JP2002312918A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2002312918A
JP2002312918A JP2001116020A JP2001116020A JP2002312918A JP 2002312918 A JP2002312918 A JP 2002312918A JP 2001116020 A JP2001116020 A JP 2001116020A JP 2001116020 A JP2001116020 A JP 2001116020A JP 2002312918 A JP2002312918 A JP 2002312918A
Authority
JP
Japan
Prior art keywords
plane
magnetic
film
magnetization film
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116020A
Other languages
Japanese (ja)
Inventor
Maki Maeda
麻貴 前田
Hiroto Takeshita
弘人 竹下
Takuya Uzumaki
拓也 渦巻
Atsushi Tanaka
厚志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2001116020A priority Critical patent/JP2002312918A/en
Priority to US09/976,767 priority patent/US6835444B2/en
Priority to EP20010309131 priority patent/EP1249832A1/en
Priority to KR1020010066981A priority patent/KR100766511B1/en
Publication of JP2002312918A publication Critical patent/JP2002312918A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recording medium combined with a vertical magnetization film, in which an in-plane magnetization layer for reducing a noise and preventing the distortion of a reproducing waveform, is used as a recording layer. SOLUTION: The magnetic recording medium includes a recording in-plane magnetization film having a easily magnetizable axis in an in-plane direction, and a vertical magnetization film formed on the in-plane magnetization film, whose easily magnetizable axis is oriented in the vertical direction with respect to the easily magnetizable axis of the in-plane magnetization film, and tBr of the vertical magnetization film is set not to exceed 1/5 of tBr of the in-plane magnetization film even at the maximum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータ等の
情報処理装置の外部記録装置として採用されている磁気
記録再生装置に用いられる磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a magnetic recording / reproducing apparatus employed as an external recording device for an information processing apparatus such as a computer.

【0002】[0002]

【従来の技術】従来から、ハードディスク等の磁気記録
媒体の記録層に関して、垂直磁化膜と面内磁化膜とを組
合せて用いることについて多くの検討がなされている。
例えば、特開平11−283229号公報では垂直磁化
膜を厚く形成し、面内記録用の磁気ヘッドを用いてこの
垂直磁化膜に記録を行う記録方式について開示されてい
る。この記録方式は、垂直磁化膜に記録する方式であり
ながら面内記録型の再生波形が得られるので、波形処理
が不要であるという利点がある。
2. Description of the Related Art Many studies have been made on the use of a combination of a perpendicular magnetization film and an in-plane magnetization film for a recording layer of a magnetic recording medium such as a hard disk.
For example, Japanese Patent Application Laid-Open No. H11-283229 discloses a recording method in which a perpendicular magnetic film is formed thick and recording is performed on the perpendicular magnetic film using a magnetic head for in-plane recording. This recording method has an advantage that no waveform processing is required since an in-plane recording type reproduction waveform can be obtained even though the recording is performed on the perpendicular magnetization film.

【0003】また、例えば、特開平5−189737号
公報には、記録状態での遷移位置(磁化反転位置)にお
いて、磁化反転のモードがそれぞれ磁壁移動型及び磁化
回転型となる2種類の硬磁性の配向膜(垂直磁化膜と面
内磁化膜)を組合せる方式が開示されている。この方式
を採用するとオーバーライト特性の向上や高S/N化を
図ることができるとされている。
[0003] For example, Japanese Patent Application Laid-Open No. 5-189737 discloses that two types of hard magnetic layers in which a magnetization reversal mode is a domain wall displacement type and a magnetization rotation type at a transition position (magnetization reversal position) in a recording state, respectively. A method of combining an alignment film (a perpendicular magnetization film and an in-plane magnetization film) is disclosed. It is said that this method can improve the overwrite characteristics and increase the S / N ratio.

【0004】[0004]

【発明が解決しようとする課題】上記のような垂直磁化
膜と面内磁化膜とを組合せた複合型の磁気記録媒体で
は、垂直磁化膜に記録を行うことに関して多くの提案が
なされている。しかし、実用的レベルで未だ満足できる
ような磁気記録媒体とはなっていない。
In a composite magnetic recording medium in which a perpendicular magnetic film and an in-plane magnetic film are combined as described above, many proposals have been made regarding recording on the perpendicular magnetic film. However, the magnetic recording medium is not yet satisfactory at a practical level.

【0005】そして、最近、前述したと同様に垂直磁化
膜と面内磁化膜とを用いる複合型の記録媒体ではある
が、面内磁化膜を記録層とし、垂直磁化膜をこの面内磁
化膜の機能を高めるための補助膜として用いることにつ
いて提案がある。このような磁気記録媒体は、面内磁化
膜に垂直磁化膜を組合せた構造とすることにより、面内
磁化膜からの磁界が還流するように馬蹄形磁化モードを
形成するようになるので、出力の増大や低ノイズ化が達
成できる構成となり高記録密度化が可能であるとの指摘
がある。
Recently, as described above, a composite recording medium using a perpendicular magnetization film and an in-plane magnetization film as described above, but the in-plane magnetization film is used as a recording layer, and the perpendicular magnetization film is used as the in-plane magnetization film. There is a proposal to use it as an auxiliary film for enhancing the function of the above. Such a magnetic recording medium has a structure in which a perpendicular magnetization film is combined with an in-plane magnetization film to form a horseshoe-shaped magnetization mode so that a magnetic field from the in-plane magnetization film is returned. It has been pointed out that a configuration capable of achieving an increase and a reduction in noise can be achieved and a high recording density can be achieved.

【0006】しかしながら、上記面内磁化膜を記録層と
する複合記録媒体については、面内磁化膜の遷移位置で
の反磁界によるノイズ発生の問題や、面内磁化膜に垂直
磁化膜を組合せた構造としたことによる再生波形の歪み
の問題がある。ところが、このような問題を解消した好
ましい構成の面内磁化膜を記録層とする複合記録媒体は
未だ案出されていない。
However, in the case of the composite recording medium having the above-mentioned in-plane magnetic film as a recording layer, there is a problem of noise generation due to a demagnetizing field at a transition position of the in-plane magnetic film and a combination of the in-plane magnetic film and a perpendicular magnetic film. There is a problem of distortion of the reproduced waveform due to the structure. However, there has not yet been proposed a composite recording medium having a recording layer formed of an in-plane magnetic film having a preferable configuration and solving such a problem.

【0007】そこで、本発明の目的は、低ノイズ化及び
再生波形の歪み防止を図った面内磁化膜を記録層とする
垂直磁化膜との複合型の記録媒体を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite recording medium with a perpendicular magnetic film having an in-plane magnetic film as a recording layer for reducing noise and preventing distortion of a reproduced waveform.

【0008】[0008]

【課題を解決するための手段】上記目的は請求項1に記
載の如く、面内方向に磁化容易軸を有する記録用の面内
磁化膜と、前記面内磁化膜の上に形成され、磁化容易軸
が前記面内磁化膜の磁化容易軸に対して垂直方向に配向
されている垂直磁化膜とを、含む磁気記録媒体であっ
て、前記垂直磁化膜のtBrが最大でも前記面内磁化膜
のtBrの1/5を越えないように設定されている磁気
記録媒体により達成される。
According to a first aspect of the present invention, there is provided an in-plane magnetic film for recording having an easy axis of magnetization in an in-plane direction, and a magnetic film formed on the in-plane magnetic film. A perpendicular magnetization film whose easy axis is oriented in a direction perpendicular to the easy axis of magnetization of the in-plane magnetization film, wherein the perpendicular magnetization film has a maximum tBr of at least the in-plane magnetization film. Is achieved by a magnetic recording medium which is set so as not to exceed 1/5 of tBr.

【0009】請求項1記載の発明によれば、垂直磁化膜
の磁化状態が所定範囲に制限されているので、垂直磁化
膜が記録層となる面内磁化膜を補助する機能を十分に果
し、再生波形の歪みを抑制し高S/Nが得られる複合型
の磁気記録媒体となる。
According to the first aspect of the present invention, since the magnetization state of the perpendicular magnetization film is limited to a predetermined range, the perpendicular magnetization film sufficiently fulfills the function of assisting the in-plane magnetization film serving as the recording layer. Thus, a composite magnetic recording medium that suppresses distortion of a reproduced waveform and obtains a high S / N is obtained.

【0010】この垂直磁化膜のtBrは最大でも前記面
内磁化膜のtBrの1/5までに設定されていればよい
が、より好ましくは前記面内磁化膜のtBrの1/10
までに設定する。
The tBr of the perpendicular magnetization film may be set to be at most 1/5 of the tBr of the in-plane magnetization film, but more preferably 1/10 of the tBr of the in-plane magnetization film.
Set up to.

【0011】また、請求項2に記載の如く、請求項1に
記載の磁気記録媒体において、前記垂直磁化膜は最大で
5nmを越えない膜厚を有している構成とすることが好
ましい。
According to a second aspect of the present invention, in the magnetic recording medium according to the first aspect, it is preferable that the perpendicular magnetization film has a maximum thickness not exceeding 5 nm.

【0012】請求項2に記載の発明によれば、より確実
に磁気記録媒体の再生波形の歪みを抑制することができ
る。
According to the second aspect of the invention, it is possible to more reliably suppress the distortion of the reproduction waveform of the magnetic recording medium.

【0013】また、請求項3に記載される如く、請求項
1又は2にに記載の磁気記録媒体において、前記垂直磁
化膜の異方性磁界Hkが、前記面内磁化膜の異方性磁界
Hkの少なくとも1.2倍に設定されている構成を採用
することが望ましい。
According to a third aspect of the present invention, in the magnetic recording medium according to the first or second aspect, the anisotropic magnetic field Hk of the perpendicular magnetization film is the same as that of the in-plane magnetization film. It is desirable to adopt a configuration that is set to at least 1.2 times Hk.

【0014】請求項3に記載の発明によれば、面内磁化
膜の遷移位置に垂直磁化膜の遷移位置を確実に合わせる
ことが可能となり、面内磁化膜の遷移位置に発生し易い
反磁界を抑制してノイズ低減を図ることができる。
According to the third aspect of the present invention, the transition position of the perpendicular magnetization film can be surely matched with the transition position of the in-plane magnetization film, and the demagnetizing field which is easily generated at the transition position of the in-plane magnetization film And noise can be reduced.

【0015】また、請求項4に記載の如く、請求項1か
ら3のいずれに記載の磁気記録媒体において、前記面内
磁化膜と垂直磁化膜との間に非磁性スペーサを設けた構
成を採用することが望ましい。
According to a fourth aspect of the present invention, in the magnetic recording medium according to any one of the first to third aspects, a configuration is employed in which a nonmagnetic spacer is provided between the in-plane magnetic film and the perpendicular magnetic film. It is desirable to do.

【0016】請求項4に記載の発明によれば、面内磁化
膜の上に垂直磁化膜を容易に形成することができる。こ
の非磁性スペーサとしてはその上に垂直磁化膜の結晶性
を向上させる材料を用いることが好ましく、例えば、C
oCr系合金等を採用することができる。
According to the fourth aspect of the present invention, the perpendicular magnetization film can be easily formed on the in-plane magnetization film. As the non-magnetic spacer, it is preferable to use a material on which the crystallinity of the perpendicular magnetization film is improved.
An oCr-based alloy or the like can be employed.

【0017】また、請求項5に記載の如く、請求項4に
記載の磁気記録媒体において、前記非磁性スペーサは2
nmを越えない膜厚を有している構成とすることが望ま
しい。
According to a fifth aspect of the present invention, in the magnetic recording medium according to the fourth aspect, the non-magnetic spacer includes
It is desirable to have a structure having a film thickness not exceeding nm.

【0018】請求項5に記載の発明によれば、記録・再
生を行う磁気ヘッドと記録層となる面内磁化膜との距離
を良好に維持できる。
According to the fifth aspect of the present invention, it is possible to maintain a good distance between the magnetic head for recording / reproducing and the in-plane magnetic film serving as the recording layer.

【0019】また、請求項6に記載の如く、請求項1か
ら5のいずれに記載の磁気記録媒体において、前記垂直
磁化膜がCo系合金又はCo系の人工格子膜で形成され
ている構成としてもよい。
According to a sixth aspect of the present invention, in the magnetic recording medium according to any one of the first to fifth aspects, the perpendicular magnetization film is formed of a Co-based alloy or a Co-based artificial lattice film. Is also good.

【0020】垂直磁化膜としては、一般的なCoCr系
合金等の磁性材料を採用できるが、高い異方性磁界を持
つことが好ましいという観点から、Co系合金又はCo
系の人工格子膜を用いることが推奨される。
As the perpendicular magnetization film, a general magnetic material such as a CoCr-based alloy can be used. However, from the viewpoint of preferably having a high anisotropic magnetic field, a Co-based alloy or a Co-based alloy is preferable.
It is recommended to use a system artificial lattice membrane.

【0021】Co系合金としては、例えばCoCrP
t、TbFeCo,CoPt、FePt等を用いること
ができ、また、Co系の人工格子膜としたは、例えばC
o/Pt、Co/Pd等を用いることができる。
As the Co-based alloy, for example, CoCrP
t, TbFeCo, CoPt, FePt, etc. can be used.
o / Pt, Co / Pd or the like can be used.

【0022】さらに、本発明の範疇には、請求項7に記
載する如く、請求項1から6のいずれかに記載の磁気記
録媒体を含む磁気記録再生装置も含む。このような磁気
記録再生装置は、低ノイズかつ良好な再生波形を示すの
で、高密度で高感度な情報記録が可能である。
Further, the scope of the present invention includes a magnetic recording / reproducing apparatus including the magnetic recording medium according to any one of claims 1 to 6, as described in claim 7. Such a magnetic recording / reproducing apparatus can record information with high density and high sensitivity since it has low noise and a good reproduction waveform.

【0023】[0023]

【発明の実施の形態】以下、図面に基づいて本発明の実
施例を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】本実施例の複合型の磁気記録媒体(以下、
垂直/面内複合媒体という)は図示せぬ基板上に、面内
方向に磁化容易軸を有する面内磁化膜と、この面内磁化
膜上に形成され、その磁化容易軸は基板に対して垂直方
向に配向された垂直磁化膜とで構成されている。そし
て、この垂直/面内複合媒体は、面内磁化膜と垂直磁化
膜と間に非磁性のスペーサを挿入した構成とすることが
好ましい。よって、本実施例では面内磁化膜、非磁性ス
ペーサ及び垂直磁化膜の積層を有する垂直/面内複合媒
体を例に取り説明する。
The composite type magnetic recording medium of this embodiment (hereinafter referred to as
A perpendicular / in-plane composite medium) is formed on a substrate (not shown) on an in-plane magnetization film having an easy-axis in the in-plane direction, and on the in-plane magnetization film, the easy-axis is set with respect to the substrate. And a perpendicular magnetization film oriented in the vertical direction. The perpendicular / in-plane composite medium preferably has a configuration in which a non-magnetic spacer is inserted between the in-plane magnetization film and the perpendicular magnetization film. Therefore, in the present embodiment, a perpendicular / in-plane composite medium having a laminated structure of an in-plane magnetic film, a non-magnetic spacer, and a perpendicular magnetic film will be described as an example.

【0025】なお、本垂直/面内複合媒体では、面内磁
化膜が記録層とされ、その上の垂直磁化膜は補助膜とし
て機能する。
In the present perpendicular / in-plane composite medium, the in-plane magnetic film serves as a recording layer, and the perpendicular magnetic film thereon functions as an auxiliary film.

【0026】上記面内磁化膜には、例えば、CoCrP
t、CoCrPtB等の磁性材料を用いることができ
る。また、垂直磁化膜には、例えば、Co系合金、Co
系の人工格子膜等の磁性材料を用いることが好ましい。
The in-plane magnetized film is made of, for example, CoCrP.
Magnetic materials such as t and CoCrPtB can be used. In addition, for example, a Co-based alloy, Co
It is preferable to use a magnetic material such as a system artificial lattice film.

【0027】上記面内磁化膜の膜厚は、例えば5〜20
nm程度、垂直磁化膜の膜厚は1〜5nm程度に設定す
ることができる。特に垂直磁化膜の膜厚は最大でも5n
m程度までとするのが好ましい。
The thickness of the in-plane magnetized film is, for example, 5 to 20.
The thickness of the perpendicular magnetization film can be set to about 1 to 5 nm. In particular, the thickness of the perpendicular magnetization film is at most 5n.
It is preferably up to about m.

【0028】また、本実施例では理解を容易とするため
に、本実施例の垂直/面内複合媒体に対して、一般的な
面内方向に磁化容易軸を有する面内磁化膜を単層で設け
た磁気記録媒体(以下、面内単層媒体という)の場合を
比較例として示しながら説明する。
In the present embodiment, in order to facilitate understanding, a single-layer in-plane magnetized film having an easy axis of magnetization in a general in-plane direction is used for the perpendicular / in-plane composite medium of this embodiment. The case of the magnetic recording medium (hereinafter, referred to as an in-plane single-layer medium) provided as described above will be described as a comparative example.

【0029】図1は、面内記録型の磁気ヘッド10と磁
気記録媒体との関係を示した図である。図1は、磁気ス
ペーシング11を一致させ、面内記録型の磁気ヘッド1
0により、本実施例の垂直/面内複合媒体20及び面内
単層媒体30に対して記録を行う様子が示されている。
本実施例の垂直/面内複合媒体20は、上記のような磁
気ヘッド10により、磁気情報が記録或いは再生され
る。
FIG. 1 is a diagram showing the relationship between a longitudinal recording type magnetic head 10 and a magnetic recording medium. FIG. 1 shows a magnetic head 1 of an in-plane recording type in which a magnetic spacing 11 is matched.
0 indicates that recording is performed on the perpendicular / in-plane composite medium 20 and the in-plane single-layer medium 30 of this embodiment.
In the perpendicular / in-plane composite medium 20 of this embodiment, magnetic information is recorded or reproduced by the magnetic head 10 as described above.

【0030】なお、垂直/面内複合媒体20は、前述し
たように面内磁化膜21、非磁性スペーサ22及び垂直
磁化膜23を積層した構造を有している。
The perpendicular / in-plane composite medium 20 has a structure in which the in-plane magnetic film 21, the non-magnetic spacer 22, and the perpendicular magnetic film 23 are laminated as described above.

【0031】ここで、垂直/面内複合媒体20及び面内
単層媒体30に関して定めた前提条件は次の通りであ
る。垂直/面内複合媒体20及び面内単層媒体30の膜
内での磁性粒子間の交換相互作用のパラメータheは
0.05とした。また、遷移幅及びS/N比の算出に
は、各記録密度でダイビットを記録することにより行っ
た。遷移幅は面内方向の残留磁化成分を逆正接関数で近
似することにより見積もった。但し、複合媒体の遷移幅
において、垂直膜の面内磁化成分も膜厚の比率で加算し
ているが、垂直磁化膜のtBrが低いため、それによる
遷移幅の低減効果への影響はないことを確認している。
また、S/N比におけるノイズは再生出力の揺らぎ成分
の積算により求めた。
The prerequisites defined for the perpendicular / in-plane composite medium 20 and the in-plane single-layer medium 30 are as follows. The parameter he of the exchange interaction between magnetic particles in the films of the perpendicular / in-plane composite medium 20 and the in-plane single layer medium 30 was set to 0.05. The transition width and the S / N ratio were calculated by recording dibits at each recording density. The transition width was estimated by approximating the in-plane residual magnetization component with an arctangent function. However, in the transition width of the composite medium, the in-plane magnetization component of the perpendicular film is also added at the ratio of the film thickness. However, since the tBr of the perpendicular magnetization film is low, there is no effect on the effect of reducing the transition width. Have confirmed.
The noise in the S / N ratio was determined by integrating the fluctuation components of the reproduction output.

【0032】[実施例1]図2は、本実施例1の垂直/
面内複合媒体20の構成を、比較例の面内単層媒体30
の構成と共にまとめて示した図である。
[Embodiment 1] FIG. 2 is a vertical sectional view of Embodiment 1 of the present invention.
The structure of the in-plane composite medium 20 is changed to the in-plane single-layer medium 30 of the comparative example.
It is the figure collectively shown with the structure of FIG.

【0033】図2に示すように、本実施例の垂直/面内
複合媒体20の構成は、面内磁化膜10nm、非磁性ス
ペーサ1nm、さらに垂直磁化膜1nmを下から順に積
層した構成である。一方、比較例の面内単層媒体30は
面内磁化膜10nmのみの単層で形成している。各膜の
磁性粒子径は5nmに調整し、磁性粒子間の交換相互作
用のパラメータheは0.05としている。
As shown in FIG. 2, the structure of the perpendicular / in-plane composite medium 20 of the present embodiment is such that an in-plane magnetic film 10 nm, a non-magnetic spacer 1 nm, and a perpendicular magnetic film 1 nm are sequentially stacked from the bottom. . On the other hand, the in-plane single-layer medium 30 of the comparative example is formed of a single layer having only the in-plane magnetic film of 10 nm. The magnetic particle diameter of each film is adjusted to 5 nm, and the parameter he of the exchange interaction between the magnetic particles is set to 0.05.

【0034】図1で示した、記録及び再生が可能な磁気
ヘッド10は、磁気スペーシング24nm、ライトヘッ
ド磁界2kOe(膜厚10nmの媒体中心において)、
ライトギャップ長0.2μm、リードギャップ長0.0
9μmに調整した。
The magnetic head 10 capable of recording and reproduction shown in FIG. 1 has a magnetic spacing of 24 nm, a write head magnetic field of 2 kOe (at the center of a medium having a thickness of 10 nm),
Write gap length 0.2 μm, read gap length 0.0
It was adjusted to 9 μm.

【0035】図3は、本実施例の垂直/面内複合媒体2
0と面内単層媒体30に磁気ヘッド10により記録再生
を行った際の磁気特性をまとめて示した図である。
FIG. 3 shows a perpendicular / in-plane composite medium 2 of this embodiment.
FIG. 2 is a diagram collectively showing magnetic characteristics when recording and reproducing are performed on a 0 and an in-plane single layer medium 30 by a magnetic head 10.

【0036】なお、本垂直/面内複合媒体20として、
垂直磁化膜の異方性磁界Hkを8kOeとし飽和磁化M
sを250emu/ccと500emu/ccに変え
て、tBrを3.1Gμm、6.3Gμmとした2種類
を準備した。
The perpendicular / in-plane composite medium 20 is
The anisotropic magnetic field Hk of the perpendicular magnetization film is set to 8 kOe and the saturation magnetization M
Two types were prepared in which s was changed to 250 emu / cc and 500 emu / cc, and tBr was set to 3.1 Gm and 6.3 Gm.

【0037】図3に示すように、面内磁化膜のtBr4
7.1Gμmに対して、垂直磁化膜の飽和磁化Msを2
50、500emu/cc(tBr3.1、6.3Gμ
m)とした場合の各々について、面内単層媒体30に対
する変化を比較した。なお、記録密度は200kfci
とした。
As shown in FIG. 3, tBr4 of the in-plane magnetized film
For 7.1 G μm, the saturation magnetization Ms of the perpendicular magnetization film is 2
50, 500 emu / cc (tBr 3.1, 6.3 Gμ
For each of the cases of m), changes with respect to the in-plane single-layer medium 30 were compared. The recording density was 200 kfci.
And

【0038】図3右端側の2つの欄には、出力V(単膜
比:面内単層媒体30に対する比)及び遷移幅πa(単
膜比)を示している。これらの欄では、面内磁化膜のみ
により形成した面内単層媒体30の場合を0(%)で基
準とし、2種類の垂直/面内複合媒体20について、出
力V(単膜比)及び遷移幅πa(単膜比)の増減を百分
率で示している。
The output V (single film ratio: ratio to the in-plane single layer medium 30) and the transition width πa (single film ratio) are shown in the two columns on the right end side of FIG. In these columns, the output V (single film ratio) and the output V (single film ratio) for the two types of perpendicular / in-plane composite media 20 are set based on 0 (%) based on the case of the in-plane single-layer medium 30 formed only of the in-plane magnetic film. The change in the transition width πa (the ratio of the single film) is shown in percentage.

【0039】なお、磁気記録媒体としては、大きな出力
Vが得られる方が良く、またノイズ低減の観点からは遷
移幅πaは小さい方が良い。
As the magnetic recording medium, it is better to obtain a large output V, and from the viewpoint of noise reduction, the smaller the transition width πa is, the better.

【0040】ここで、垂直磁化膜のtBrが6.3Gμ
mと高い場合には、tBrが3.1Gμmである低い場
合と比較して、出力の低下が著しくなることが確認でき
る。その逆に、遷移幅についはtBrが高いと増大する
ことが確認できる。
Here, tBr of the perpendicular magnetization film is 6.3 Gμ.
When m is high, it can be confirmed that the output is significantly reduced as compared with a low case where tBr is 3.1 G μm. Conversely, it can be confirmed that the transition width increases when tBr is high.

【0041】よって、垂直磁化膜のtBrを低く抑制す
ることが必要であることが分かる。
Therefore, it is understood that it is necessary to suppress tBr of the perpendicular magnetization film to be low.

【0042】本願発明者等は、前記垂直磁化膜のtBr
は面内磁化膜のtBrの1/5を越えないように設定す
ることが好ましいことを確認した。より好ましくは、垂
直磁化膜のtBrは面内磁化膜のtBrの1/10を越
えないように設定する。
The present inventors have determined that the tBr of the perpendicular magnetization film
It has been confirmed that it is preferable to set the value so as not to exceed 1/5 of tBr of the in-plane magnetized film. More preferably, tBr of the perpendicular magnetization film is set so as not to exceed 1/10 of tBr of the in-plane magnetization film.

【0043】すなわち、垂直磁化膜のtBrが高くなる
と、面内磁化膜への静磁気的な相互作用により遷移幅が
拡大することになる。よって、静磁気的な相互作用を適
度に抑えることが重要であり、そのためには垂直磁化膜
を低tBr化すること及び1nm程度の非磁性スペーサ
の挿入することが有効である。非磁性スペーサの膜厚は
磁気ヘッドとの磁気スペーシングに影響を与えるので2
nm程度までとすることが好ましい。同様の観点から垂
直磁化膜の膜厚は5nmを越えないように設計すること
が好ましい。
That is, when tBr of the perpendicular magnetization film increases, the transition width increases due to magnetostatic interaction with the in-plane magnetization film. Therefore, it is important to appropriately suppress the magnetostatic interaction. For this purpose, it is effective to reduce the tBr of the perpendicular magnetization film and to insert a nonmagnetic spacer of about 1 nm. The thickness of the non-magnetic spacer affects the magnetic spacing with the magnetic head.
It is preferably up to about nm. From the same viewpoint, it is preferable to design the thickness of the perpendicular magnetization film so as not to exceed 5 nm.

【0044】[実施例2]図4は、実施例2の垂直/面
内複合媒体20の構成を、比較例の面内単層媒体30の
構成と共にまとめて示した図である。
[Embodiment 2] FIG. 4 is a diagram showing the structure of a perpendicular / in-plane composite medium 20 of Example 2 together with the structure of an in-plane single-layer medium 30 of a comparative example.

【0045】図4に示すように、本実施例の垂直/面内
複合媒体20では、図2に示した実施例1の媒体よりも
面内磁化膜の膜厚を6nmとして薄くしている。他の構
成は非磁性スペーサ1nm及び垂直磁化膜1nmであ
り、実施例1の場合と同様である。
As shown in FIG. 4, in the perpendicular / in-plane composite medium 20 of this embodiment, the thickness of the in-plane magnetization film is set to be 6 nm smaller than that of the medium of the first embodiment shown in FIG. The other configuration is the same as that of the first embodiment except that the nonmagnetic spacer is 1 nm and the perpendicular magnetization film is 1 nm.

【0046】本実施例で比較例の面内単層媒体30は、
面内磁化膜6nmのみの単層で形成している。なお、各
膜の磁性粒子径は図2の場合と同様に5nmに調整し、
磁性粒子間の交換相互作用のパラメータheも0.05
である。
In the present embodiment, the in-plane single-layer medium 30 of the comparative example is
It is formed of a single layer of only the in-plane magnetized film of 6 nm. The magnetic particle diameter of each film was adjusted to 5 nm as in the case of FIG.
The parameter he of the exchange interaction between the magnetic particles is also 0.05.
It is.

【0047】また、図1で示した磁気ヘッド10の条件
を変更している。すなわち、磁気ヘッド10の磁気スペ
ーシング17nm、ライトヘッド磁界7.5kOe(膜
厚6nmの媒体中心において)、ライトギャップ長0.
15μm、リードギャップ長0.05μmとした。
The condition of the magnetic head 10 shown in FIG. 1 is changed. That is, the magnetic spacing of the magnetic head 10 is 17 nm, the write head magnetic field is 7.5 kOe (at the center of the medium having a thickness of 6 nm), and the write gap length is 0.
The length was 15 μm and the read gap length was 0.05 μm.

【0048】図5は、本実施例の垂直/面内複合媒体2
0と面内単層媒体30に磁気ヘッド10により記録再生
を行った際の磁気特性をまとめて示した図である。
FIG. 5 shows a vertical / in-plane composite medium 2 of this embodiment.
FIG. 2 is a diagram collectively showing magnetic characteristics when recording and reproducing are performed on a 0 and an in-plane single layer medium 30 by a magnetic head 10.

【0049】図5に示すように、面内磁化膜のtBr5
6.5Gμmに対して、垂直磁化膜の飽和磁化Msを6
00、200emu/cc(tBr7.5、tBr2.
5Gμm)とした場合の垂直/面内複合媒体20を複数
準備した。
As shown in FIG. 5, tBr5 of the in-plane magnetized film
For 6.5 Gμm, the saturation magnetization Ms of the perpendicular magnetization film is set to 6
00, 200 emu / cc (tBr 7.5, tBr2.
A plurality of perpendicular / in-plane composite media 20 having a thickness of 5 Gm was prepared.

【0050】ここで、垂直/面内複合媒体20としての
媒体とは垂直磁化膜と面内磁化膜の遷移位置を一致
させたものである。また、垂直/面内複合媒体20とし
ての媒体とは、垂直磁化膜と面内磁化膜の遷移位置
を不一致としたものである。
Here, the medium as the perpendicular / in-plane composite medium 20 is one in which the transition positions of the perpendicular magnetization film and the in-plane magnetization film are matched. The medium as the perpendicular / in-plane composite medium 20 is one in which the transition positions of the perpendicular magnetization film and the in-plane magnetization film are not matched.

【0051】本実施例では、このように垂直磁化膜と面
内磁化膜の遷移位置を一致させるか、否かで再生(出
力)波形、S/Nに与える影響を確認した。
In this embodiment, the influence on the reproduction (output) waveform and S / N was confirmed by determining whether or not the transition positions of the perpendicular magnetization film and the in-plane magnetization film were made to coincide with each other.

【0052】本実施例2では、図5に示すように垂直/
面内複合媒体〜の4種類作成した。は比較例の面
内単層媒体30である。
In the second embodiment, as shown in FIG.
Four types of in-plane composite media were prepared. Denotes an in-plane single-layer medium 30 of a comparative example.

【0053】この4種類各々における面内磁化膜の遷移
位置は垂直磁化膜の異方性磁界Hkにより調整した。
The transition position of the in-plane magnetic film in each of the four types was adjusted by the anisotropic magnetic field Hk of the perpendicular magnetic film.

【0054】図5において、複合媒体、は遷移位置
を一致させた場合である。そして、複合媒体は磁性粒
子1個分(約5nm)遷移位置をずらした場合、また複
合媒体は遷移位置を磁性粒子4個分(約21nm)遷
移位置をずらした場合である。
In FIG. 5, the composite medium is a case where the transition positions are matched. The transition position of the composite medium is shifted by one magnetic particle (about 5 nm), and the transition position of the composite medium is shifted by 4 magnetic particles (about 21 nm).

【0055】本願発明者等は、面内磁化膜の遷移位置に
対する垂直磁化膜の遷移位置のずれを抑制するには、垂
直磁化膜の異方性磁界Hkが少なくとも面内磁化膜の異
方性磁界の1.2倍以上必要であることを確認してい
る。よって、垂直磁化膜の異方性磁界Hkの強度を調整
して、面内磁化膜の遷移位置に垂直磁化膜の遷移位置が
一致するように調整することができる。なお、本実施例
2では記録密度は460kfciとした。
In order to suppress the deviation of the transition position of the perpendicular magnetization film from the transition position of the in-plane magnetization film, the inventors of the present application require that the anisotropy magnetic field Hk of the perpendicular magnetization film be at least anisotropy of the in-plane magnetization film. It has been confirmed that 1.2 times or more of the magnetic field is required. Therefore, the intensity of the anisotropic magnetic field Hk of the perpendicular magnetization film can be adjusted so that the transition position of the perpendicular magnetization film coincides with the transition position of the in-plane magnetization film. In the second embodiment, the recording density was 460 kfci.

【0056】図5より、面内磁化膜の遷移位置に垂直磁
化膜の遷移位置が一致している複合媒体では、比較例
の面内単層媒体30と比較して、出力が6.3%低下す
るものの、S/Nは15.1も向上する。図5右端欄の
単膜比(dB)は、比較例の面内単層媒体30に対する
総合評価とみることができ、この複合媒体は出力Vが
低下してもノイズ抑制が顕著であり、最終的に面内単層
媒体30より+1.2dBが得られている。
As shown in FIG. 5, in the composite medium in which the transition position of the perpendicular magnetization film coincides with the transition position of the in-plane magnetization film, the output is 6.3% as compared with the in-plane single-layer medium 30 of the comparative example. Although decreasing, the S / N is improved by 15.1. The single-layer ratio (dB) in the rightmost column in FIG. 5 can be regarded as a comprehensive evaluation of the in-plane single-layer medium 30 of the comparative example. As a result, +1.2 dB is obtained from the in-plane single-layer medium 30.

【0057】また、遷移位置が一致している複合媒体
、で、さらに垂直磁化膜のtBrが面内磁化膜のt
Brの1/5までとなるように設定すると高いS/N比
を得ることができる。
Further, in the composite medium in which the transition positions coincide, the tBr of the perpendicular magnetization film is further increased by the tBr of the in-plane magnetization film.
If it is set to be 1/5 of Br, a high S / N ratio can be obtained.

【0058】媒体のtBrは2.5、面内磁化膜のt
Brは56.5であるので、(2.5/56.5)≦
(1/5)を満足する。また、媒体のtBrは7.5
であり(7.5/56.5)≦(1/5)を満足する。
The tBr of the medium is 2.5, and the tBr of the in-plane magnetized film is
Since Br is 56.5, (2.5 / 56.5) ≦
(1/5) is satisfied. The medium has a tBr of 7.5.
And satisfies (7.5 / 56.5) ≦ (1/5).

【0059】よって、媒体の場合も最終的に面内単層
媒体30より+0.9の結果が得られている。但し、媒
体のようにより高いS/N比を得るためには、垂直磁
化膜のtBrが面内磁化膜のtBrの1/10を越えな
いよう設計することが必要である。
Therefore, in the case of the medium, a result of +0.9 is finally obtained from the in-plane single-layer medium 30. However, in order to obtain a higher S / N ratio like a medium, it is necessary to design so that tBr of the perpendicular magnetization film does not exceed 1/10 of tBr of the in-plane magnetization film.

【0060】また、図5の複合媒体、についても垂
直磁化膜のtBrが面内磁化膜のtBrの1/10を越
えないように設計されているので、面内単層媒体30と
比較して良い評価は得られているものの媒体のように
は高い評価が得られない。
Also, the composite medium of FIG. 5 is designed so that tBr of the perpendicular magnetization film does not exceed 1/10 of tBr of the in-plane magnetization film. Although good evaluation has been obtained, high evaluation cannot be obtained like the medium.

【0061】より好適な垂直/面内複合媒体20とする
ためには、垂直磁化膜のtBrを面内磁化膜のtBrよ
りも低い所定値に制限し、さらに垂直磁化膜の遷移位置
を面内磁化膜の遷移位置に一致させるように形成するこ
とが望ましい。このように遷移位置を一致させること、
面内磁化膜の遷移位置で垂直磁化膜の磁化が、磁界の還
流がなされる様に機能すると推測される。これにより、
面内磁化膜の遷移位置での反磁界を低減させることがで
きる。
In order to obtain a more preferable perpendicular / in-plane composite medium 20, the tBr of the perpendicular magnetization film is limited to a predetermined value lower than the tBr of the in-plane magnetization film, and the transition position of the perpendicular magnetization film is set in the in-plane. It is desirable that the magnetic film be formed so as to coincide with the transition position. Matching transition positions in this way,
It is presumed that the magnetization of the perpendicular magnetization film functions so as to return the magnetic field at the transition position of the in-plane magnetization film. This allows
The demagnetizing field at the transition position of the in-plane magnetization film can be reduced.

【0062】なお、図5の異方性磁界Hkの欄に示され
るが、複合媒体、の場合は共に、垂直磁化膜の異方
性磁界Hkが面内磁化膜の異方性磁界Hkの1.2倍以
上となっている。
As shown in the column of the anisotropic magnetic field Hk in FIG. 5, in the case of the composite medium, the anisotropic magnetic field Hk of the perpendicular magnetization film is one of the anisotropy magnetic field Hk of the in-plane magnetization film. .2 times or more.

【0063】図6は、複合媒体、の再生波形を、面
内単層媒体の再生波形と比較して示した図である。図
6(A)は媒体ととの比較、図6(B)は媒体と
との比較を示している。
FIG. 6 is a diagram showing a reproduction waveform of a composite medium in comparison with a reproduction waveform of an in-plane single-layer medium. FIG. 6A shows a comparison with a medium, and FIG. 6B shows a comparison with a medium.

【0064】図6(B)で示す垂直磁化膜のtBrが低
い媒体の方が、図6(A)で示す垂直磁化膜のtBr
が高い媒体よりも垂直磁化膜が存在することによる複
合媒体での再生波形の歪みが抑制されていることが確認
できる。
The medium having a lower tBr of the perpendicular magnetization film shown in FIG. 6B has a smaller tBr of the perpendicular magnetization film shown in FIG.
It can be confirmed that the distortion of the reproduction waveform in the composite medium due to the presence of the perpendicular magnetization film is suppressed as compared with the medium having a high magnetic field.

【0065】また、本実施例の複合媒体では記録ヘッド
の磁界を変えた場合でも、図7のように遷移位置を調整
するこができ、図8(A)に示すように複合媒体では高
いS/Nを示し、また同じく図8(B)に示すように遷
移幅を低減させることができる。
Further, in the composite medium of this embodiment, even when the magnetic field of the recording head is changed, the transition position can be adjusted as shown in FIG. 7, and as shown in FIG. / N, and the transition width can be reduced as shown in FIG.

【0066】以上説明した垂直/面内複合媒体は、垂直
磁化膜と面内磁化膜を組合せることによりノイズの発生
を抑制しつつ、再生波形の歪みを抑えて高いS/N比が
得られる高記録密度の磁気記録媒体として提供できる。
In the perpendicular / in-plane composite medium described above, a high S / N ratio can be obtained by suppressing the distortion of the reproduced waveform while suppressing the generation of noise by combining the perpendicular magnetization film and the in-plane magnetization film. It can be provided as a high recording density magnetic recording medium.

【0067】なお、前記の実施例の垂直/面内複合媒体
については、Landau-Lifshitz-Gilbert 方程式を用いた
Micromagnetic model によるシミュレーションによって
も同様の結果を得ることができる。その際、磁気ヘッド
による磁界は、リングヘッドを想定したKalquvistによ
る解析式、再生出力には相反定理を用いることができ
る。
For the perpendicular / in-plane composite medium of the above embodiment, the Landau-Lifshitz-Gilbert equation was used.
Similar results can be obtained by simulation using a micromagnetic model. At this time, the magnetic field generated by the magnetic head can be determined by an analysis formula by Kalquvist assuming a ring head, and the reciprocity theorem can be used for reproduction output.

【0068】次に、本発明になる磁気記録再生装置の一
実施例を、図9及び図10と共に説明する。図9は磁気
記録再生装置の一実施例の要部を示す断面図であり、図
10は同装置の要部を示す平面図である。
Next, an embodiment of the magnetic recording / reproducing apparatus according to the present invention will be described with reference to FIGS. FIG. 9 is a sectional view showing a main part of an embodiment of a magnetic recording / reproducing apparatus, and FIG. 10 is a plan view showing a main part of the apparatus.

【0069】図9及び図10に示すように、磁気記録再
生装置は大略ハウジング113からなる。ハウジング1
13内には、モータ114、ハブ115、複数の磁気記
録媒体116、複数の記録再生ヘッド117、複数のサ
スペンション118、複数のアーム119及びアクチュ
エータユニット120が設けられている。磁気記録媒体
116はモータ114により回転されるハブ115に取
付けられている。記録再生ヘッド117は、MRヘッド
やGMRヘッド等の再生ヘッドと、インダクティブヘッ
ド等の記録ヘッドとからな複合型の記録再生ヘッドであ
る。各記録再生ヘッド117は、対応するアーム119
の先端にサスペンション118を介して取付けられてい
る。アーム119はアクチュエータユニット120によ
り駆動される。この磁気記録再生装置の基本構成自体は
周知であり、その詳細な説明は本明細書では省略する。
As shown in FIGS. 9 and 10, the magnetic recording / reproducing apparatus generally comprises a housing 113. Housing 1
Inside 13, a motor 114, a hub 115, a plurality of magnetic recording media 116, a plurality of recording / reproducing heads 117, a plurality of suspensions 118, a plurality of arms 119, and an actuator unit 120 are provided. The magnetic recording medium 116 is attached to a hub 115 rotated by a motor 114. The recording / reproducing head 117 is a composite recording / reproducing head including a reproducing head such as an MR head and a GMR head and a recording head such as an inductive head. Each recording / reproducing head 117 has a corresponding arm 119.
Is mounted via a suspension 118 at the tip of the. The arm 119 is driven by the actuator unit 120. The basic configuration itself of this magnetic recording / reproducing apparatus is well known, and a detailed description thereof will be omitted in this specification.

【0070】上記磁気記録再生装置の実施例は磁気記録
媒体116に特徴がある。各磁気記録媒体116は、例
えば図5で説明した複合媒体の構成を有する。勿論、
磁気記録媒体116の数は3枚には限定されず、1枚で
も、2枚又は4枚以上であってもよい。
The embodiment of the magnetic recording / reproducing apparatus is characterized by a magnetic recording medium 116. Each magnetic recording medium 116 has, for example, the configuration of the composite medium described with reference to FIG. Of course,
The number of magnetic recording media 116 is not limited to three, but may be one, two, or four or more.

【0071】本磁気記録再生装置の基本構成は、図9及
び図10に示すものに限定されるものではない。また、
本発明で用いる磁気記録媒体は磁気ディスクに限定され
るものではない。
The basic configuration of the present magnetic recording / reproducing apparatus is not limited to those shown in FIGS. Also,
The magnetic recording medium used in the present invention is not limited to a magnetic disk.

【0072】以上本発明の好ましい実施例について詳述
したが、本発明は係る特定の実施形態に限定されるもの
ではなく、特許請求の範囲に記載された本発明の要旨の
範囲内において、種々の変形・変更が可能である。
Although the preferred embodiments of the present invention have been described in detail, the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. Can be modified and changed.

【0073】[0073]

【発明の効果】以上詳述したところから明らかなよう
に、請求項1記載の発明によれば、垂直磁化膜の磁化状
態が所定範囲に制限されているので、垂直磁化膜が記録
層となる面内磁化膜を補助する機能を十分に果し、再生
波形の歪みを抑制し、高S/Nが得られる複合型の磁気
記録媒体を形成できる。
As is apparent from the above description, according to the first aspect of the present invention, since the magnetization state of the perpendicular magnetization film is limited to a predetermined range, the perpendicular magnetization film becomes the recording layer. It is possible to form a composite magnetic recording medium that sufficiently fulfills the function of assisting the in-plane magnetic film, suppresses distortion of the reproduced waveform, and obtains a high S / N.

【0074】また、請求項2記載の発明によれば、より
確実に磁気記録媒体の再生波形の歪みを抑制することが
できる。
According to the second aspect of the present invention, it is possible to more reliably suppress the distortion of the reproduction waveform of the magnetic recording medium.

【0075】また、請求項3に記載の発明によれば、面
内磁化膜の遷移位置に垂直磁化膜の遷移位置を確実に合
わせることが可能となり、面内磁化膜の遷移位置に発生
し易い反磁界を抑制してノイズ低減を図ることができ
る。
According to the third aspect of the present invention, the transition position of the perpendicular magnetization film can be surely matched with the transition position of the in-plane magnetization film, so that the transition position of the in-plane magnetization film easily occurs. Noise can be reduced by suppressing the demagnetizing field.

【0076】また、請求項4に記載の発明によれば、面
内磁化膜の上に垂直磁化膜を容易に形成することができ
る。
According to the fourth aspect of the present invention, a perpendicular magnetization film can be easily formed on an in-plane magnetization film.

【0077】また、請求項5に記載の発明によれば、記
録再生を行う磁気ヘッドと記録層となる面内磁化膜との
距離を良好に維持できる。
According to the fifth aspect of the present invention, it is possible to maintain a good distance between the magnetic head for recording and reproducing and the in-plane magnetic film serving as the recording layer.

【0078】また、請求項6に記載の発明によれば、よ
り好適な垂直磁化膜を有する磁気記録媒体となる。
According to the invention described in claim 6, a magnetic recording medium having a more preferable perpendicular magnetization film is obtained.

【0079】また、請求項7に記載の発明によれば、低
ノイズかつ良好な再生波形を示すので、高密度で高感度
な情報記録が可能である磁気記録再生装置を提供でき
る。
According to the seventh aspect of the present invention, a magnetic recording / reproducing apparatus capable of high-density and high-sensitivity information recording can be provided because of low noise and good reproduction waveform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】面内記録型の磁気ヘッドと磁気記録媒体との関
係を示した図である。
FIG. 1 is a diagram showing a relationship between a longitudinal recording type magnetic head and a magnetic recording medium.

【図2】実施例1の垂直/面内複合媒体の構成を、比較
例の面内単層媒体の構成と共にまとめて示した図であ
る。
FIG. 2 is a diagram collectively showing a configuration of a perpendicular / in-plane composite medium of Example 1 together with a configuration of an in-plane single-layer medium of a comparative example.

【図3】実施例1の垂直/面内複合媒体と面内単層媒体
に磁気ヘッドにより記録再生を行った際の磁気特性をま
とめて示した図である。
FIG. 3 is a diagram collectively showing magnetic characteristics when recording / reproducing is performed on a perpendicular / in-plane composite medium and an in-plane single-layer medium by a magnetic head in Example 1.

【図4】実施例2の垂直/面内複合媒体の構成を、比較
例の面内単層媒体の構成と共にまとめて示した図であ
る。
FIG. 4 is a diagram collectively showing a configuration of a perpendicular / in-plane composite medium of Example 2 together with a configuration of an in-plane single-layer medium of a comparative example.

【図5】実施例2の垂直/面内複合媒体と面内単層媒体
に磁気ヘッドにより記録再生を行った際の磁気特性をま
とめて示した図である。
FIG. 5 is a diagram collectively showing magnetic characteristics when recording / reproducing is performed by a magnetic head on a perpendicular / in-plane composite medium and an in-plane single-layer medium of Example 2.

【図6】垂直/面内複合媒体、それぞれの再生波形
を、面内単層媒体の再生波形と比較して示した図であ
る。
FIG. 6 is a diagram showing the reproduction waveforms of the perpendicular / in-plane composite medium and the respective reproduction waveforms of the in-plane single-layer medium.

【図7】記録ヘッドの磁界を変えた場合の条件について
示した図である。
FIG. 7 is a diagram illustrating conditions when a magnetic field of a recording head is changed.

【図8】記録ヘッドの磁界とS/N及び遷移幅について
示した図である。
FIG. 8 is a diagram illustrating the magnetic field, S / N, and transition width of a recording head.

【図9】磁気記録再生装置の一実施例の要部を示す断面
図である。
FIG. 9 is a sectional view showing a main part of one embodiment of the magnetic recording / reproducing apparatus.

【図10】磁気記録再生装置の一実施例の要部を示す平
面図である。
FIG. 10 is a plan view showing a main part of one embodiment of a magnetic recording / reproducing apparatus.

【符号の説明】[Explanation of symbols]

10 磁気ヘッド 11 磁気スペーシング 20 垂直/面内複合媒体 21 面内磁化膜 22 非磁性スペーサ 23 垂直磁化膜 30 面内単層媒体 DESCRIPTION OF SYMBOLS 10 Magnetic head 11 Magnetic spacing 20 Perpendicular / in-plane composite medium 21 In-plane magnetization film 22 Non-magnetic spacer 23 Perpendicular magnetization film 30 In-plane single layer medium

【手続補正書】[Procedure amendment]

【提出日】平成13年8月15日(2001.8.1
5)
[Submission date] August 15, 2001 (2001.8.1
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0067[Correction target item name] 0067

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0067】なお、前記の実施例の垂直/面内複合媒体
については、Landau-Lifshitz-Gilbert方程式を用いたM
icromagnetic modelによるシミュレーションによっても
同様の結果を得ることができる。その際、磁気ヘッドに
よる磁界は、リングヘッドを想定したKarlqvistによる
解析式、再生出力には相反定理を用いることができる。
Note that the perpendicular / in-plane composite medium of the above embodiment is obtained by using the Landau-Lifshitz-Gilbert equation.
Similar results can be obtained by simulation using an icromagnetic model. At this time, the magnetic field generated by the magnetic head can be determined by Karlqvist, which assumes a ring head, and the reciprocity theorem can be used for reproduction output.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】 FIG. 8

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渦巻 拓也 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 田中 厚志 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 5D006 BB01 BB08 CA05 DA03 DA08 FA09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuya Whirlpool 4-1, 1-1 Kamidadanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Atsushi Tanaka 4-1-1 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture No. 1 Fujitsu Limited F term (reference) 5D006 BB01 BB08 CA05 DA03 DA08 FA09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 面内方向に磁化容易軸を有する記録用の
面内磁化膜と、 前記面内磁化膜の上に形成され、磁化容易軸が前記面内
磁化膜の磁化容易軸に対して垂直方向に配向されている
垂直磁化膜とを、含む磁気記録媒体であって、 前記垂直磁化膜のtBrが最大でも前記面内磁化膜のt
Brの1/5を越えないように設定されている、ことを
特徴とする磁気記録媒体。
An in-plane magnetic film for recording having an easy axis in an in-plane direction; and an easy axis formed on the in-plane magnetic film, wherein the easy axis is relative to the easy axis of the in-plane magnetic film. A perpendicular magnetization film oriented in a vertical direction, wherein the perpendicular magnetization film has a maximum tBr of at least t of the in-plane magnetization film.
A magnetic recording medium set so as not to exceed 1/5 of Br.
【請求項2】 請求項1に記載の磁気記録媒体におい
て、 前記垂直磁化膜は最大で5nmを越えない膜厚を有して
いる、ことを特徴とする磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the perpendicular magnetization film has a thickness not exceeding 5 nm at maximum.
【請求項3】 請求項1又は2に記載の磁気記録媒体に
おいて、 前記垂直磁化膜の異方性磁界Hkが、前記面内磁化膜の
異方性磁界Hkの少なくとも1.2倍に設定されてい
る、ことを特徴とする磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the anisotropic magnetic field Hk of the perpendicular magnetization film is set to at least 1.2 times the anisotropic magnetic field Hk of the in-plane magnetization film. A magnetic recording medium, comprising:
【請求項4】 請求項1から3のいずれに記載の磁気記
録媒体において、 前記面内磁化膜と垂直磁化膜との間に非磁性スペーサを
設けた、ことを特徴とする磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein a non-magnetic spacer is provided between the in-plane magnetic film and the perpendicular magnetic film.
【請求項5】 請求項4に記載の磁気記録媒体におい
て、 前記非磁性スペーサは2nmを越えない膜厚を有してい
る、ことを特徴とする磁気記録媒体。
5. The magnetic recording medium according to claim 4, wherein said non-magnetic spacer has a thickness not exceeding 2 nm.
【請求項6】 請求項1から5のいずれに記載の磁気記
録媒体において、 前記垂直磁化膜がCo系合金又はCo系の人工格子膜で
形成されていることを特徴とする磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the perpendicular magnetization film is formed of a Co-based alloy or a Co-based artificial lattice film.
【請求項7】 請求項1から6のいずれかに記載の磁気
記録媒体を含む磁気記録再生装置。
7. A magnetic recording / reproducing apparatus including the magnetic recording medium according to claim 1.
JP2001116020A 2001-04-13 2001-04-13 Magnetic recording medium Pending JP2002312918A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001116020A JP2002312918A (en) 2001-04-13 2001-04-13 Magnetic recording medium
US09/976,767 US6835444B2 (en) 2001-04-13 2001-10-12 Magnetic recording medium using a perpendicular magnetic film having a tBr not exceeding one-fifth of a tBr of an in-plane magnetic film
EP20010309131 EP1249832A1 (en) 2001-04-13 2001-10-29 Magnetic recording medium using a perpendicular magnetic film and an in-plane magnetic film
KR1020010066981A KR100766511B1 (en) 2001-04-13 2001-10-30 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116020A JP2002312918A (en) 2001-04-13 2001-04-13 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2002312918A true JP2002312918A (en) 2002-10-25

Family

ID=18966823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116020A Pending JP2002312918A (en) 2001-04-13 2001-04-13 Magnetic recording medium

Country Status (4)

Country Link
US (1) US6835444B2 (en)
EP (1) EP1249832A1 (en)
JP (1) JP2002312918A (en)
KR (1) KR100766511B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4391010B2 (en) * 2000-12-27 2009-12-24 高橋 研 Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP2003016620A (en) * 2001-06-29 2003-01-17 Toshiba Corp Magnetic recording medium, magnetic recording device and method for magnetic recording
JP3701593B2 (en) * 2001-09-19 2005-09-28 株式会社日立グローバルストレージテクノロジーズ Perpendicular magnetic recording medium and magnetic storage device
WO2004036556A1 (en) * 2002-10-17 2004-04-29 Fujitsu Limited Vertical magnetic recording medium

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719363B2 (en) 1984-11-30 1995-03-06 日立マクセル株式会社 Magnetic recording medium
JPH04211811A (en) 1990-01-31 1992-08-03 Nec Home Electron Ltd Ac power controller
EP0443478A3 (en) * 1990-02-19 1992-03-11 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Magnetic recording medium and method for preparing the same
JPH0567320A (en) 1991-04-25 1993-03-19 Alps Electric Co Ltd Magnetic recording medium
JPH05189737A (en) 1992-01-14 1993-07-30 Toshiba Corp Magnetic recording medium
US5605733A (en) 1992-01-22 1997-02-25 Hitachi, Ltd. Magnetic recording medium, method for its production, and system for its use
US6403203B2 (en) * 1997-05-29 2002-06-11 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus using the same
US6274233B1 (en) * 1998-03-26 2001-08-14 Showa Denko Kabushiki Kaisha Magnetic recording medium
JPH11283229A (en) 1998-03-26 1999-10-15 Showa Denko Kk Magnetic recording medium
JP2001043523A (en) * 1999-07-28 2001-02-16 Hitachi Ltd Magnetic recording medium and magnetic recording device
JP3350512B2 (en) * 2000-05-23 2002-11-25 株式会社日立製作所 Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP2002092854A (en) * 2000-09-14 2002-03-29 Fuji Photo Film Co Ltd Magnetic recording medium and signal recording system
US7166375B2 (en) * 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
SG115476A1 (en) * 2001-05-23 2005-10-28 Showa Denko Kk Magnetic recording medium, method of manufacturing therefor and magnetic replay apparatus

Also Published As

Publication number Publication date
EP1249832A1 (en) 2002-10-16
KR20020079344A (en) 2002-10-19
KR100766511B1 (en) 2007-10-15
US20020150793A1 (en) 2002-10-17
US6835444B2 (en) 2004-12-28

Similar Documents

Publication Publication Date Title
US7348078B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US6602612B2 (en) Magnetic recording medium and magnetic storage apparatus
US6689495B1 (en) Magnetic recording medium and magnetic storage apparatus
CN100555421C (en) Magnetic recording media and magnetic recording and transcriber
US7359146B2 (en) Perpendicular magnetic recording element having stacked FM and AFM films applying magnetic bias along easy axis of soft magnetic film
JP2007200548A (en) Perpendicular magnetic recording disk
JP2006190461A (en) Perpendicular magnetic recording medium using magnetically resettable single magnetic domain soft underlayer
JPH10312512A (en) Magnetoresitive head
US6645646B1 (en) Magnetic recording medium and magnetic storage apparatus
JP3625428B2 (en) Perpendicular magnetic recording medium
JP2001155321A (en) Magnetic recording medium
JP3848079B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2002109713A (en) Magnetic recording medium and magnetic storage device using the same
JP2001291223A (en) Magnetic recording medium and magnetic storage device
US7588842B1 (en) Perpendicular magnetic recording medium with a pinned soft underlayer
JP2002312918A (en) Magnetic recording medium
JP3476739B2 (en) Magnetic recording media
JP2001222809A (en) Magnetic recording medium
JP3476740B2 (en) Magnetic recording media
JP3476741B2 (en) Magnetic recording medium and magnetic storage device
JP2003510739A (en) Magnetic recording head with background magnetic field generator
US7402348B2 (en) Perpendicular magnetic recording medium
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2005310356A (en) Perpendicular magnetic recording medium using soft magnetic layer suppressive in generation of noise, and perpendicular magnetic recording apparatus using the same
JP2006216098A (en) Thin film perpendicular magnetic recording head, head gimbal assembly with this head, magnetic disk drive with this head gimbal assembly, and magnetic recording method using this magnetic head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004