113742A JP 2001113742 A JP2001113742 A JP 2001113742A JP 2002313355 A JP2002313355 A JP 2002313355A
Authority
JP
Japan
Prior art keywords
concentration
metal substrate
separator
conductive film
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001113742A
Other languages
Japanese (ja)
Inventor
Kazushige Kono
一重 河野
Yukio Saito
幸雄 斉藤
Hiroshi Yamauchi
博史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001113742A priority Critical patent/JP2002313355A/en
Publication of JP2002313355A publication Critical patent/JP2002313355A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell excellent in the initial period battery characteristics and the lifetime characteristics. SOLUTION: Materials having a Cr concentration of 20% or more are provided on the surface of a metal base board followed by formation of an electroconductive film or an electroconductive film is formed on a metal base board whose Cr concentration at the surface is over 13% and a Cr oxide layer is formed on the interface between the metal base board and electroconductive film so that a metal separator is accomplished, and using it the intended solid polymer fuel cell is embodied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分散電源、電気自
動車用電源等に用いられる固体高分子形燃料電池と、該
電池に用いられるセパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell used for a distributed power source, a power source for an electric vehicle, and the like, and a separator used for the battery.

【0002】[0002]

【従来の技術】固体高分子形燃料電池は、作動温度が1
00℃以下と低く、短時間で起動することが可能であ
る。また、NOx,SOx等の発生が無く、騒音が少ない
等の特性から、低環境負荷の発電装置として、小型分散
電源、電気自動車搭載電源などへの応用が注目されてい
る。
2. Description of the Related Art A polymer electrolyte fuel cell has an operating temperature of one.
It is as low as 00 ° C. or less and can be started in a short time. Also, due to its characteristics such as no generation of NOx and SOx and low noise, its application to a small distributed power supply, a power supply mounted on an electric vehicle, and the like as a power generator with a low environmental load has attracted attention.

【0003】固体高分子形燃料電池は、分子中にプロト
ン交換基を持つ固体高分子膜が、プロトン導電性電解質
として機能することを利用したものであり、他の形式の
燃料電池と同様に、固体高分子膜の燃料極側に水素等の
燃料ガスを、空気極側に空気等の酸化性ガスを流す構造
に成っている。
A polymer electrolyte fuel cell utilizes a solid polymer membrane having a proton exchange group in a molecule to function as a proton conductive electrolyte. Like other types of fuel cells, The structure is such that a fuel gas such as hydrogen flows on the fuel electrode side of the solid polymer membrane and an oxidizing gas such as air flows on the air electrode side.

【0004】次に固体高分子形燃料電池の基本構成を図
2を用いて具体的に説明する。図2(A)は該電池の模
式断面図を、また、図(B)は単位セルの構成を示す模
式斜視図である。
Next, the basic structure of a polymer electrolyte fuel cell will be specifically described with reference to FIG. FIG. 2A is a schematic sectional view of the battery, and FIG. 2B is a schematic perspective view showing the configuration of a unit cell.

【0005】高分子材料から成る高分子膜1は、両側に
燃料極3aと空気極3bとが配置され、それぞれガス拡
散層4を介してセパレータ2により挟持されている。燃
料極3a側のセパレータには、燃料ガスの供給口6と燃
料ガスの排出口7が形成されており、空気極セパレータ
には空気の供給口8と空気の排出口9がそれぞれ形成さ
れている。
A polymer film 1 made of a polymer material has a fuel electrode 3 a and an air electrode 3 b disposed on both sides, and is sandwiched by a separator 2 via a gas diffusion layer 4. A fuel gas supply port 6 and a fuel gas discharge port 7 are formed in the separator on the fuel electrode 3a side, and an air supply port 8 and an air discharge port 9 are formed in the air electrode separator, respectively. .

【0006】セパレータ2には、それぞれのガスを導入
するためのガス流路(10、11)およびガス拡散層4
と接し電池の集電を行う集電部12が形成されている。
単位セルの端面のガスリークを防止するためにガスシー
ル材5を設置する。また、図2では表示していないが発
電時に発熱するため、冷却水を循環させる冷却手段を介
在させる場合もある。
[0006] The separator 2 has a gas flow path (10, 11) for introducing each gas and a gas diffusion layer 4.
And a power collection unit 12 for collecting power of the battery.
A gas seal material 5 is provided to prevent gas leakage at the end face of the unit cell. Although not shown in FIG. 2, since heat is generated during power generation, cooling means for circulating cooling water may be interposed.

【0007】一般的に、燃料電池は図2に示す単位セル
を、電力量に応じて複数個積層するスタック構成で用い
られる。
Generally, a fuel cell is used in a stack configuration in which a plurality of unit cells shown in FIG. 2 are stacked according to the amount of power.

【0008】上記のように、固体高分子形燃料電池は低
環境負荷電源として期待されているが、発電コストが高
いため実用化に到っておらず、コストの低減が必須課題
になっている。特に、固体高分子膜、セパレータ材料の
コスト高が一因となっている。
As described above, the polymer electrolyte fuel cell is expected as a power source with a low environmental load. However, since the power generation cost is high, it has not been put to practical use, and reduction of the cost is an essential issue. . In particular, the high cost of the solid polymer membrane and the separator material is one factor.

【0009】固体高分子型燃料電池のセパレータとして
求められる条件としては、(1) 導電性が良好、
(2) 接触抵抗が低い、(3) ガスの透過が無い、
(4) 耐久性が高い、など多くの特性が要求され、現
在では、緻密化したグラファイト質の材料を切削加工し
たものが用いられている。
The conditions required for a separator of a polymer electrolyte fuel cell include (1) good conductivity,
(2) low contact resistance; (3) no gas permeation;
(4) Many characteristics such as high durability are required, and at present, a material obtained by cutting a densified graphite material is used.

【0010】しかしながら、上記の材料は、ガスリーク
の防止のために緻密化する工程が必須となり、しかも材
料が脆いために加工が困難でその加工費が高くなり、燃
料電池価格の高騰の要因となっていた。
However, the above materials require a process of densification in order to prevent gas leakage, and are difficult to process due to the brittleness of the material, which increases the processing cost and causes a rise in the price of fuel cells. I was

【0011】近年、上記コストを低減するため幾つかの
試みがなされている。例えば、プレスやパンチング加工
により金属板を用いる手法が知られている(特開平8−
180883号公報)。しかし、金属板を用いた場合、
金属の腐食により電池の集電抵抗が増加し、電池の効率
が低下すると云う点が懸念されていた。
In recent years, several attempts have been made to reduce the cost. For example, a method using a metal plate by pressing or punching is known (Japanese Patent Application Laid-Open No. 8-
180883). However, when using a metal plate,
There has been concern that the current collection resistance of the battery increases due to corrosion of the metal, and the efficiency of the battery decreases.

【0012】これを改善するものとして、金属表面にカ
ーボン系粒子を分散した導電性保護膜を形成したセパレ
ータが提案(特開平11−144744号、特開平11
−345618号、特開平8−222237号公報等)
されている。
In order to improve this, a separator having a conductive protective film in which carbon-based particles are dispersed on a metal surface has been proposed (JP-A-11-144744, JP-A-11-144744).
-345618, JP-A-8-222237, etc.)
Have been.

【0013】しかし、導電性保護膜を形成したセパレー
タは、長期間(数千時間)の運転において、保護膜に存
在する開気孔より金属基板の腐食が発生し、電池の性能
低下を引き起こす危険があった。
[0013] However, in the separator having the conductive protective film formed thereon, there is a danger that the metal substrate is corroded from the open pores existing in the protective film in a long-term operation (thousands of hours), and the performance of the battery is deteriorated. there were.

【0014】また、ステンレス鋼に貴金属皮膜を施す手
法が特開平11−162479号公報に提示されている
が、本手法によれば、腐食による抵抗増加は抑制される
が、高価な貴金属を用いるため、コスト高の問題が生じ
る。
A method of applying a noble metal film to stainless steel is disclosed in Japanese Patent Application Laid-Open No. H11-162479. According to this method, an increase in resistance due to corrosion is suppressed, but an expensive noble metal is used. This raises the problem of high cost.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、高コ
ストである緻密化黒鉛セパレータに替えて、低コストで
ある金属基板を主体とする固体高分子形燃料電池用セパ
レータを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-cost separator for a polymer electrolyte fuel cell mainly composed of a metal substrate, instead of a high-cost dense graphite separator. is there.

【0016】また、本発明の他の目的は、上記セパレー
タを用いた固体高分子形燃料電池を提供することにあ
る。
Another object of the present invention is to provide a polymer electrolyte fuel cell using the above separator.

【0017】[0017]

【課題を解決するための手段】前記の問題を解決するた
めに、本発明者らは種々検討を行った結果、表面のCr
濃度が20%以上である金属基板に、導電塗料を塗布す
ることで、導電性および耐久性に優れた金属セパレータ
が得られることを見出した。
In order to solve the above-mentioned problems, the present inventors have conducted various studies and found that the surface Cr
It has been found that a metal separator having excellent conductivity and durability can be obtained by applying a conductive paint to a metal substrate having a concentration of 20% or more.

【0018】固体高分子形燃料電池は、作動温度が80
℃程度でありセパレータの集電部は飽和水蒸気環境下と
なっているため、通常、耐食性金属として用いられてい
るオーステナイト系ステンレスでも数千時間の運転で腐
食され、金属基板の接触抵抗が増加して、電池の発電効
率を低下させると云う問題が生ずる。
The polymer electrolyte fuel cell has an operating temperature of 80
℃ and the collector of the separator is in a saturated steam environment, so even austenitic stainless steel, which is usually used as a corrosion-resistant metal, is corroded in thousands of hours of operation, increasing the contact resistance of the metal substrate. As a result, the problem of lowering the power generation efficiency of the battery occurs.

【0019】上記を解決する本発明の基板材料として
は、表面のCr濃度が20%以上の金属基板を用い、該
金属基板に炭素系材料またはセラミックス系材料からな
る導電膜を形成したものを用いることにある。
As a substrate material of the present invention which solves the above, a metal substrate having a surface with a Cr concentration of 20% or more is used, and a conductive film made of a carbon-based material or a ceramic-based material is formed on the metal substrate. It is in.

【0020】その場合、基板表面のCr濃度を高くする
表面処理手法としては、CVD、PVD等により該表面
にCr層を形成する手法、電解液中で電圧を印加してC
rを金属表面に析出させる手法、HNO3等の酸溶液中
に浸漬して化学エッチングする手法などが挙げられる。
In this case, as a surface treatment method for increasing the Cr concentration on the substrate surface, a method of forming a Cr layer on the surface by CVD, PVD, or the like, or a method of applying a voltage in an electrolyte to apply a C
A method of precipitating r on a metal surface, a method of dipping in an acid solution such as HNO 3 and chemical etching, and the like can be cited.

【0021】その際、上記Cr濃度が20%以上の層の
厚みは2nm以上であれば本発明の効果がより向上す
る。但し、1μmを超える厚みのものを形成するには、
処理時間が長くなり生産性が低下するので、その厚みと
しては1μm以下が望ましい。
In this case, if the thickness of the layer having the Cr concentration of 20% or more is 2 nm or more, the effect of the present invention is further improved. However, in order to form a material with a thickness exceeding 1 μm,
Since the processing time becomes longer and the productivity is reduced, the thickness is desirably 1 μm or less.

【0022】上記Cr濃度が13%以上である金属基板
に導電膜を形成し、金属基板/導電膜の界面にCr酸化
物層を形成することで、導電性および耐久性が高い金属
セパレータを得ることができる。
By forming a conductive film on a metal substrate having a Cr concentration of 13% or more and forming a Cr oxide layer at the interface between the metal substrate and the conductive film, a metal separator having high conductivity and high durability is obtained. be able to.

【0023】Cr酸化物層を形成した本発明のセパレー
タは、電池の作動温度(約80℃)の飽和水蒸気環境下
において、塗膜層内に存在する開気孔等から蒸気が進入
しても、基板の腐食が防止される。
The separator of the present invention on which the Cr oxide layer is formed can be used in a saturated steam environment at the operating temperature of the battery (about 80 ° C.), even when steam enters through open pores and the like existing in the coating layer. Corrosion of the substrate is prevented.

【0024】この金属基板/導電膜の界面にCr酸化物
層を形成する手法としては、 予め、Cr酸化層を基板金属表面に形成後、導電膜
を塗布する方法、 金属基板表面に導電膜を塗布後にCr酸化層を形成
する方法、 等が考えられる。
As a method of forming a Cr oxide layer at the interface between the metal substrate and the conductive film, a method of forming a Cr oxide layer on the substrate metal surface in advance and then coating the conductive film, A method in which a Cr oxide layer is formed after coating may be used.

【0025】前者の場合、Cr酸化物層は基板全面に形
成されるため、耐久性は優れるが金属基板/導電膜の界
面の伝導抵抗が大きくなる可能性がある。これに対し後
者の場合、金属基板に導電膜を塗布後にCr酸化物層を
形成するため、導電膜中のフィラと基板の接する界面は
Cr酸化物層が形成されにくい。その結果、耐久性は前
者より若干劣るものの、金属基板/導電膜の界面の伝導
抵抗はあまり増加しない。
In the former case, since the Cr oxide layer is formed on the entire surface of the substrate, the durability is excellent, but the conduction resistance at the interface between the metal substrate and the conductive film may increase. On the other hand, in the latter case, since the Cr oxide layer is formed after the conductive film is applied to the metal substrate, the Cr oxide layer is hardly formed at the interface between the filler in the conductive film and the substrate. As a result, although the durability is slightly inferior to the former, the conduction resistance at the interface between the metal substrate and the conductive film does not increase much.

【0026】後者の基板表面に導電膜を塗布した後、C
r酸化物層を形成する場合は、大気雰囲気中で熱処理す
る手法、電解液中で電圧を印加してCr酸化物層を形成
する手法等が挙げられる。
After applying the conductive film on the latter substrate surface,
When the r-oxide layer is formed, a method of performing heat treatment in an air atmosphere, a method of forming a Cr oxide layer by applying a voltage in an electrolytic solution, and the like can be given.

【0027】Cr酸化物層の厚みは、2nm以上であれ
ば本発明の効果がさらに向上する。但し、100nmを
超える厚みのCr酸化物層の形成には、処理時間が長く
なり生産性が低下するため、Cr酸化物層の厚みは10
0nm以下が望ましい。
When the thickness of the Cr oxide layer is 2 nm or more, the effect of the present invention is further improved. However, when forming a Cr oxide layer having a thickness exceeding 100 nm, the processing time becomes longer and the productivity is reduced.
0 nm or less is desirable.

【0028】本発明を適応したセパレータは、固体高分
子膜の材質・形状、ガス拡散層の材質・形状に依存する
こと無く、導電性および耐久性の高いものが得られる。
The separator to which the present invention is applied has high conductivity and high durability without depending on the material and shape of the solid polymer film and the material and shape of the gas diffusion layer.

【0029】[0029]

【発明の実施の形態】次に本発明を実施例に基づき、具
体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be specifically described based on embodiments.

【0030】〔実施例 1〕金属基板にSUS430,
SUS304を用い、Ag系導電塗料を塗布した金属セ
パレータ電池の発電効率の評価を行った。
[Embodiment 1] SUS430,
Using SUS304, the power generation efficiency of a metal separator battery coated with an Ag-based conductive paint was evaluated.

【0031】基板は、30%HNO3の溶液中に1h浸
漬することで、化学エッチング処理を施した。基板表面
のCr濃度は、オージェ電子分光装置(PERKIN−
ELMER PHI650)を用い、電子銃加速電圧
5.0kV、イオン銃加速電圧2.0kV、励起電流25
mA、Arガス圧15mPaの条件で測定した。
The substrate was subjected to chemical etching by immersing it in a 30% HNO 3 solution for 1 hour. The Cr concentration on the substrate surface was measured using an Auger electron spectrometer (PERKIN-
ELMER PHI650), an electron gun acceleration voltage of 5.0 kV, an ion gun acceleration voltage of 2.0 kV, and an excitation current of 25 kV.
The measurement was performed under the conditions of mA and Ar gas pressures of 15 mPa.

【0032】また、Arをスパッタすることにより、基
板の表面から厚み方向に対するCr濃度を併せて測定し
た。化学エッチング処理後の表面のCr濃度はSUS4
30で20%,SUS304で21%であり、Cr濃度
が20%以上の層の厚みは全て1nmとした。
The Cr concentration in the thickness direction from the surface of the substrate was also measured by sputtering Ar. Cr concentration on the surface after chemical etching is SUS4
The thickness of each layer having a Cr concentration of 20% or more and 20% or more and SUS304 of 20% or more was 1 nm, respectively.

【0033】また、比較例としてCrを含まないSS4
00と、化学エッチング処理後の表面Cr濃度15%で
ある層を1nmの厚みで形成した9Cr鋼についても、
同様の検討を実施した。
As a comparative example, SS4 containing no Cr was used.
00 and a 9Cr steel in which a layer having a surface Cr concentration of 15% after chemical etching was formed with a thickness of 1 nm.
A similar study was performed.

【0034】導電塗料は、以下の手順で調製した。バイ
ンダ樹脂にはポリフッ化ビニリデンを、溶媒にはN−メ
チルピロリドンを用いた。
The conductive paint was prepared according to the following procedure. Polyvinylidene fluoride was used as the binder resin, and N-methylpyrrolidone was used as the solvent.

【0035】まず、バインダ樹脂と溶媒を混合してワニ
スを調製し、これに所定量の導電フィラであるAg粉末
を添加し、ボールミルを用いて5h混合し調製した。そ
の際、塗料中のフィラ添加量は30wt%とした。以下
にセパレータへの導電塗料の塗布方法を説明する。
First, a varnish was prepared by mixing a binder resin and a solvent, and a predetermined amount of Ag powder as a conductive filler was added thereto, followed by mixing for 5 hours using a ball mill. At that time, the filler content in the paint was 30 wt%. The method of applying the conductive paint to the separator will be described below.

【0036】流路加工が完了した金属基板の表面酸化物
をブラスト加工で除去し、化学エッチング処理後、前記
導電塗料をスプレーガンを用いて、金属基板上に塗布し
た。塗布後、乾燥工程を経て、固体高分子形燃料電池の
セパレータとした。乾燥温度120℃で、3時間真空中
で保持することで導電膜を形成した。この膜中のフィラ
量は80体積%であった。
The surface oxide of the metal substrate on which the channel processing was completed was removed by blast processing, and after the chemical etching treatment, the conductive paint was applied on the metal substrate using a spray gun. After the application, a drying process was performed to obtain a separator for a polymer electrolyte fuel cell. The conductive film was formed by keeping the substrate at a drying temperature of 120 ° C. in a vacuum for 3 hours. The filler amount in this film was 80% by volume.

【0037】本実施例では、導電膜の厚みは25μmの
ものを用いた。なお、上記塗膜の塗布方法は、本実施例
に示すスプレー法に限らず、ディップコート、印刷法な
どにより塗布することも可能である。
In this embodiment, a conductive film having a thickness of 25 μm was used. The method for applying the coating film is not limited to the spray method shown in this embodiment, but may be a dip coating method or a printing method.

【0038】本実施例の電池の形状の模式図を図2に示
すが、作動面積は100cm2とした。発電の条件は電
流密度0.3A/cm2、運転温度80℃とした。その際
の燃料(水素)および空気の利用率は、それぞれ0.
7,0.4とした。発電効率の比較は、炭素板を機械加
工したセパレータを用いた電池を上記の条件で発電し、
定格電流密度に到達時の発電効率を1とした。本実施例
のセパレータを用いた電池の定格電流密度に到達時の発
電効率の相対比較(発電時間hに対する相対電池効率の
比較)を行った。図1に試験結果を示す。
FIG. 2 shows a schematic diagram of the shape of the battery of this embodiment. The working area was 100 cm 2. The power generation conditions were a current density of 0.3 A / cm 2 and an operating temperature of 80 ° C. The fuel (hydrogen) and air utilization rates at that time are
7, 0.4. For comparison of power generation efficiency, a battery using a separator machined from a carbon plate generates power under the above conditions,
The power generation efficiency when reaching the rated current density was set to 1. A relative comparison of the power generation efficiency when the rated current density of the battery using the separator of this example was reached (comparison of the relative battery efficiency with respect to the power generation time h) was performed. FIG. 1 shows the test results.

【0039】本発明の金属基板に化学エッチング処理を
施し、表面のCr濃度を20%以上とし、導電塗料を塗
布形成したセパレータを用いた電池〔(a),(b)〕は、
比較例のセパレータを用いた電池〔(c),(d)〕に比べ
て相対効率の低下が少なく、安定に発電できることが確
認された。
The batteries [(a) and (b)] using the separator obtained by subjecting the metal substrate of the present invention to a chemical etching treatment so as to have a surface with a Cr concentration of 20% or more and coated with a conductive paint are formed.
It was confirmed that the reduction in relative efficiency was smaller than that of the batteries [(c) and (d)] using the separator of the comparative example, and that power could be stably generated.

【0040】〔実施例 2〕金属基板にSUS304,
SUS430,SUS316を用い、導電塗料を塗布し
た金属セパレータ電池の発電効率評価を行った。金属基
材は10%Na2SO4の溶液中に浸漬し、0.5Vの電
圧を任意時間印加して、表面Cr濃度を変化させた。基
板表面のCr濃度および厚み方向のCr濃度は、実施例
1と同様の手法で評価した。
[Embodiment 2] SUS304,
Using SUS430 and SUS316, the power generation efficiency of a metal separator battery coated with a conductive paint was evaluated. The metal substrate was immersed in a 10% Na 2 SO 4 solution, and a voltage of 0.5 V was applied for an arbitrary time to change the surface Cr concentration. The Cr concentration on the substrate surface and the Cr concentration in the thickness direction were evaluated in the same manner as in Example 1.

【0041】本実施例で用いたSUS304は、基板表
面Cr濃度は21%であり、Cr濃度が20%以上ある
層の厚みを1nm,3nmとした。
In the SUS304 used in this example, the Cr concentration on the substrate surface was 21%, and the thickness of the layer having the Cr concentration of 20% or more was 1 nm or 3 nm.

【0042】SUS430は、基板表面のCr濃度が2
2%であり、Cr濃度が20%以上ある層の厚みを5n
mとした。またSUS316は、基板表面のCr濃度が
25%であり、Cr濃度が20%以上ある層の厚みを1
0nmとした。
SUS430 has a Cr concentration of 2 on the substrate surface.
2% and the thickness of the layer having a Cr concentration of 20% or more is 5n.
m. In SUS316, the Cr concentration on the substrate surface is 25%, and the thickness of the layer having the Cr concentration of 20% or more is 1%.
It was set to 0 nm.

【0043】導電フィラとしてはTiNを用い、実施例
1と同じ方法で塗料および塗膜を調製した。塗膜の厚み
は全て25μmとし、塗膜中のフィラ量は80体積%と
した。
Using TiN as the conductive filler, paints and coatings were prepared in the same manner as in Example 1. The thickness of each coating film was 25 μm, and the amount of filler in the coating film was 80% by volume.

【0044】比較例として、Crを含まないSS400
と、化学エッチング処理後の表面Cr濃度15%の層
を、1nmの厚みで形成した9Cr鋼についても同様の
検討を実施した。
As a comparative example, SS400 containing no Cr
A similar study was conducted for a 9Cr steel in which a layer having a surface Cr concentration of 15% after chemical etching was formed with a thickness of 1 nm.

【0045】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電条件と、燃料(水素)
および空気の利用率は、実施例1と同様にして行った。
The shape of the battery was the structure shown in FIG. 2, and the working area was 100 cm 2 . Power generation conditions and fuel (hydrogen)
The air utilization was the same as in Example 1.

【0046】また、発電効率の比較も実施例1と同様に
相対比較によりを行った。図3に試験結果を示す。
The power generation efficiency was also compared by a relative comparison as in Example 1. FIG. 3 shows the test results.

【0047】表面のCr濃度が20%以上である金属基
板を用いることにより、安定した相対電池効率を示すこ
とが確認され、なおかつ、表面Cr濃度が20%以上で
ある層の厚みが2nm以上の場合、より長期間上記効率
が安定なことを確認した。
By using a metal substrate having a surface Cr concentration of 20% or more, it was confirmed that stable relative battery efficiency was exhibited, and the thickness of a layer having a surface Cr concentration of 20% or more was 2 nm or more. In this case, it was confirmed that the efficiency was stable for a longer period.

【0048】〔実施例 3〕表面Cr濃度を20%以上
とした13Cr鋼,SUS304,SUS316,SU
S430を金属基板に用い、導電膜厚みを変化させた金
属セパレータ電池の初期発電効率評価を行った。金属基
板は10%Na2SO4の溶液中に浸漬し、任意の電圧を
1時間印加して、表面Cr濃度を20〜26%としたも
のを用いた。
Example 3 13Cr steel having a surface Cr concentration of 20% or more, SUS304, SUS316, SU
Using S430 as a metal substrate, the initial power generation efficiency of a metal separator battery with a changed conductive film thickness was evaluated. The metal substrate was immersed in a solution of 10% Na 2 SO 4 and an arbitrary voltage was applied for 1 hour to make the surface Cr concentration 20 to 26%.

【0049】基板表面のCr濃度および厚み方向のCr
濃度は、実施例1と同様の手法により評価した。その
際、Cr濃度が20%以上の層の厚みは全て1nmであ
った。
The Cr concentration on the substrate surface and the Cr in the thickness direction
The concentration was evaluated in the same manner as in Example 1. At that time, the thickness of all the layers having a Cr concentration of 20% or more was 1 nm.

【0050】導電フィラとしてはWC,黒鉛,TiC,
FeSi,FeSi2,非晶質炭素を用い、実施例1の
手法で塗料を調製し、塗膜形成を行った。塗膜の厚みは
25〜150μmと変化させたが、塗膜中のフィラ量は
全て80体積%とした。
As the conductive filler, WC, graphite, TiC,
A coating material was prepared using FeSi, FeSi 2 , and amorphous carbon by the method of Example 1 to form a coating film. The thickness of the coating film was varied from 25 to 150 μm, but the filler amount in the coating film was all 80% by volume.

【0051】比較例として、Crを含まないSS400
と、化学エッチング処理後の表面Cr濃度15%である
層を1nmの厚みに形成した9Cr鋼についても同様の
検討を行った。
As a comparative example, SS400 containing no Cr
A similar study was also conducted on a 9Cr steel having a layer with a surface Cr concentration of 15% after chemical etching and having a thickness of 1 nm.

【0052】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電の条件と、燃料(水
素)および空気の利用率は、実施例1と同様にして行っ
た。
The shape of the battery was the structure shown in FIG. 2, and the operating area was 100 cm 2 . The power generation conditions and the utilization rates of fuel (hydrogen) and air were the same as in Example 1.

【0053】発電効率の比較は、炭素板を機械加工した
セパレータを用いた電池を上記の条件で発電し、定格電
流密度に到達時の発電効率を100とし、実施例のセパ
レータを用いた電池の定格電流密度に到達時の発電効率
との相対比較を行った。表1に試験結果を示す。
The comparison of the power generation efficiency is as follows. A battery using a separator obtained by machining a carbon plate is generated under the above conditions, and the power generation efficiency when the rated current density is reached is set to 100. Relative comparison was made with the power generation efficiency when the rated current density was reached. Table 1 shows the test results.

【0054】表面Cr濃度が20%以上である金属基板
に塗付した導電性膜が30〜100μmである場合、初
期電池特性が優れていることが確認された。
It was confirmed that when the conductive film applied to a metal substrate having a surface Cr concentration of 20% or more was 30 to 100 μm, the initial battery characteristics were excellent.

【0055】[0055]

【表1】 〔実施例 4〕金属基板としてSUS304,SUS4
05,SUS430,SUS316,13Cr鋼を用
い、10%Na2SO4の溶液中に浸漬し0.5Vの電圧
を任意の時間印加して、Cr濃度が20%である層の厚
みを2nmとした。基板表面のCr濃度および厚み方向
のCr濃度は実施例1と同様の手法により評価した。
[Table 1] [Embodiment 4] SUS304, SUS4 as metal substrates
05, SUS430, SUS316, 13Cr steel, immersed in a solution of 10% Na 2 SO 4 and applying a voltage of 0.5 V for an arbitrary time to make the thickness of the layer having a Cr concentration of 20% 2 nm. . The Cr concentration on the substrate surface and the Cr concentration in the thickness direction were evaluated in the same manner as in Example 1.

【0056】表面Cr濃度が21%であるSUS304
に対して導電性膜を25μm,50μm塗布し、表面C
r濃度が25%であるSUS405,SUS430、表
面Cr濃度が23%であるSUS316、および、表面
Cr濃度が20%である13Cr鋼に対しては、導電性
膜を全て30μm塗布した金属セパレータ電池の発電効
率評価を行った。
SUS304 having a surface Cr concentration of 21%
25 μm and 50 μm of conductive film are applied to
For SUS405, SUS430 having an r concentration of 25%, SUS316 having a surface Cr concentration of 23%, and 13Cr steel having a surface Cr concentration of 20%, a metal separator battery coated with a 30 μm conductive film was used. Power generation efficiency was evaluated.

【0057】導電フィラとしてはWCを用い、実施例1
で示す手法で塗料調製し塗膜を形成した。
Example 1 was made using WC as the conductive filler.
A paint was prepared by the method shown in (1) to form a coating film.

【0058】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電条件と、燃料(水素)
および空気の利用率は、実施例1と同様にして行った。
The shape of the battery was the structure shown in FIG. 2, and the working area was 100 cm 2 . Power generation conditions and fuel (hydrogen)
The air utilization was the same as in Example 1.

【0059】また、発電効率の比較も実施例1と同様に
相対比較によりを行った。図4に試験結果を示す。
The power generation efficiency was also compared by a relative comparison as in Example 1. FIG. 4 shows the test results.

【0060】Cr濃度が20%である層の厚みが2nm
以上である金属基板に導電膜を30〜100μmの厚み
で形成した場合、より長時間相対効率が高く発電できる
ことが確認された。
The thickness of the layer having a Cr concentration of 20% is 2 nm.
It was confirmed that when a conductive film was formed on the above metal substrate with a thickness of 30 to 100 μm, power generation could be performed with higher relative efficiency for a longer time.

【0061】〔実施例 5〕金属基板に炭素系導電膜を
塗布した13Cr鋼(表面Cr濃度13%),SUS3
04(表面Cr濃度18%),SUS430(表面Cr
濃度17%)を用い、金属基板/導電膜界面にCr酸化
物層を形成した金属セパレータ電池の発電効率評価を行
った。
Example 5 13Cr steel (surface Cr concentration 13%) in which a carbon-based conductive film was coated on a metal substrate, SUS3
04 (surface Cr concentration 18%), SUS430 (surface Cr concentration)
(Concentration: 17%), the power generation efficiency of a metal separator battery having a Cr oxide layer formed at the metal substrate / conductive film interface was evaluated.

【0062】比較例として、Crを含まないSS400
と表面Cr濃度が9%である9Cr鋼についても同様の
評価を実施した。
As a comparative example, SS400 containing no Cr was used.
The same evaluation was carried out for a 9Cr steel having a surface Cr concentration of 9%.

【0063】Cr酸化物層の形成は、実施例1と同様の
手法で調製した炭素系導電塗料を塗布後に、250℃,
5時間大気中で熱処理することで行った。
The Cr oxide layer was formed by applying a carbon-based conductive paint prepared in the same manner as in Example 1 and then applying the coating at 250 ° C.
The heat treatment was performed in the air for 5 hours.

【0064】Cr酸化物層の形成の有無は、同一条件で
調製した試料の導電膜をアセトンで除去した後に、基板
表面をX線回折(理学電気製 RU−200)を用い、
管電圧50kV、管電流150mAのCu−kα線を用
い20〜120deg.の範囲で測定することにより確
認した。本実施例に示す導電膜の厚みは全て25μmと
した。
The presence or absence of the formation of the Cr oxide layer is determined by removing the conductive film of the sample prepared under the same conditions with acetone, and then performing X-ray diffraction (RU-200, manufactured by Rigaku Denki) on the substrate surface.
Using a Cu-kα ray having a tube voltage of 50 kV and a tube current of 150 mA, 20 to 120 deg. It confirmed by measuring in the range of. The thicknesses of the conductive films shown in this example were all 25 μm.

【0065】Cr酸化物層の厚みは実施例1に示す条件
でオージェ電子分光により、基板厚み方向の酸素濃度を
測定して判定した。その結果、金属基板/導電膜界面の
金属側表面のCr酸化物層の厚みは1nmであった。
The thickness of the Cr oxide layer was determined by measuring the oxygen concentration in the thickness direction of the substrate by Auger electron spectroscopy under the conditions shown in Example 1. As a result, the thickness of the Cr oxide layer on the metal side surface at the metal substrate / conductive film interface was 1 nm.

【0066】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電条件と、燃料(水素)
および空気の利用率は、実施例1と同様にして行った。
The shape of the battery was the structure shown in FIG. 2, and the operating area was 100 cm 2 . Power generation conditions and fuel (hydrogen)
The air utilization was the same as in Example 1.

【0067】また、発電効率の比較も実施例1と同様に
相対比較によりを行った。図5に試験結果を示す。
The power generation efficiency was also compared by a relative comparison as in Example 1. FIG. 5 shows the test results.

【0068】表面Cr濃度が13%以上である金属基板
を用い、金属基板/導電膜界面の金属表面側にCr酸化
物層を形成したセパレータを用いた場合、電池の相対効
率が安定であることが確認された。
When a metal substrate having a surface Cr concentration of 13% or more is used and a separator having a Cr oxide layer formed on the metal surface side at the metal substrate / conductive film interface is used, the relative efficiency of the battery is stable. Was confirmed.

【0069】〔実施例 6〕金属基板にSUS304
(表面Cr濃度18%),SUS316(表面Cr濃度
17%),SUS430(表面Cr濃度17%)を用い
TiN系導電塗料を塗布し、金属基板/導電膜界面の金
属表面側にCr酸化物層を形成した金属セパレータ電池
の発電効率の評価を行った。
[Embodiment 6] SUS304 is applied to a metal substrate.
(Surface Cr concentration 18%), SUS316 (Surface Cr concentration 17%), SUS430 (Surface Cr concentration 17%), and a TiN-based conductive paint is applied, and a Cr oxide layer is formed on the metal surface side at the metal substrate / conductive film interface. The power generation efficiency of the metal separator battery formed with was evaluated.

【0070】Cr酸化物層は、実施例1と同様の手法で
調製したTiN系導電塗料を基板に塗布後、10%Na
2SO4の溶液中に浸漬し、0.2Vの電圧を任意の時間
印加して形成した。SUS304基板の場合、Cr酸化
物層の厚みは1nm,2nmとした。
After a TiN-based conductive paint prepared in the same manner as in Example 1 was applied to the substrate,
It was immersed in a solution of 2 SO 4 and formed by applying a voltage of 0.2 V for an arbitrary time. In the case of a SUS304 substrate, the thickness of the Cr oxide layer was 1 nm and 2 nm.

【0071】また、SUS316基板の場合Cr酸化物
層の厚みは5nm、SUS430の場合3nmとした。
Cr酸化物層の形成の有無および厚みは、実施例5に示
す手法と同様にして評価した。なお、導電膜の厚みは全
て25μmとし、導電膜中のフィラ量は全て80体積%
とした。
The thickness of the Cr oxide layer was 5 nm in the case of the SUS316 substrate, and 3 nm in the case of SUS430.
The presence or absence and the thickness of the Cr oxide layer were evaluated in the same manner as in Example 5. The thickness of each conductive film was 25 μm, and the amount of filler in the conductive film was 80% by volume.
And

【0072】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電条件と、燃料(水素)
および空気の利用率は、実施例1と同様にして行った。
The shape of the battery was the structure shown in FIG. 2, and the operating area was 100 cm 2 . Power generation conditions and fuel (hydrogen)
The air utilization was the same as in Example 1.

【0073】また、発電効率の比較も実施例1と同様に
相対比較によりを行った。図6に試験結果を示す。
The power generation efficiency was also compared by a relative comparison as in the first embodiment. FIG. 6 shows the test results.

【0074】金属基板/導電膜界面の金属表面側に形成
したCr酸化物層の厚みが2nm以上である場合、より
長時間発電効率が安定であることが確認された。
It was confirmed that when the thickness of the Cr oxide layer formed on the metal surface side at the metal substrate / conductive film interface was 2 nm or more, the power generation efficiency was stable for a longer time.

【0075】〔実施例 7〕金属基板に13Cr鋼(表
面Cr濃度13%),SUS304(表面Cr濃度18
%),SUS316(表面Cr濃度17%),SUS4
30(表面Cr濃度17%)を用い、導電膜厚みを変化
させた金属セパレータ電池の初期電池効率の評価を行っ
た。
[Embodiment 7] 13Cr steel (surface Cr concentration 13%), SUS304 (surface Cr concentration 18)
%), SUS316 (surface Cr concentration 17%), SUS4
Using 30 (17% surface Cr concentration), the initial battery efficiency of a metal separator battery with a changed conductive film thickness was evaluated.

【0076】導電フィラとしてはWC,黒鉛,TiC,
FeSi,FeSi2,非晶質炭素を用い、実施例1で
示す手法で塗料調製し塗膜形成を行い、250℃で5時
間熱処理することにより金属基板/導電膜界面の金属基
板側にCr酸化物層を1nm形成した。
As the conductive filler, WC, graphite, TiC,
Using FeSi, FeSi 2 , and amorphous carbon, a paint is prepared by the method shown in Example 1 to form a coating film, and is heat-treated at 250 ° C. for 5 hours to thereby oxidize Cr on the metal substrate side of the metal substrate / conductive film interface. An object layer was formed to a thickness of 1 nm.

【0077】Cr酸化物層の有無および厚みは、実施例
5と同様の手法により評価した。導電膜の厚みは20〜
150μmで変化させたが、塗膜中のフィラ量は全て8
0体積%とした。
The presence / absence and thickness of the Cr oxide layer were evaluated in the same manner as in Example 5. The thickness of the conductive film is 20 to
Although the thickness was changed at 150 μm, the amount of filler in the coating film was all 8
0% by volume.

【0078】比較例として、Crを含まないSS400
と250℃で5時間熱処理することにより金属基板/導
電膜界面の金属基板側にCr酸化物層を1nm形成した
9Cr鋼(表面Cr濃度9%)についても同様の検討を
実施した。
As a comparative example, SS400 containing no Cr was used.
The same examination was performed on 9Cr steel (surface Cr concentration 9%) in which a 1 nm Cr oxide layer was formed on the metal substrate side of the metal substrate / conductive film interface by performing a heat treatment at 250 ° C. for 5 hours.

【0079】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電条件と、燃料(水素)
および空気の利用率は、実施例1と同様にして行った。
The shape of the battery was the structure shown in FIG. 2, and the working area was 100 cm 2 . Power generation conditions and fuel (hydrogen)
The air utilization was the same as in Example 1.

【0080】発電効率の比較は、炭素板を機械加工した
セパレータを用いた電池を上記の条件で発電し、定格電
流密度に到達時の発電効率を100とし、実施例のセパ
レータを用いた電池の定格電流密度に到達時の初期発電
効率との相対比較を行った。表2に試験結果を示す。
A comparison of the power generation efficiency was made by generating a battery using a separator obtained by machining a carbon plate under the above conditions, setting the power generation efficiency at the time of reaching the rated current density to 100, and comparing the battery using the separator of the example with the battery. Relative comparison was made with the initial power generation efficiency when the rated current density was reached. Table 2 shows the test results.

【0081】表面Cr濃度が13%以上である金属基板
を用い金属基板/導電膜界面の金属基板側にCr酸化物
層を形成した場合、導電膜が30〜100μmである場
合、初期電池特性が優れていることが確認された。
When a metal substrate having a surface Cr concentration of 13% or more is used and a Cr oxide layer is formed on the metal substrate at the metal substrate / conductive film interface, when the conductive film is 30 to 100 μm, the initial battery characteristics are poor. It was confirmed that it was excellent.

【0082】[0082]

【表2】 〔実施例 8〕金属基板に13Cr鋼(表面Cr濃度1
3%),SUS304(表面Cr濃度18%),SUS
316(表面Cr濃度17%),SUS430(表面C
r濃度18%)を用い、導電膜厚みを変化させた金属セ
パレータ電池の発電効率の評価を行った。
[Table 2] [Embodiment 8] 13Cr steel (surface Cr concentration 1
3%), SUS304 (Surface Cr concentration 18%), SUS
316 (surface Cr concentration 17%), SUS430 (surface C
(r concentration 18%), and the power generation efficiency of a metal separator battery in which the thickness of the conductive film was changed was evaluated.

【0083】導電フィラとしてはWCを用い、実施例1
で示す手法で塗料を調製し、塗膜形成後、250℃で任
意時間熱処理することにより金属基板/導電膜界面の金
属基板側にCr酸化物層を形成した。Cr酸化物層の有
無および厚みは実施例5と同様の手法により評価した。
Example 1 was made using WC as the conductive filler.
A coating material was prepared by the method shown in (1), and after forming a coating film, heat treatment was performed at 250 ° C. for an arbitrary time to form a Cr oxide layer on the metal substrate side at the interface between the metal substrate and the conductive film. The presence / absence and thickness of the Cr oxide layer were evaluated in the same manner as in Example 5.

【0084】SUS304は、導電膜25μmのものを
Cr酸化物層1nmとし、導電膜50μmのものをCr
酸化物層2nmとした。SUS316は導電膜50μm
でCr酸化物層10nm、SUS430は導電膜30μ
mでCr酸化物層3nm、13Cr鋼は導電膜70μm
でCr酸化物層3nmとした。導電膜中のフィラ量は全
て80体積%とした。導電フィラとしてはWCを用い、
実施例1で示す手法で塗料調製し塗膜を形成した。
In SUS304, a conductive film having a thickness of 25 μm has a Cr oxide layer of 1 nm, and a conductive film having a conductive film of 50 μm has a thickness of Cr.
The oxide layer was 2 nm. SUS316 has a conductive film of 50 μm
And the SUS430 has a conductive film of 30 μm.
m, Cr oxide layer 3nm, 13Cr steel conductive film 70μm
To make the Cr oxide layer 3 nm. The amount of filler in the conductive film was all 80% by volume. Using WC as the conductive filler,
A coating material was prepared by the method shown in Example 1 to form a coating film.

【0085】電池の形状は、図2に示す構造とし、作動
面積は100cm2とした。発電の条件と、燃料(水
素)および空気の利用率は、実施例1と同様にして行っ
た。
The shape of the battery was the structure shown in FIG. 2, and the operating area was 100 cm 2 . The power generation conditions and the utilization rates of fuel (hydrogen) and air were the same as in Example 1.

【0086】また、発電効率の比較も実施例1と同様に
相対比較によりを行った。図7に試験結果を示す。
The power generation efficiency was also compared by a relative comparison as in Example 1. FIG. 7 shows the test results.

【0087】金属基板/導電膜界面の金属基板側にCr
酸化物層を2nm以上形成し、かつ、金属基板に導電膜
を30〜100μmの厚みで形成した場合、より長時間
相対効率が高く発電できることが確認された。
On the metal substrate side of the metal substrate / conductive film interface,
It was confirmed that when the oxide layer was formed to have a thickness of 2 nm or more and the conductive film was formed to have a thickness of 30 to 100 μm on the metal substrate, power generation could be performed with higher relative efficiency for a longer time.

【0088】〔実施例 9〕金属基板に13Cr鋼,S
US304,SUS430,SUS316を用い、炭素
系導電塗料を塗布した金属の硫酸溶液中における分極試
験を行った。基板は30%HNO3の溶液中に1h浸漬
し化学エッチング処理を施した。表面のCr濃度は実施
例1に示す手法で測定し13Cr鋼が20%,SUS3
04およびSUS430が22%,SUS316が23
%であった。Cr濃度が20%以上である層の厚みはい
ずれも1nmであった。
[Embodiment 9] 13Cr steel, S
Using US304, SUS430, and SUS316, a polarization test was performed on a metal coated with a carbon-based conductive paint in a sulfuric acid solution. The substrate was immersed in a 30% HNO3 solution for 1 hour and subjected to a chemical etching treatment. The Cr concentration on the surface was measured by the method shown in Example 1, and the content of 13Cr steel was 20%, SUS3
04 and SUS430 22%, SUS316 23
%Met. The thickness of each layer having a Cr concentration of 20% or more was 1 nm.

【0089】炭素系導電塗料は、実施例1と同様の手順
で調製した。以下に基板への導電塗料の塗布方法を示
す。
The carbon-based conductive paint was prepared in the same procedure as in Example 1. The method of applying the conductive paint to the substrate will be described below.

【0090】[0090]

【数1】 上記式(1)で示す基板表面酸化物を研磨加工で除去す
る。化学エッチング処理後、導電塗料を印刷法で表面に
塗布した。塗布後140℃,3時間真空で保持すること
で導電膜を形成した。
(Equation 1) The substrate surface oxide represented by the above formula (1) is removed by polishing. After the chemical etching treatment, a conductive paint was applied to the surface by a printing method. After the application, the film was held in a vacuum at 140 ° C. for 3 hours to form a conductive film.

【0091】本実施例に示す導電膜の厚みは、30μm
のものを用いた。また、分極試験はJIS G0597
に記載されている手法に準じ、硫酸の濃度は0.05M
とした。
The thickness of the conductive film shown in this embodiment is 30 μm
Was used. The polarization test was performed according to JIS G0597.
The concentration of sulfuric acid was 0.05 M according to the method described in
And

【0092】比較例として、Crを含まないSS400
と、化学エッチング後の表面Cr濃度が15%である9
Cr鋼についても同様の試験を実施した。
As a comparative example, SS400 containing no Cr was used.
And that the surface Cr concentration after chemical etching is 15% 9
A similar test was conducted for Cr steel.

【0093】表3に評価結果を示す。表中で、○は分極
試験前後の重量減少量が1%未満であるものを表し、×
は1%以上の重量減少が認められたものを表す。
Table 3 shows the evaluation results. In the table, ○ indicates that the weight loss before and after the polarization test was less than 1%, and ×
Indicates that a weight reduction of 1% or more was observed.

【0094】評価の結果、基板表面のCr濃度が20%
以上であり、炭素系導電膜を形成した場合、耐食性に優
れていることが確認された。
As a result of the evaluation, the Cr concentration on the substrate surface was 20%.
As described above, it was confirmed that when the carbon-based conductive film was formed, it was excellent in corrosion resistance.

【0095】[0095]

【表3】 〔実施例 10〕金属基板に13Cr鋼(表面Cr濃度
13%),SUS304(表面Cr濃度18%),SU
S316(表面Cr濃度17%),SUS430(表面
Cr濃度17%)、SUS405(表面Cr濃度18
%)を用い、WC系導電塗料を塗布後、金属基板/導電
膜界面の金属基板側にCr酸化物層を形成した材料の硫
酸溶液中における分極試験を行った。
[Table 3] [Embodiment 10] 13Cr steel (surface Cr concentration 13%), SUS304 (surface Cr concentration 18%), SU
S316 (Surface Cr concentration 17%), SUS430 (Surface Cr concentration 17%), SUS405 (Surface Cr concentration 18%)
%), A polarization test was performed in a sulfuric acid solution of a material having a Cr oxide layer formed on the metal substrate side of the metal substrate / conductive film interface after applying the WC-based conductive paint.

【0096】比較例としてCrを含まないSS400
と、Cr濃度が9%である9Cr鋼を用いて同様の試験
を実施した。WC系導電塗料は、実施例1と同様の手順
で調製した。以下に基板への導電塗料の塗布方法を示
す。
As a comparative example, SS400 containing no Cr
And a similar test using a 9Cr steel having a Cr concentration of 9%. The WC-based conductive paint was prepared in the same procedure as in Example 1. The method of applying the conductive paint to the substrate will be described below.

【0097】前記式(1)で示す基板表面酸化物を研磨
加工して除去する。その後、導電塗料を印刷法で表面に
塗布した。塗布後250℃,5時間大気中で熱処理する
ことで基板/導電膜界面にCr酸化物層を2nmの厚み
で形成した。
The substrate surface oxide represented by the above formula (1) is removed by polishing. Thereafter, a conductive paint was applied to the surface by a printing method. After the coating, a heat treatment was performed in the air at 250 ° C. for 5 hours to form a Cr oxide layer with a thickness of 2 nm on the interface between the substrate and the conductive film.

【0098】Cr酸化物層の有無および厚みは、実施例
5と同様の手法で行った。本実施例に示す導電膜の厚み
は、60μmのものを用いた。また、分極試験はJIS
G0597に記載されている手法に準じ、硫酸の濃度
は0.05Mとした。表4に評価結果を示す。
The presence / absence and thickness of the Cr oxide layer were determined in the same manner as in Example 5. The thickness of the conductive film shown in this example was 60 μm. The polarization test is based on JIS
According to the method described in G0597, the concentration of sulfuric acid was 0.05M. Table 4 shows the evaluation results.

【0099】表中で、○は分極試験前後の重量減少量が
1%未満であるものを表し、×は1%以上の重量減少が
認められたものを表す。
In the table, ○ indicates that the weight loss before and after the polarization test was less than 1%, and X indicates that the weight loss was 1% or more.

【0100】その結果、基板/導電膜界面の基板側表面
のCr濃度が13%以上形成したものが、耐食性に優れ
ていることが確認された。
As a result, it was confirmed that those having a Cr concentration of 13% or more on the substrate side surface at the substrate / conductive film interface had excellent corrosion resistance.

【0101】[0101]

【表4】 [Table 4]

【発明の効果】本発明のセパレータを用いた場合、塗布
膜下の金属基板表面に耐食性の高いCrが多く散在する
ため、長時間発電した場合の効率の低下が抑制される。
When the separator of the present invention is used, a large amount of Cr having high corrosion resistance is scattered on the surface of the metal substrate under the coating film, so that a decrease in efficiency when power is generated for a long time is suppressed.

【0102】また、基板に塗布した導電膜内にピンホー
ルが存在しても、金属基板/導電膜界面にCr酸化物層
が形成されているため、寿命の長い固体高分子形燃料電
池用セパレータ、および、固体高分子形燃料電池を提供
することができる。
Even if a pinhole is present in the conductive film applied to the substrate, the separator for a polymer electrolyte fuel cell has a long life because the Cr oxide layer is formed at the metal substrate / conductive film interface. And a polymer electrolyte fuel cell.

【0103】特に、セパレータの表面のCr濃度が20
%以上である金属基板に導電膜を形成、あるいは、基板
表面のCr濃度が13%以上である金属基板に導電膜を
形成して、金属基板/導電膜界面にCr酸化物層を設け
たものを用いることで、初期特性および寿命特性に優れ
た固体高分子形燃料電池を提供することができる。
In particular, when the Cr concentration on the surface of the separator is 20
%, Or a conductive film is formed on a metal substrate having a Cr concentration of 13% or more on the surface of the metal substrate, and a Cr oxide layer is provided at the metal substrate / conductive film interface. By using, a polymer electrolyte fuel cell having excellent initial characteristics and life characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の金属セパレータ電池の相対効率評価
を示すグラフである。
FIG. 1 is a graph showing a relative efficiency evaluation of a metal separator battery of Example 1.

【図2】固体高分子形燃料電池の模式断面図(A)と模
式構成図(B)である。
FIG. 2 is a schematic cross-sectional view (A) and a schematic configuration diagram (B) of a polymer electrolyte fuel cell.

【図3】実施例2の金属セパレータ電池の相対効率評価
を示すグラフである。
FIG. 3 is a graph showing a relative efficiency evaluation of the metal separator battery of Example 2.

【図4】実施例4の金属セパレータ電池の相対効率評価
を示すグラフである。
FIG. 4 is a graph showing a relative efficiency evaluation of the metal separator battery of Example 4.

【図5】実施例5の金属セパレータ電池の相対効率評価
を示すグラフである。
FIG. 5 is a graph showing a relative efficiency evaluation of the metal separator battery of Example 5.

【図6】実施例6の金属セパレータ電池の相対効率評価
を示すグラフである。
FIG. 6 is a graph showing a relative efficiency evaluation of the metal separator battery of Example 6.

【図7】実施例8の金属セパレータ電池の相対効率評価
を示すグラフである。
FIG. 7 is a graph showing a relative efficiency evaluation of the metal separator battery of Example 8.

【符号の説明】[Explanation of symbols]

1…固体高分子電解質膜、2…セパレータ、3a…燃料
極、3b…空気極、4…ガス拡散層、5…ガスシール
材、6…燃料ガス入口、7…燃料ガス出口、8…空気入
口、9…空気出口、10…燃料ガス流路、11…空気流
路、12…集電部。
DESCRIPTION OF SYMBOLS 1 ... Solid polymer electrolyte membrane, 2 ... Separator, 3a ... Fuel electrode, 3b ... Air electrode, 4 ... Gas diffusion layer, 5 ... Gas seal material, 6 ... Fuel gas inlet, 7 ... Fuel gas outlet, 8 ... Air inlet , 9 air outlet, 10 fuel gas channel, 11 air channel, 12 current collector.

フロントページの続き (72)発明者 山内 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H026 AA06 CC03 CX05 EE02 EE12 HH03 HH05 Continued on the front page (72) Inventor Hiroshi Yamauchi 7-1-1, Omika-cho, Hitachi-shi, Ibaraki F-term in Hitachi Research Laboratory, Hitachi Ltd. 5H026 AA06 CC03 CX05 EE02 EE12 HH03 HH05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜とセパレータとの間
に電極およびガス拡散層を備え、前記セパレータはガス
流路と、前記ガス拡散層に接する集電部とを有する金属
基板で構成され、該金属基板の表面に導電膜が形成され
ている固体高分子形燃料電池において、前記セパレータ
は、表面のCr濃度が20%以上である金属基板を用い
たことを特徴とする固体高分子形燃料電池。
An electrode and a gas diffusion layer are provided between a solid polymer electrolyte membrane and a separator, wherein the separator comprises a metal substrate having a gas flow path and a current collector in contact with the gas diffusion layer, In a polymer electrolyte fuel cell in which a conductive film is formed on a surface of the metal substrate, the separator uses a metal substrate having a surface with a Cr concentration of 20% or more. battery.
【請求項2】 前記金属基板のCr濃度が20%以上で
ある表面層の厚みが2nm以上である請求項1に記載の
固体高分子形燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the metal substrate has a surface layer having a Cr concentration of 20% or more and a thickness of 2 nm or more.
【請求項3】 前記導電膜の厚みが30〜100μmで
ある請求項1に記載の固体高分子形燃料電池。
3. The polymer electrolyte fuel cell according to claim 1, wherein the conductive film has a thickness of 30 to 100 μm.
【請求項4】 固体高分子電解質膜とセパレータとの間
に電極およびガス拡散層を備え、前記セパレータはガス
流路と、前記ガス拡散層に接する集電部とを有する金属
基板で構成され、前記金属基板の表面に導電膜が形成さ
れている固体高分子形燃料電池において、前記金属基板
は、表面Cr濃度が13%以上、かつ、金属基板/導電
膜の界面の金属基板の表面側にCr酸化物層が形成され
ていることを特徴とする固体高分子形燃料電池。
4. An electrode and a gas diffusion layer are provided between the solid polymer electrolyte membrane and a separator, wherein the separator is formed of a metal substrate having a gas flow path and a current collector in contact with the gas diffusion layer, In a solid polymer electrolyte fuel cell in which a conductive film is formed on the surface of the metal substrate, the metal substrate has a surface Cr concentration of 13% or more and has a surface side of the metal substrate at the interface between the metal substrate and the conductive film. A polymer electrolyte fuel cell comprising a Cr oxide layer.
【請求項5】 前記金属基板/導電膜の界面の金属基板
の表面側に形成されたCr酸化物層の厚みが、2nm以
上である請求項4に記載の固体高分子形燃料電池。
5. The polymer electrolyte fuel cell according to claim 4, wherein the thickness of the Cr oxide layer formed on the surface of the metal substrate at the interface between the metal substrate and the conductive film is 2 nm or more.
【請求項6】 前記導電膜の厚みが30〜100μmで
ある請求項4に記載の固体高分子形燃料電池。
6. The polymer electrolyte fuel cell according to claim 4, wherein said conductive film has a thickness of 30 to 100 μm.
【請求項7】 ガス流路と集電部とを有する金属基板の
表面に導電膜が形成されている固体高分子形燃料電池用
セパレータにおいて、表面のCr濃度が20%以上、か
つ、表面Cr濃度が20%以上である層の厚みが1nm
以上である金属基板を用いたことを特徴とする固体高分
子形燃料電池用セパレータ。
7. A polymer electrolyte fuel cell separator in which a conductive film is formed on the surface of a metal substrate having a gas flow path and a current collector, wherein the surface has a Cr concentration of 20% or more and a surface Cr concentration of 20% or more. The thickness of the layer having a concentration of 20% or more is 1 nm.
A separator for a polymer electrolyte fuel cell, using the metal substrate described above.
【請求項8】 ガス流路と集電部とを有する金属基板の
表面に導電膜が形成されている固体高分子形燃料電池用
セパレータにおいて、前記金属基板は表面Cr濃度が1
3%以上、かつ、金属基板/導電膜の界面の金属基板の
表面側にCr酸化物層が1nm以上の厚みで形成されて
いることを特徴とする固体高分子形燃料電池用セパレー
タ。
8. A polymer electrolyte fuel cell separator in which a conductive film is formed on a surface of a metal substrate having a gas flow path and a current collector, wherein the metal substrate has a surface Cr concentration of 1%.
A separator for a polymer electrolyte fuel cell, wherein a Cr oxide layer is formed with a thickness of 1 nm or more on the surface side of the metal substrate at an interface between the metal substrate and the conductive film of 3% or more.
JP2001113742A 2001-04-12 2001-04-12 Solid polymer fuel cell and separator for it Pending JP2002313355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001113742A JP2002313355A (en) 2001-04-12 2001-04-12 Solid polymer fuel cell and separator for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001113742A JP2002313355A (en) 2001-04-12 2001-04-12 Solid polymer fuel cell and separator for it

Publications (1)

Publication Number Publication Date
JP2002313355A true JP2002313355A (en) 2002-10-25

Family

ID=18964927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001113742A Pending JP2002313355A (en) 2001-04-12 2001-04-12 Solid polymer fuel cell and separator for it

Country Status (1)

Country Link
JP (1) JP2002313355A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209380A (en) * 2004-01-20 2005-08-04 Nippon Steel Corp Anticorrosive property estimation method for metallic material of fuel cell separator
JP2006107936A (en) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd Interconnector for planar solid oxide fuel cell
US8088536B2 (en) 2004-09-10 2012-01-03 Neomax Materials Co., Ltd. Fuel cell separator and method for manufacturing the same
US8338058B2 (en) 2005-02-01 2012-12-25 Neomax Materials Co., Ltd. Separator for fuel cell having intermediate layer and method for manufacturing same
US20140295321A1 (en) * 2013-03-29 2014-10-02 Honda Motor Co., Ltd. Fuel cell separator and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209380A (en) * 2004-01-20 2005-08-04 Nippon Steel Corp Anticorrosive property estimation method for metallic material of fuel cell separator
US8088536B2 (en) 2004-09-10 2012-01-03 Neomax Materials Co., Ltd. Fuel cell separator and method for manufacturing the same
JP2006107936A (en) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd Interconnector for planar solid oxide fuel cell
US8338058B2 (en) 2005-02-01 2012-12-25 Neomax Materials Co., Ltd. Separator for fuel cell having intermediate layer and method for manufacturing same
US20140295321A1 (en) * 2013-03-29 2014-10-02 Honda Motor Co., Ltd. Fuel cell separator and method for producing the same
US10305118B2 (en) * 2013-03-29 2019-05-28 Honda Motor Co., Ltd. Fuel cell separator and method for producing the same

Similar Documents

Publication Publication Date Title
JP4966112B2 (en) Low cost bipolar plate coating for PEM fuel cells
Lin et al. An investigation of coated aluminium bipolar plates for PEMFC
JP4073828B2 (en) Solid polymer fuel cell and fuel cell separator
EP1107340A2 (en) Corrosion resistant contact element for a PEM fuel cell
JP4764382B2 (en) Fuel cell and method for making fuel cell flow field plate
JP5192743B2 (en) Method for making super hydrophilic conductive surfaces for fuel cell bipolar plates
JP4402630B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP4926730B2 (en) Titanium material for polymer electrolyte fuel cell separator and method for producing the same, separator using the titanium material, and polymer electrolyte fuel cell using the separator
Gago et al. Low cost bipolar plates for large scale PEM electrolyzers
KR20090077678A (en) Regeneration method of separator for fuel cell, regenerated separator for fuel cell and fuel cell
US20080038625A1 (en) Fast Recycling Process For Ruthenium, Gold and Titanium Coatings From Hydrophilic PEM Fuel Cell Bipolar Plates
WO2006126613A1 (en) Separator for fuel cell and method for producing same
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP4920137B2 (en) Operation method of polymer electrolyte fuel cell
WO2005124910A1 (en) Separator for fuel cell using austenitic stainless steel as base material
CN1670990A (en) Metallic separator for fuel cell and method for anti-corrosion treatment of the same
TWI640122B (en) Base material stainless steel plate for steel plate of fuel cell separator and manufacturing method thereof
JP3723515B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
KR100669374B1 (en) Metal separator for fuel cell system and method for preparing the same and fuel cell system comprising the same
JP2002313355A (en) Solid polymer fuel cell and separator for it
JP2002216786A (en) Solid polymer fuel cell
JP3723495B2 (en) Metal separator for solid polymer electrolyte fuel cell
JP4854992B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP6904661B2 (en) Manufacturing method of separator for fuel cell
KR100669319B1 (en) Metal separator for fuel cell, method for preparing the same, and fuel cell comprising the same