JP2002310381A - Metal pipe with preventive execution of damage by indirect lighting stroke - Google Patents

Metal pipe with preventive execution of damage by indirect lighting stroke

Info

Publication number
JP2002310381A
JP2002310381A JP2001117937A JP2001117937A JP2002310381A JP 2002310381 A JP2002310381 A JP 2002310381A JP 2001117937 A JP2001117937 A JP 2001117937A JP 2001117937 A JP2001117937 A JP 2001117937A JP 2002310381 A JP2002310381 A JP 2002310381A
Authority
JP
Japan
Prior art keywords
tape
metal pipe
insulating tape
winding
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001117937A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakakibara
広幸 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001117937A priority Critical patent/JP2002310381A/en
Publication of JP2002310381A publication Critical patent/JP2002310381A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent any dielectric breakdown caused by the voltage rise by the indirect lightning stroke, or damages of a metal pipe. SOLUTION: An insulating tape 2 of 0.5-0.8 mm thick mainly consisting of an ethylene propylene rubber with self-bonding property is wound around the metal pipe 1 installed in a part subjected to the effect of the indirect lightning stroke. The breakdown voltage can considerably be improved thereby through a simple operation at site. Practically sufficient protective effect can be obtained against damages of the metal pipe 1 caused by the indirect lightning stroke.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導雷の影響を受
ける部分に設置される金属配管に関し、特に、誘導雷に
よる損傷防止施工を施した金属配管に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal pipe installed in a portion affected by an induced lightning, and more particularly to a metal pipe which has been subjected to damage prevention by an induced lightning.

【0002】[0002]

【従来の技術】家庭用、業務用等建造物には様々な金属
配管が用いられている。これらの配管は、建築物の鉄骨
部分を貫通させたり、金属で壁等に取り付けられる。こ
のような状態で使用されている場合、雷撃による誘導電
位により鉄骨および金属部の固定部と金属配管間の電位
差が大きくなり、絶縁破壊に至る場合がある。絶縁破壊
が生じると、放電電流の大きさによっては、穴が開くな
ど金属配管に重大な損傷を受ける場合がある。特に、ガ
ス管、送油管等の損傷は、重大な二次災害を招く恐れが
ある。これら金属配管には、防食層が施されているもの
もあるが、一般に金属の劣化を防ぐ目的で設けられてお
り、上記の様な誘導雷による絶縁破壊を防止するために
は絶縁性能が不足していた。
2. Description of the Related Art Various metal pipes are used in buildings for home use and business use. These pipes penetrate the steel frame portion of the building or are attached to a wall or the like with metal. When used in such a state, the potential difference between the fixed portion of the steel frame and the metal part and the metal pipe increases due to the induced potential due to the lightning strike, which may result in dielectric breakdown. When the dielectric breakdown occurs, depending on the magnitude of the discharge current, a metal pipe may be seriously damaged such as a hole is formed. In particular, damage to gas pipes, oil supply pipes, etc. may cause serious secondary disasters. Although some of these metal pipes are provided with an anticorrosion layer, they are generally provided for the purpose of preventing the deterioration of metal, and the insulation performance is insufficient to prevent the above-mentioned dielectric breakdown due to induced lightning. Was.

【0003】[0003]

【発明が解決しようとする課題】以上のように、従来の
金属配管においては、雷撃による損傷を防止するために
有効な措置が施されておらず、重大な二次災害を招く恐
れがあった。本発明は上記事情に鑑みなされたものであ
って、誘導雷による電位上昇による絶縁破壊を防止し、
金属配管の損傷を防ぐことを目的とする。
As described above, in the conventional metal pipes, no effective measures have been taken to prevent damage due to lightning, and there is a risk of causing a serious secondary disaster. . The present invention has been made in view of the above circumstances, to prevent dielectric breakdown due to potential rise due to induced lightning,
The purpose is to prevent damage to metal piping.

【0004】[0004]

【課題を解決するための手段】誘導電位による絶縁破壊
を防止するためには、金属配管に絶縁物を施す必要があ
る。既存、新設を問わず現場で簡易な作業によって絶縁
破壊を防止するため、本発明では誘導雷の影響を受ける
部分に設置される金属配管に図1に示すように絶縁性の
テープを施すことで絶縁破壊を防止することとした。そ
こで、絶縁破壊を防止するために必要な絶縁性テープ材
料、絶縁性テープの巻き量(テープの厚みと巻き層数)
および絶縁性テープを巻く範囲の検討を行った。その結
果、金属配管にエチレンプロピレンゴムを主剤とした自
己融着性を有する0.5〜0.8mm厚の絶縁性テープ
を施すことにより、著しく破壊電圧を向上させることが
できることが明らかとなった。本発明においては、上記
のように誘導雷の影響を受ける部分に設置される金属配
管にエチレンプロピレンゴムを主剤とした自己融着性を
有する0.5〜0.8mm厚の絶縁性テープを施したの
で、誘導雷により金属管の損傷に対して、実用上十分な
防護効果を得ることができた。
In order to prevent dielectric breakdown due to an induced potential, it is necessary to apply an insulator to the metal pipe. In order to prevent dielectric breakdown by simple work on site regardless of existing or new construction, in the present invention, an insulating tape is applied to a metal pipe installed in a part affected by induced lightning as shown in FIG. It was decided to prevent dielectric breakdown. Therefore, the insulating tape material and the amount of winding of the insulating tape (tape thickness and number of winding layers) required to prevent dielectric breakdown
And the range of winding the insulating tape was examined. As a result, it has been clarified that the breakdown voltage can be significantly improved by applying a 0.5 to 0.8 mm thick insulating tape having a self-fusing property mainly composed of ethylene propylene rubber to a metal pipe. . In the present invention, as described above, a 0.5 to 0.8 mm thick insulating tape having a self-fusing property mainly composed of ethylene propylene rubber is applied to a metal pipe installed in a portion affected by the induced lightning. As a result, a practically sufficient protective effect was obtained against damage to the metal tube due to the induced lightning.

【0005】[0005]

【発明の実施の形態】図1に本発明による絶縁テープを
施した金属配管を示す。同図に示すように、建物の鉄骨
部4の貫通部等、誘導雷の影響を受ける部分の近傍の金
属配管1の表面に絶縁テープ2を巻く。これにより、鉄
骨部4の電位が上昇しても、金属配管1の損傷を防ぐこ
とが可能となる。図1に示す金属配管について、絶縁破
壊を防止するために必要な絶縁性テープ材料、絶縁性テ
ープの巻き量(テープの厚みと巻き層数)および絶縁性
テープを巻く範囲を以下のようにして検討した。図2に
絶縁テープの破壊性能を調べるための本発明における試
験方法を示す。同図に示すように、鉄骨部4および固定
用金属部の模擬として球電極3を用い、金属管1を接地
して、球電極3に高電圧(H.V.)のインパルス電圧
を印加し、絶縁性テープ2を巻いた試料の雷インパルス
破壊試験(以下雷Imp破壊試験という)を行った。
FIG. 1 shows a metal pipe provided with an insulating tape according to the present invention. As shown in the figure, an insulating tape 2 is wrapped around the surface of a metal pipe 1 near a portion affected by induced lightning, such as a penetrating portion of a steel frame 4 of a building. Thereby, even if the electric potential of the steel frame part 4 rises, it is possible to prevent the metal pipe 1 from being damaged. With respect to the metal pipe shown in FIG. 1, the insulating tape material, the winding amount of the insulating tape (the thickness of the tape and the number of winding layers), and the range of winding the insulating tape are as follows. investigated. FIG. 2 shows a test method in the present invention for examining the breaking performance of the insulating tape. As shown in the figure, a ball electrode 3 is used as a simulation of a steel frame portion 4 and a fixing metal portion, a metal tube 1 is grounded, and a high voltage (HV) impulse voltage is applied to the ball electrode 3. A lightning impulse destruction test (hereinafter referred to as a lightning imp destruction test) of the sample wound with the insulating tape 2 was performed.

【0006】試験に用いた絶縁性テープ2は、(1) 加硫
エチレンプロピレンゴムを基材とした自己融着性の無い
ものと、(2) エチレンプロピレンゴムを用いた自己融着
性のあるものを用いた。絶縁性テープ2の厚み;t、絶
縁性テープ2の巻き層数;nおよび絶縁性テープを巻く
範囲;Lをパラメータとして試験を行った。まず、適切
な絶縁性テープの材料および絶縁性テープの厚み;tを
把握するために、上記(1) 自己融着性の無い絶縁性テー
プ、(2) 自己融着性のある絶縁性テープを用いて絶縁性
テープを施した厚さが一定(t×n=一定)となるよう
に絶縁性テープを巻いた試料の雷Imp破壊試験を行っ
た。ここでは、t×n=一定となる値(t×n=4m
m)とし、絶縁性テープを巻く範囲Lを、L=5000
mmとした。試験結果を表1に示す。表中には、絶縁性
テープの種類(自己融着性無し、有り)、絶縁性テープ
の厚み、絶縁性テープの巻き厚さ、0.3mm厚の自己
融着性を有するテープの雷Imp破壊電圧で規格化した
破壊電圧を示した。表1より、自己融着性の無いテープ
よりも、自己融着性を有するテープの雷Imp破壊電圧
が高いことが分かる。
[0006] The insulating tape 2 used in the test has (1) a self-fusing property based on vulcanized ethylene propylene rubber and (2) a self-fusing property using ethylene propylene rubber. Was used. The test was performed using the thickness of the insulating tape 2; t, the number of winding layers of the insulating tape 2; n and the range of winding the insulating tape; L as a parameter. First, in order to grasp the appropriate material of the insulating tape and the thickness of the insulating tape; t, the above-mentioned (1) an insulating tape having no self-fusing property, and (2) an insulating tape having a self-fusing property. A lightning imp destruction test was performed on a sample on which the insulating tape was wound so that the thickness of the insulating tape applied was constant (t × n = constant). Here, t × n = a constant value (t × n = 4 m
m) and the range L where the insulating tape is wound is L = 5000
mm. Table 1 shows the test results. In the table, the type of insulating tape (with or without self-fusing property), the thickness of insulating tape, the winding thickness of insulating tape, the lightning imp destruction of 0.3 mm thick self-fusing tape The breakdown voltage normalized by voltage is shown. From Table 1, it can be seen that the tape having the self-fusing property has a higher lightning Imp breakdown voltage than the tape having no self-fusing property.

【0007】[0007]

【表1】 [Table 1]

【0008】絶縁性テープの厚みと規格化した破壊電圧
の関係を図3に示す。図3において、横軸は上記絶縁性
テープの厚み、縦軸は上記規格化した破壊電圧である。
図3より、自己融着性の有無にかかわらず、破壊電圧
は、絶縁性テープの厚みとともに低下する。ここで、自
己融着性を有するテープは、自己融着性を持たないテー
プよりも破壊電圧の低下度合いが小さい。なお、絶縁破
壊は、テープ巻きを行った表面のラップ目で破壊するケ
ースが多く見られた。したがって、テープ厚さが増し、
巻き段差が大きくなるほど破壊電圧は低下するものと考
えられる。また、自己融着性を有するテープではテープ
巻き目の密着性が高いために破壊電圧の低下度合いが小
さくなるものと考えられた。これらの結果より、絶縁性
テープは自己融着性を有する厚みの薄いテープを使用す
る方が、破壊電圧を高くできる。一方、実際にテープを
施す際には、厚みの薄いテープでは、巻き数が多くな
り、作業時間の増加を招く。表2にテープ巻きを施すの
に要した巻き時間を示す。これは、5人の作業者の平均
作業時間である。
FIG. 3 shows the relationship between the thickness of the insulating tape and the normalized breakdown voltage. In FIG. 3, the horizontal axis represents the thickness of the insulating tape, and the vertical axis represents the normalized breakdown voltage.
From FIG. 3, the breakdown voltage decreases with the thickness of the insulating tape regardless of the presence or absence of the self-fusing property. Here, the tape having the self-fusing property has a smaller degree of reduction in the breakdown voltage than the tape having no self-fusing property. In many cases, the dielectric breakdown was broken at the lap of the tape-wound surface. Therefore, the tape thickness increases,
It is considered that the breakdown voltage decreases as the winding step increases. In addition, it is considered that the tape having self-fusing property has a high degree of adhesion of the wound portion of the tape, so that the degree of decrease in breakdown voltage is reduced. From these results, it is possible to increase the breakdown voltage by using a thin tape having a self-fusing property as the insulating tape. On the other hand, when a tape is actually applied, a thin tape has a large number of windings, which leads to an increase in working time. Table 2 shows the winding time required for winding the tape. This is the average work time of five workers.

【0009】[0009]

【表2】 [Table 2]

【0010】表2より、基本的にはテープ厚さが厚いほ
ど巻き時間が少なくて済むが、テープ巻き時間は必ずし
もテープ厚さに反比例していない。これは、巻き作業の
しやすさがテープ厚みにも影響するためであり、テープ
が薄い場合と厚い場合は、それぞれに巻きにくくなる現
象が起きる。
From Table 2, it can be seen that the winding time is basically shorter as the tape thickness is larger, but the tape winding time is not always inversely proportional to the tape thickness. This is because the easiness of the winding operation also affects the tape thickness, and when the tape is thin and thick, a phenomenon occurs in which the winding becomes difficult.

【0011】以上述べたように、絶縁性テープ巻きにて
防護範囲を作成する際、テープ厚さによって、絶縁耐力
および作業時間が異なる。そこで、効率よく防護するた
めのテープ厚さを以下の方法で求めた。まず、テープ巻
き時間を最も作業時間の長かった0.3mm厚の自己融
着性無しのテープ巻き時間で規格化し、その何分の1の
テープ巻き時間を要するかの規格化巻き時間を求める。
次に、ここでは絶縁耐力の向上が目的であるので、規格
化破壊電圧に3倍の重み付けをして、規格化巻き時間と
掛け併せ、評価点とした。結果を表3に示す。
As described above, when a protective range is created by winding an insulating tape, the dielectric strength and the working time vary depending on the tape thickness. Then, the tape thickness for efficient protection was determined by the following method. First, the tape winding time is normalized by the 0.3 mm thick tape without self-fusing property, which was the longest working time, and a standardized winding time to determine a fraction of the required tape winding time is determined.
Next, since the purpose is to improve the dielectric strength, the normalized breakdown voltage is weighted three times and multiplied by the standardized winding time to obtain an evaluation point. Table 3 shows the results.

【0012】[0012]

【表3】 [Table 3]

【0013】表3より、絶縁破壊を作業性も踏まえて効
率良く防止するには、0.5〜0.8mmの厚さを有す
る自己融着性のある絶縁性テープを施すのが適当であ
る。次に、テープ巻きを施す長さLとテープ巻き層数n
の最適化を検討した。テープ巻きを施す層数nを2層、
4層、6層、8層とし、テープ巻きを施す長さを変えて
雷Imp破壊試験を行った。なお、絶縁性テープは自己
融着性を有する0.5mm厚さのものを用いた。試験結
果を表4に示す。
From Table 3, it can be seen that in order to efficiently prevent dielectric breakdown in consideration of workability, it is appropriate to apply a self-fusing insulating tape having a thickness of 0.5 to 0.8 mm. . Next, the length L for tape winding and the number n of tape winding layers
Considered optimization. The number n of layers for tape winding is two layers,
The lightning Imp destruction test was performed with four layers, six layers, and eight layers, and changing the tape winding length. The insulating tape used had a thickness of 0.5 mm and had self-fusing properties. Table 4 shows the test results.

【0014】[0014]

【表4】 [Table 4]

【0015】表中には、テープ巻きを施す層数nとテー
プ巻きを施す長さLおよび規格化した破壊電圧を示す。
なお、破壊電圧の規格化は、テープ巻きを8層、200
0mm施した破壊電圧を基準として行った。表4の試験
結果より得たテープ巻き長さと規格化破壊電圧の関係を
図4に示す。図4において、横軸はテープ巻き長さL、
縦軸は、上記規格化破壊電圧である。図4より、いずれ
のテープ巻き層数においても、テープ巻き長さの増加に
伴い破壊電圧は高くなり、ある長さからほぼ一定の値に
なる。また、テープ巻き層数4層、6層、8層の場合
は、ほぼ破壊電圧が等しいが、2層の破壊電圧は低くな
っている。これは、破壊が生じる位置に関係する。自己
融着性を有するテープでは、テープの密着性が高いた
め、貫通破壊よりもテープ表面が弱点となり表面閃絡し
やすい。テープ巻き4層、6層、8層の場合は全て表面
で閃絡した。このため、テープ巻き層数を増加させても
破壊電圧が殆ど増加していない。また、テープ巻き長さ
が1000mmより短い場合は、テープ巻き長さを増加
させるほど破壊電圧は上昇するが、テープ巻き長さが1
000mmを超えると破壊電圧は殆ど上昇しない現象が
見られた。
In the table, the number n of layers for tape winding, the length L for tape winding, and the standardized breakdown voltage are shown.
The normalization of the breakdown voltage is as follows.
The measurement was performed with reference to a breakdown voltage of 0 mm. FIG. 4 shows the relationship between the tape winding length and the normalized breakdown voltage obtained from the test results in Table 4. In FIG. 4, the horizontal axis is the tape winding length L,
The vertical axis is the normalized breakdown voltage. As can be seen from FIG. 4, for any number of tape winding layers, the breakdown voltage increases as the tape winding length increases, and becomes a substantially constant value from a certain length. In the case of four, six and eight tape winding layers, the breakdown voltages are almost equal, but the breakdown voltages of the two layers are low. This relates to the location where the failure occurs. In a tape having self-fusion properties, the tape has a high adhesiveness, and thus the tape surface becomes a weak point more easily than penetrating fracture, and the surface flashes easily. In the case of four layers, six layers and eight layers of tape winding, flashing occurred on the surface. Therefore, even if the number of tape winding layers is increased, the breakdown voltage hardly increases. If the tape winding length is shorter than 1000 mm, the breakdown voltage increases as the tape winding length increases, but the tape winding length is 1 mm.
If it exceeds 000 mm, a phenomenon that the breakdown voltage hardly increases was observed.

【0016】一方、テープ巻き2層の場合は、テープ巻
き長さ500mm以下の時は表面閃絡破壊を起こした
が、テープ巻き長さ750mm以上では貫通破壊を生
じ、破壊電圧が4層以上の場合に比べて低くなった。以
上の結果より、0.5mm〜0.8mmの厚みを持つ自
己融着性の有する絶縁性テーブを4層1000mm程度
施すことにより、効率良く誘導電位による絶縁破壊を防
止出来ることが確認された。
On the other hand, in the case of a two-layered tape, when the tape winding length is 500 mm or less, surface flashing occurred, but when the tape winding length was 750 mm or more, a penetrating failure occurred, and the breakdown voltage was 4 layers or more. It was lower than the case. From the above results, it was confirmed that the insulation breakdown due to the induced potential can be efficiently prevented by applying about 1000 mm of four layers of the self-fusing insulating layer having a thickness of 0.5 mm to 0.8 mm.

【0017】次に上記のような絶縁性テープを施した金
属配管の具体的な適用例について説明する。図5に示す
0.2mm厚のSUS(ステンレス)コルゲート管10
にPVC防食層11(0.5mm厚)の設けたガス配管
用フレキ管12に対して、上記絶縁テープを施し、誘導
電位による絶縁破壊防止を行った。ガス配管用フレキ管
は、図6に示すように建造物の鉄骨部4を貫通して布設
されることがある。この場合、雷による誘導電位により
ガス配管用フレキ管12と鉄骨部4との間で電位差が生
じ、貫通部で絶縁破壊が生じSUSフレキ管12が損傷
しガス漏れを起こした例が報告されている。そこで、鉄
骨貫通部を中心として、図7に示すように0.5mm厚
の自己融着性を持つ絶縁性テープ2を1000mm、4
層施した。そして、鉄骨部4に誘導雷を模擬して雷イン
パルスを印加し、破壊試験を行った。試験は、上記の様
な絶縁性テープを施したものと、比較のため絶縁性テー
プを施さない場合の2種類行った。試験結果を表5に示
す。
Next, a specific application example of the metal pipe provided with the insulating tape as described above will be described. SUS (stainless steel) corrugated tube 10 of 0.2 mm thickness shown in FIG.
The insulating tape was applied to the flexible pipe 12 for gas piping provided with a PVC anticorrosive layer 11 (0.5 mm thick) to prevent dielectric breakdown due to induced potential. The flexible pipe for gas piping may be laid through the steel frame 4 of the building as shown in FIG. In this case, a potential difference is generated between the flexible pipe 12 for gas piping and the steel frame 4 due to the induced potential due to lightning, dielectric breakdown occurs at the penetration, the SUS flexible pipe 12 is damaged, and gas leakage is reported. I have. Therefore, as shown in FIG. 7, a self-fusing insulating tape 2 having a thickness of 0.5 mm and a thickness of 1000 mm
Layered. Then, a lightning impulse was applied to the steel frame portion 4 to simulate induced lightning, and a destruction test was performed. Two types of tests were performed, one with the above-described insulating tape and the other without the insulating tape for comparison. Table 5 shows the test results.

【0018】[0018]

【表5】 [Table 5]

【0019】表5より、絶縁性テープを施さない場合
は、破壊電圧が低いが、絶縁性テープを施すことによ
り、著しく破壊電圧が向上していることが判る。一般に
誘導雷は大きな電位を生じるものほど生じる確率が低く
なるため、実用上十分な防護効果があると言える。以上
により、本発明による効果が有効であることが示され
た。
From Table 5, it can be seen that the breakdown voltage was low when no insulating tape was applied, but the breakdown voltage was significantly improved by applying the insulating tape. In general, induced lightning is more likely to produce a larger potential, so that it can be said that it has a practically sufficient protective effect. As described above, it was shown that the effect of the present invention was effective.

【0020】[0020]

【発明の効果】以上説明したように、本発明において
は、金属配管にエチレンプロピレンゴムを主剤とした自
己融着性を有する0.5〜0.8mm厚の絶縁性テープ
を施したので、誘導雷による金属管の損傷に対して、実
用上十分な防護効果を得ることができる。このため、ガ
ス管、送油管等においては、重大な二次災害を防ぐこと
ができる。
As described above, in the present invention, the metal pipe is provided with a self-fusing insulating tape having a thickness of 0.5 to 0.8 mm and having a thickness of 0.5 to 0.8 mm. It is possible to obtain a practically sufficient protective effect against damage to the metal tube due to lightning. For this reason, serious secondary disasters can be prevented in gas pipes, oil supply pipes, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により絶縁性テープを施した金属配管を
示す図である。
FIG. 1 is a view showing a metal pipe provided with an insulating tape according to the present invention.

【図2】本発明において絶縁性テープの絶縁性能の試験
方法を説明する図である。
FIG. 2 is a diagram illustrating a method for testing the insulating performance of an insulating tape in the present invention.

【図3】絶縁性テープの厚みと規格化した破壊電圧の関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a thickness of an insulating tape and a standardized breakdown voltage.

【図4】テープ巻き長さと規格化した破壊電圧の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a tape winding length and a standardized breakdown voltage.

【図5】本発明を適用したガス配管用SUSフレキ管の
構造を示す図である。
FIG. 5 is a view showing a structure of a SUS flexible pipe for a gas pipe to which the present invention is applied.

【図6】ガス配管用SUSフレキ管の配管方法の一例を
示す図である。
FIG. 6 is a diagram showing an example of a piping method of a SUS flexible pipe for gas piping.

【図7】本発明を適用したガス配管用SUSフレキ管の
絶縁破壊試験方法を説明する図である。
FIG. 7 is a diagram illustrating a method for testing dielectric breakdown of a SUS flexible pipe for gas piping to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 金属配管 2 絶縁性テープ 3 球電極 4 鉄骨部 10 SUSコルゲート管 11 PVC防食層 12 ガス配管用フレキ管 DESCRIPTION OF SYMBOLS 1 Metal piping 2 Insulating tape 3 Ball electrode 4 Steel frame 10 SUS corrugated tube 11 PVC anticorrosion layer 12 Flexible tube for gas piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘導雷の影響を受ける部分に設置される
金属配管であって、 金属配管にエチレンプロピレンゴムを主剤とした自己融
着性を有する0.5〜0.8mm厚の絶縁性テープを施
したことを特徴とする誘導雷による損傷防止施工を施し
た金属配管。
1. A metal pipe installed in a portion affected by an induced lightning, wherein the metal pipe has a self-fusing insulating tape having a thickness of 0.5 to 0.8 mm and made mainly of ethylene propylene rubber. A metal pipe that has been treated to prevent damage from induced lightning, which is characterized by having been treated.
JP2001117937A 2001-04-17 2001-04-17 Metal pipe with preventive execution of damage by indirect lighting stroke Pending JP2002310381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117937A JP2002310381A (en) 2001-04-17 2001-04-17 Metal pipe with preventive execution of damage by indirect lighting stroke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117937A JP2002310381A (en) 2001-04-17 2001-04-17 Metal pipe with preventive execution of damage by indirect lighting stroke

Publications (1)

Publication Number Publication Date
JP2002310381A true JP2002310381A (en) 2002-10-23

Family

ID=18968399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117937A Pending JP2002310381A (en) 2001-04-17 2001-04-17 Metal pipe with preventive execution of damage by indirect lighting stroke

Country Status (1)

Country Link
JP (1) JP2002310381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614920B1 (en) 2006-06-03 2006-08-28 (주)한림종합건축사사무소 Grounding device installed in an apartment house and installation method making use of it
US8399767B2 (en) 2009-08-21 2013-03-19 Titeflex Corporation Sealing devices and methods of installing energy dissipative tubing
US9494263B2 (en) 2004-03-26 2016-11-15 Hitachi Metals Ltd. Flexible pipe
US9541225B2 (en) 2013-05-09 2017-01-10 Titeflex Corporation Bushings, sealing devices, tubing, and methods of installing tubing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494263B2 (en) 2004-03-26 2016-11-15 Hitachi Metals Ltd. Flexible pipe
KR100614920B1 (en) 2006-06-03 2006-08-28 (주)한림종합건축사사무소 Grounding device installed in an apartment house and installation method making use of it
US8399767B2 (en) 2009-08-21 2013-03-19 Titeflex Corporation Sealing devices and methods of installing energy dissipative tubing
US9249904B2 (en) 2009-08-21 2016-02-02 Titeflex Corporation Energy dissipative tubes and methods of fabricating and installing the same
US9445486B2 (en) 2009-08-21 2016-09-13 Titeflex Corporation Energy dissipative tubes
US10293440B2 (en) 2009-08-21 2019-05-21 Titeflex Corporation Methods of forming energy-dissipative tubes
US9541225B2 (en) 2013-05-09 2017-01-10 Titeflex Corporation Bushings, sealing devices, tubing, and methods of installing tubing

Similar Documents

Publication Publication Date Title
Mashikian et al. Medium voltage cable defects revealed by off-line partial discharge testing at power frequency
Tanaka Internal partial discharge and material degradation
JP2005308210A (en) Flexible pipe
US7562448B2 (en) Method of preventing electrically induced fires in gas tubing
Hattori et al. A study on effects of conducting particles in SF/sub 6/gas and test methods for GIS
JP2002310381A (en) Metal pipe with preventive execution of damage by indirect lighting stroke
JP2002315170A (en) Metal pipe processed for prevention of damage due to induced lightning
JP5772944B2 (en) Gas cable remaining life diagnosis method
JPH06289094A (en) Cable shielding layer and method for monitoring abnormality of sheath
Shabangu et al. Stability assessment of pipeline cathodic protection potentials under the influence of AC interference
Gulski et al. On-site testing and PD diagnosis of HV power cables
JP6749259B2 (en) Conductive paint tape
JPH09251003A (en) Testing method for judging life of rubber and plastic cable
Ahmed et al. Partial discharge measurements in distribution class extruded cables
JP2021027661A (en) Cable repair method and cable repair structure
Natarajan Combating of Severe Pollution Problems on Transmission Lines without The Need for Composite Insulators
JP2005283196A (en) Crack monitor sensor of concrete structure, and method for monitoring crack of the concrete structure
Durham et al. Field test technology relationships to cable quality
JP3832339B2 (en) Power cable life estimation method
JP5482112B2 (en) Gas cable remaining life diagnosis method
JP3691667B2 (en) Pressure resistance diagnosis method for rubber and plastic insulated cables
湯地敏史 et al. Problem solving of partial discharge on the distribution line
JP2002171652A (en) Pipe type oil filled cable line
Mutou et al. Performance and monitoring results of repair work to prevent chloride attack in operating subway tunnels
JPH10111266A (en) Inspection for concrete structure