JP2002310763A - Flow-rate measuring device - Google Patents

Flow-rate measuring device

Info

Publication number
JP2002310763A
JP2002310763A JP2001114718A JP2001114718A JP2002310763A JP 2002310763 A JP2002310763 A JP 2002310763A JP 2001114718 A JP2001114718 A JP 2001114718A JP 2001114718 A JP2001114718 A JP 2001114718A JP 2002310763 A JP2002310763 A JP 2002310763A
Authority
JP
Japan
Prior art keywords
temperature
sensor
resistor
fluid
dependent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114718A
Other languages
Japanese (ja)
Inventor
Masaru Okumura
勝 奥村
Yoshimasa Takahashi
良昌 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kofloc KK
Original Assignee
Kofloc KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kofloc KK filed Critical Kofloc KK
Priority to JP2001114718A priority Critical patent/JP2002310763A/en
Publication of JP2002310763A publication Critical patent/JP2002310763A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flow-rate measuring device which performs a definite temperature compensation irrespective of an ambient temperature. SOLUTION: A sensor-coil-current detecting resistance 2 is connected in series with a sensor coil 1. A temperature sensor 3, a temperature-difference setting resistance 5 and a sensor-coil-current detecting resistance 4 are connected in series. A bridge circuit is composed of them. According to the temperature change of a resistor in the sensor coil 1 due to the ambient temperature of the sensor coil 1 or due to a fluid temperature, the difference between the electrical resistance value of the temperature sensor 3 and the electrical resistance value of the sensor coil 1 is controlled, and the influence of the ambient temperature of the sensor coil 1 with reference to a flow rate or the fluid temperature is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱式の流量測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type flow measuring device.

【0002】[0002]

【従来の技術】一般に、熱式の流量計は、高い熱伝導材
の導管を流体の流量とし、導管の外周に流体の流路に沿
って、上流と下流に一対のセンサコイルを装填し、両セ
ンサコイルに電流を流し、流体に熱的に作用させ、相互
間の熱量の授受の関係を利用して、その質量流量を測定
する。この種の熱式流量計では、周囲温度あるいは流体
管の温度が変化すると、センサコイルと流体間の温度差
及びセンサコイルの抵抗も変化するので、温度補償が必
要となる。流体温度補償としては、従来、センサコイル
温度と温度センサの温度の差を一定に保つ定温度差方式
が提案されている(特開平1−150817号)。定温
度差方式は、センサコイルから流体に伝達する熱量が流
量とセンサコイルと流体との温度差に比例することを利
用している。
2. Description of the Related Art In general, a thermal type flow meter has a flow path of a fluid made of a high heat conductive material, and a pair of sensor coils are mounted on an outer periphery of the conduit along a flow path of the fluid, upstream and downstream. An electric current is applied to both sensor coils to thermally act on the fluid, and the mass flow rate is measured by utilizing the relationship between the exchange of heat quantity between them. In this type of thermal flow meter, when the ambient temperature or the temperature of the fluid pipe changes, the temperature difference between the sensor coil and the fluid and the resistance of the sensor coil also change, so that temperature compensation is required. As a fluid temperature compensation, a constant temperature difference method for maintaining a constant difference between the sensor coil temperature and the temperature of the temperature sensor has been conventionally proposed (Japanese Patent Laid-Open No. 1-150817). The constant temperature difference method utilizes that the amount of heat transmitted from the sensor coil to the fluid is proportional to the flow rate and the temperature difference between the sensor coil and the fluid.

【0003】[0003]

【発明が解決しようとする課題】上記した従来の定温度
差方式において、今、センサコイル電流:Is 、センサ
コイル電圧:Es 、センサコイル電力:Ps =Is s
=Is 2 ×Rs 、センサコイル温度:ts 、センサコイ
ル抵抗:Rs =Rs0(1+αs Δts )、Δts=(t
s −t0 )、センサコイル電流検出抵抗体:Ra 、温度
センサ電流:It、温度センサ温度tt 、基準温度:t
0 、Δtt =(ts −t0 )、温度センサ抵抗:Rt
t0(1+αt Δtt )、温度センサ電流検出抵抗:R
b とすると、熱力学の基本法則から温度ta の物体Sか
ら、温度tt の物体Tへの単位時間当たり伝導される熱
量Ps は、物体S、T間の熱抵抗をHとして、Ps =H
(t s −tt )であり、センサコイルから流体及びセン
サコイル周辺構造体に伝導する熱量を発生するよ必要で
電力Ps はPs =Is s =Is 2 s であり、流体流
量Q及び温度tt (温度センサ温度に等しくなっている
として)として、次の(1)式で近似される。
The conventional constant temperature described above
In the difference method, the sensor coil current: Is, Sensor
Coil voltage: Es, Sensor coil power: Ps= IsEs
= Is Two× Rs, Sensor coil temperature: ts, Sensor carp
Resistance: Rs= Rs0(1 + αsΔts), Δts= (T
s-T0), Sensor coil current detection resistor: Ra,temperature
Sensor current: It, Temperature sensor temperature tt, Reference temperature: t
0, Δtt= (Ts-T0), Temperature sensor resistance: Rt=
Rt0(1 + αtΔtt), Temperature sensor current detection resistance: R
bFrom the basic law of thermodynamics, the temperature taObject S
Temperature ttConducted to the object T per unit time
Quantity PsIs P, where H is the thermal resistance between the objects S and T.s= H
(T s-Tt), The fluid and sensor
It is necessary to generate heat that is conducted to the surrounding structure of the coil.
Power PsIs Ps= IsEs= Is TwoRsAnd the fluid flow
Quantity Q and temperature tt(It is equal to the temperature sensor temperature
) Is approximated by the following equation (1).

【0004】 Ps =Is s =Is 2s =H0 (ta −tt ) +Hq Q( ta −tt ) ……(1)[0004] P s = I s E s = I s 2 R s = H 0 (t a -t t) + H q Q (t a -t t) ...... (1)

【0005】[0005]

【数1】 (Equation 1)

【0006】(2)式からは(ta −tt ) を一定にす
るセンサコイル温度と温度センサの温度の差を一定に保
つ定温度差式ではセンサコイルの温度変化に応じて生じ
るセンサコイル抵抗Rs =Rs0(1+αs Δts )の温
度変化によって、Is の温度影響を十分に低減すること
はできない。
[0006] (2) a sensor coil generated according to the temperature change of the sensor coil at a constant temperature difference formula to maintain a constant difference in temperature of the sensor coil temperature and the temperature sensor constant (t a -t t) from the equation Due to the temperature change of the resistance R s = R s0 (1 + α s Δt s ), the temperature influence of I s cannot be sufficiently reduced.

【0007】このため、流量と流量計出力との関係が図
5に示すように、周囲温度によって差を生じるという問
題がある。
For this reason, there is a problem that the relationship between the flow rate and the output of the flowmeter varies depending on the ambient temperature as shown in FIG.

【0008】この発明は上記問題点に着目してなされた
ものであって、周囲温度に関わらず、一定の温度補償を
なし得る流量測定装置を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a flow rate measuring device capable of performing constant temperature compensation regardless of the ambient temperature.

【0009】[0009]

【課題を解決するための手段】この発明の流量測定装置
は、測定対象体の流路に第1の温度依存性電気抵抗体を
配置し、この第1の温度依存性電気抵抗体から流体によ
って奪われる熱量に対し、前記第1の温度依存性電気抵
抗体の温度を保持するための第1の温度依存性電気抵抗
体に供給する電流を測定して、測定対象流体の流量を測
定する流量測定装置において、周囲温度または流体の温
度に感応させる第2の温度依存性電気抵抗体を設け、前
記第1の温度依存性電気抵抗体の周囲温度または流体温
度による第1の温度依存性電気抵抗体の温度変化に応じ
て、前記第2の温度依存性電気抵抗体の電気抵抗値と前
記第1の温度依存性電気抵抗値の差を制御して、流量に
対する前記第1の温度依存性電気抵抗体の電流の周囲温
度または流体温度の影響を低減するようにしている。
According to the flow rate measuring apparatus of the present invention, a first temperature-dependent electric resistor is arranged in a flow path of a measurement object, and the first temperature-dependent electric resistor is fluidized by the first temperature-dependent electric resistor. A flow rate for measuring a flow rate of a fluid to be measured by measuring a current supplied to the first temperature-dependent electrical resistor for maintaining the temperature of the first temperature-dependent electrical resistor with respect to the amount of heat taken away A second temperature-dependent electrical resistor responsive to an ambient temperature or a temperature of a fluid, wherein the first temperature-dependent electrical resistance of the first temperature-dependent electrical resistor depends on an ambient temperature or a fluid temperature; Controlling a difference between an electric resistance value of the second temperature-dependent electric resistance and the first temperature-dependent electric resistance value in accordance with a temperature change of the body to thereby change the first temperature-dependent electric resistance with respect to a flow rate; Ambient or fluid temperature of resistor current Influence so as to reduce the.

【0010】[0010]

【発明の実施の形態】以下、実施の形態により、この発
明をさらに詳細に説明する。図1は、この発明の一実施
形態熱式流量測定装置の電橋回路を構成する抵抗器を示
す図である。図1において、流体を流す導管10の外周
に、センサコイル1が装填され、導管10の外部でセン
サコイル1に直列にセンサコイル電流検出用の固定抵抗
器2が接続されている。導管10の近傍に周囲温度を検
出する温度センサ3が配置されている。この温度センサ
3に直列に温度センサ電流検出用の固定抵抗器4、温度
差用の固定抵抗器5が接続されている。センサコイル
1、温度センサ3は、いずれも温度依存性の電気抵抗体
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a diagram showing a resistor constituting a bridge circuit of a thermal type flow measuring device according to an embodiment of the present invention. In FIG. 1, a sensor coil 1 is mounted on the outer periphery of a conduit 10 through which a fluid flows, and a fixed resistor 2 for detecting a sensor coil current is connected in series with the sensor coil 1 outside the conduit 10. A temperature sensor 3 for detecting an ambient temperature is disposed near the conduit 10. A fixed resistor 4 for temperature sensor current detection and a fixed resistor 5 for temperature difference are connected in series with the temperature sensor 3. Each of the sensor coil 1 and the temperature sensor 3 is a temperature-dependent electric resistor.

【0011】上記の2つの直列回路を並列に接続して、
図2に示す電橋回路が構成される。図2の電橋回路は、
固定抵抗器2とセンサコイル1の接続点と、固定抵抗器
4と固定抵抗器5の接続点が、それぞれ演算増幅器6の
入力の一端と他端に接続されている。また、演算増幅器
6の出力端が、固定抵抗器2と固定抵抗器4の接続点に
接続されている。
[0011] By connecting the two series circuits in parallel,
The electric bridge circuit shown in FIG. 2 is configured. The bridge circuit of FIG.
A connection point between the fixed resistor 2 and the sensor coil 1 and a connection point between the fixed resistor 4 and the fixed resistor 5 are connected to one end and the other end of the input of the operational amplifier 6, respectively. The output terminal of the operational amplifier 6 is connected to a connection point between the fixed resistor 2 and the fixed resistor 4.

【0012】今、センサコイル1の抵抗をRs 、センサ
コイルの電流検出抵抗器2の抵抗をRa 、温度センサ3
の電流検出抵抗器4の抵抗をRb 、温度センサ3の抵抗
をR t 、流量センサコイルと流体間の温度差設定抵抗器
5の抵抗をRc とすると、図2の回路において、平衡が
取れると、電橋回路の平衡条件から各抵抗の関係は次式
で表される。
Now, the resistance of the sensor coil 1 is set to Rs, Sensor
The resistance of the coil current detection resistor 2 is Ra, Temperature sensor 3
Of the current detection resistor 4 of Rb, Temperature sensor 3 resistance
To R t, Temperature difference setting resistor between flow sensor coil and fluid
R of 5cThen, in the circuit of FIG.
After taking the balance condition of the bridge circuit,
It is represented by

【0013】Rs =(Ra /Rb )(Rt +Rc ) 流量センサコイル消費電力Ps =Is s =Is 2s
と流体の流量Q、流量センサコイルと流体温度センサの
温度差(ts −tt )との関係は、一般式で(11)
式、流量センサコイル電流Is は(12)式で、具体的
には(13)式で近似される。
R s = (R a / R b ) (R t + R c ) Power consumption of the flow rate sensor coil P s = I s E s = I s 2 R s
A fluid flow rate Q, the relationship between the flow rate sensor coil and the temperature difference between the fluid temperature sensor (t s -t t) is a general formula (11)
Wherein the flow sensor coil current I s in (12), in particular is approximated by equation (13).

【0014】 Ps =Is s =Is 2s =Fq {Q(ts −tt )} +F0 {q(ts −tt )} ……(11)[0014] P s = I s E s = I s 2 R s = F q {Q (t s -t t)} + F 0 {q (t s -t t)} ...... (11)

【0015】[0015]

【数2】 (Equation 2)

【0016】Is がtt の影響を受けないようにするに
は(ts −tt )=h(1+αs0 3 )とする。
IsIs ttNot be affected by
Is (ts-Tt) = H (1 + α)s0t Three).

【0017】電橋回路の平衡条件から、 Rs =(Ra /Rb )(Rc +Rt ) Rt =Rt0(1+αt0t ) Rs0(1+αs0s )=(Ra /Rb ){Rc +Rt0(1+αt0t )} tt ={ts (αs0s0)+Rs0−(Ra /Rb )(Rc +Rt0)}/ {(Ra /Rb )(αt0t0)} {Rs0b /Ra −(Rc +Rt0)}〔1+ts (αt0t0−αs0s0b /Ra )/{R Rb /Ra −(Rc +Rt0)}〕= (αt0t0)hRs0(1+αs0s ) ……(14) (14)式がts に関わらず成り立つには、 Rs0b /Ra −(Rc +Rt0)=(αt0t0)hRs0 ……(15) (αt0t0−αs0s0b /Ra )/{Rs0b /Ra −(Rc +Rt0)} ……(16) (15)、(16)式から、 Rb /Ra ={(αt0t0)/(αs0s0)}(1−hαs0s0) ……(17) (Rc +Rt0)/Rt0=(αt0/αs0){1−2hαs0s0} ……(18) (15)式、(16)式から、電橋回路の抵抗Ra 、R
b 、Rc を(17)式、(18)式を満足するよう選定
することによって、センサコイル電流の温度センサ温度
の影響をほとんどなくすることができる。なお、定数h
は、センサコイルと温度センサ間の温度差を決める。
[0017] From the equilibrium condition of the bridge circuit, R s = (R a / R b) (R c + R t) R t = R t0 (1 + α t0 t t) R s0 (1 + α s0 t s) = (R a / R b) {R c + R t0 (1 + α t0 t t)} t t = {t s (α s0 R s0) + R s0 - (R a / R b) (R c + R t0)} / {(R a / R b) (α t0 R t0)} {R s0 R b / R a - (R c + R t0)} [1 + t s (α t0 R t0 -α s0 R s0 R b / R a) / {R R b / R a - (R c + R t0)} ] = in (α t0 R t0) hR s0 (1 + α s0 t s) ...... (14) (14) expression holds regardless of t s is, R s0 R b / R a − (R c + R t0 ) = (α t0 R t0 ) hR s0 (15) (α t0 R t0 −α s0 R s0 Rb / R a ) / {R s0 R b / R a − (R c + R t0 )} (16) From equations (15) and (16), R b / R a = {(α t 0 R t0 ) / (α s0 R s0 )} (1−hα s0 R s0 ) (17) (R c + R t0 ) / R t0 = (α t0 / α s0 ) {1-2hα s0 R s0 } (18) From the equations (15) and (16), the resistances R a and R
b, and R c (17) equation (18) by selecting so as to satisfy the equation, the effect of the temperature sensor the temperature of the sensor coil current can be almost eliminated. Note that the constant h
Determines the temperature difference between the sensor coil and the temperature sensor.

【0018】この実施形態電橋回路によると、流量とそ
の流量測定出力との関係は、図4に示すように、周囲温
度に影響されない。
According to this embodiment, the relationship between the flow rate and the flow rate measurement output is not affected by the ambient temperature, as shown in FIG.

【0019】図3に示す電橋回路の場合も、上記したこ
とと全く同様のことが言える。
The same can be said for the electric bridge circuit shown in FIG.

【0020】[0020]

【発明の効果】この発明によれば、周囲温度または流体
の温度に感応させる第2の温度依存性電気抵抗体を設
け、前記第1の温度依存性電気抵抗体の周囲温度または
流体温度による第1の温度依存性電気抵抗体の温度変化
に応じて、前記第2の温度依存性電気抵抗体の電気抵抗
値と前記第1の温度依存性電気抵抗値の差を制御して、
流量に対する前記第1の温度依存性電気抵抗体の電流の
周囲温度または流体温度の影響を低減するようにしてい
るので、周囲温度に関わらず、流量に応じた所定の測定
出力を得ることができる。
According to the present invention, a second temperature-dependent electric resistor which is sensitive to the ambient temperature or the temperature of the fluid is provided, and the second temperature-dependent electric resistor is controlled by the ambient temperature or the fluid temperature of the first temperature-dependent electric resistor. Controlling a difference between an electric resistance value of the second temperature-dependent electric resistor and the first temperature-dependent electric resistance value in accordance with a temperature change of the first temperature-dependent electric resistor;
Since the influence of the ambient temperature or the fluid temperature of the current of the first temperature-dependent electric resistor on the flow rate is reduced, a predetermined measurement output according to the flow rate can be obtained regardless of the ambient temperature. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態である熱式流量測定装置
の電橋回路を構成する抵抗器を示す図である。
FIG. 1 is a diagram showing resistors constituting a bridge circuit of a thermal type flow measuring device according to an embodiment of the present invention.

【図2】同実施形態熱式流量計の電橋回路の回路接続を
示す図である。
FIG. 2 is a diagram showing a circuit connection of an electric bridge circuit of the thermal flow meter of the embodiment.

【図3】他の電橋回路を示す図である。FIG. 3 is a diagram illustrating another electric bridge circuit.

【図4】同実施形態熱式質量流量計の周囲温度をパラメ
ータとした流量(%)/流量計出力(%)を示す特性図
である。
FIG. 4 is a characteristic diagram showing flow rate (%) / flow meter output (%) using the ambient temperature of the thermal mass flow meter of the embodiment as a parameter.

【図5】従来の熱式質量流量計の周囲温度をパラメータ
とした流量(%)/流量計出力(%)を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing a flow rate (%) / flow meter output (%) using the ambient temperature of a conventional thermal mass flow meter as a parameter.

【符号の説明】[Explanation of symbols]

1 センサコイル 2 センサコイル電流検出抵抗 3 温度センサ 4 温度センサ電流検出抵抗 5 温度差設定抵抗 6 演算増幅器 DESCRIPTION OF SYMBOLS 1 Sensor coil 2 Sensor coil current detection resistor 3 Temperature sensor 4 Temperature sensor current detection resistor 5 Temperature difference setting resistor 6 Operational amplifier

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F035 EA09  ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 2F035 EA09

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定対象体の流路に第1の温度依存性電気
抵抗体を配置し、この第1の温度依存性電気抵抗体から
流体によって奪われる熱量に対し、前記第1の温度依存
性電気抵抗体の温度を保持するための第1の温度依存性
電気抵抗体に供給する電流を測定して、測定対象流体の
流量を測定する流量測定装置において、 周囲温度または流体の温度に感応させる第2の温度依存
性電気抵抗体を設け、前記第1の温度依存性電気抵抗体
の周囲温度または流体温度による第1の温度依存性電気
抵抗体の温度変化に応じて、前記第2の温度依存性電気
抵抗体の電気抵抗値と前記第1の温度依存性電気抵抗値
の差を制御して、流量に対する前記第1の温度依存性電
気抵抗体の電流の周囲温度または流体温度の影響を低減
するようにしたことを特徴とする流量測定装置。
1. A first temperature-dependent electric resistor is disposed in a flow path of an object to be measured, and the first temperature-dependent electric resistance is reduced by the amount of heat taken by the fluid from the first temperature-dependent electric resistor. A flow rate measuring device that measures a current supplied to a first temperature-dependent electrical resistor for maintaining a temperature of a conductive electrical resistor and measures a flow rate of a fluid to be measured, the device being responsive to an ambient temperature or a temperature of a fluid. A second temperature-dependent electrical resistor to be provided, and the second temperature-dependent electrical resistor is changed according to a temperature change of the first temperature-dependent electrical resistor due to an ambient temperature or a fluid temperature of the first temperature-dependent electrical resistor. Controlling the difference between the electrical resistance value of the temperature-dependent electrical resistor and the first temperature-dependent electrical resistance value to influence the ambient temperature or the fluid temperature of the current of the first temperature-dependent electrical resistor on the flow rate; Characterized by reducing Flow measurement device.
JP2001114718A 2001-04-13 2001-04-13 Flow-rate measuring device Pending JP2002310763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114718A JP2002310763A (en) 2001-04-13 2001-04-13 Flow-rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114718A JP2002310763A (en) 2001-04-13 2001-04-13 Flow-rate measuring device

Publications (1)

Publication Number Publication Date
JP2002310763A true JP2002310763A (en) 2002-10-23

Family

ID=18965733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114718A Pending JP2002310763A (en) 2001-04-13 2001-04-13 Flow-rate measuring device

Country Status (1)

Country Link
JP (1) JP2002310763A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121318A (en) * 1985-11-22 1987-06-02 Honda Motor Co Ltd Measuring instrument for flow rate
JPH0421917U (en) * 1990-06-15 1992-02-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121318A (en) * 1985-11-22 1987-06-02 Honda Motor Co Ltd Measuring instrument for flow rate
JPH0421917U (en) * 1990-06-15 1992-02-24

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
JP2008292286A (en) Thermal flowmeter
JP2002310763A (en) Flow-rate measuring device
JP4037723B2 (en) Thermal flow meter
US7072776B2 (en) Method of regulating resistance in a discontinuous time hot-wire anemometer
JPH0449893B2 (en)
JPH11148944A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP2879256B2 (en) Thermal flow meter
JP4052378B2 (en) Thermal flow meter
JP3019009U (en) Mass flow meter
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP4435351B2 (en) Thermal flow meter
JP2531968B2 (en) Flow velocity sensor and flow velocity measuring device using the same
KR100244902B1 (en) Air flow speed sensor element and its measurement circuit
JP2771949B2 (en) Thermal flow sensor
JP2004117159A (en) Karman vortex flowmeter
JP2004170291A (en) Thermal flowmeter
JPH09243423A (en) Flow rate measuring apparatus
JPH03248018A (en) Heat-sensitive type flowmeter
JP2949527B2 (en) Mass flow meter
JPH11190654A (en) Integrating flowmeter and gas meter using it
JPH02213767A (en) Flow sensor
JPH11351936A (en) Thermal flow-rate sensor and thermal flow-rate detection circuit
JPH0434315A (en) Heater controller for flowmeter
JP2001141538A (en) Measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712