JP2002309307A - Method for detecting temperature in furnace - Google Patents

Method for detecting temperature in furnace

Info

Publication number
JP2002309307A
JP2002309307A JP2001110403A JP2001110403A JP2002309307A JP 2002309307 A JP2002309307 A JP 2002309307A JP 2001110403 A JP2001110403 A JP 2001110403A JP 2001110403 A JP2001110403 A JP 2001110403A JP 2002309307 A JP2002309307 A JP 2002309307A
Authority
JP
Japan
Prior art keywords
temperature
histogram
furnace
raceway
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001110403A
Other languages
Japanese (ja)
Other versions
JP4873788B2 (en
Inventor
Shinroku Matsuzaki
眞六 松崎
Masahito Sugiura
雅人 杉浦
Masahiro Ito
雅浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001110403A priority Critical patent/JP4873788B2/en
Publication of JP2002309307A publication Critical patent/JP2002309307A/en
Application granted granted Critical
Publication of JP4873788B2 publication Critical patent/JP4873788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique with which a temperature variation from a tuyere to a raceway can precisely and continuously be measured in a non- contacting manner and the state near the tuyere can be estimated. SOLUTION: There are provided: an image pickup unit with which the thermographic picture of the burning field in the raceway is picked up at two different wave lengths through an observation port at the tuyere in the blast furnace; and a digital conversion device with which a picture signal output from the above image pickup unit is converted into a digital figure. Then, a histogram is drawn by obtaining the temperature from two-color luminance in the pixels of the digital figure converted with the digital converting device to detect the temperature in the furnace with the histogram shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑を製造する高
炉の羽口レースウエイ部の燃焼状態を監視するため炉内
温度状況の検知方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a temperature condition in a furnace for monitoring a combustion state of a tuyere raceway portion of a blast furnace for producing hot metal.

【0002】[0002]

【従来の技術】高炉下部には円周方向に等間隔に配置さ
れた羽口があり、ここから高温熱風、酸素、微粉炭燃料
が吹き込まれている。羽口には風圧によってレースウエ
イが形成され、コークスや微粉炭が燃焼している。ここ
で発生した熱及び還元ガスで焼結鉱が還元されて溶銑が
作られるので、レースウエイの状態が高炉の操業状態に
大きく影響を及ぼす。高炉内では効率よく安定して溶銑
を生産することが大事であるが、近年、生産コストを下
げることができる微粉炭熱剤大量吹き込みへの取り組み
がなされている。この場合、レースウエイでの微粉炭の
燃焼状態が何らかの原因で悪化すると、未燃焼の微粉炭
は高炉内で熱源とならず炉内に蓄積し、炉内の通気性を
阻害して操業を不安定にしたり、燃料比の増加をもたら
すことになり好ましくない。このような理由から、羽口
に設けられた観察窓を通してレースウエイ内部燃焼場の
温度を放射測温手段で測定してレースウエイ燃焼状態を
監視する技術が考案されている。
2. Description of the Related Art At the lower part of a blast furnace, there are tuyeres arranged at equal intervals in the circumferential direction, from which high-temperature hot air, oxygen and pulverized coal fuel are blown. A raceway is formed at the tuyere by wind pressure, and coke and pulverized coal are burning. Since the sinter ore is reduced by the generated heat and the reducing gas to form hot metal, the state of the raceway greatly affects the operation state of the blast furnace. It is important to produce hot metal efficiently and stably in a blast furnace, but in recent years, efforts have been made to inject a large amount of pulverized coal heating agent that can reduce production costs. In this case, if the combustion state of the pulverized coal in the raceway deteriorates for some reason, the unburned pulverized coal does not become a heat source in the blast furnace but accumulates in the furnace, impairing the air permeability in the furnace and impeding operation. It is not preferable because it stabilizes or increases the fuel ratio. For this reason, a technique has been devised in which the temperature of the raceway internal combustion field is measured by radiation temperature measuring means through an observation window provided in the tuyere to monitor the raceway combustion state.

【0003】例えば、特開昭60−24307号公報に
は、羽口に炉内を指向する光ファイバを設置して、熱放
射光を炉外の放射温度計に導く測温方法が記載されてい
る。あるいは、特開平9−256010号公報では、羽
口観測窓からテレビカメラでレースウエイを観察し、同
時に放射温度計でも測定し、テレビカメラの画像信号と
放射温度計の温度信号から温度分布を求める装置が提案
されている。
For example, Japanese Patent Application Laid-Open No. 60-24307 discloses a temperature measuring method in which a tuyere is provided with an optical fiber for directing the inside of a furnace and heat radiation is guided to a radiation thermometer outside the furnace. I have. Alternatively, in Japanese Patent Laid-Open No. 9-256010, a raceway is observed from a tuyere observation window with a television camera, and simultaneously measured with a radiation thermometer, and a temperature distribution is obtained from an image signal of the television camera and a temperature signal of the radiation thermometer. A device has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
60−24307号公報に開示される従来装置では、光
ファイバを羽口に設置した後、光ファイバの指向方向を
炉外から把握することができず、一般に温度分布を有す
るレースウエイ燃焼場のどの部位の温度を測定している
のかの判断が難しいといった問題がある。また、知りた
いのは特定の一点の温度ではなく、複数点あるいは温度
分布であることも少なくない。
However, in the conventional apparatus disclosed in Japanese Patent Application Laid-Open No. S60-24307, after the optical fiber is installed in the tuyere, the directing direction of the optical fiber can be grasped from outside the furnace. In general, it is difficult to determine which part of the raceway combustion field having a temperature distribution is measuring the temperature. In addition, it is not often the case that the user wants to know not only the temperature at a specific point but a plurality of points or a temperature distribution.

【0005】一方、特開平9−256010号公報に開
示される装置では、テレビカメラでレースウエイの熱画
像を撮像して温度分布を求めるので、前述公報の問題点
を解決することができる。しかしながら、レースウエイ
内の温度分布を常時測定して、温度データから早期に異
常を判断するといった操業への活用については、以下に
述べる課題が残る。
On the other hand, in the apparatus disclosed in Japanese Patent Application Laid-Open No. 9-256010, a thermal image of a raceway is taken by a television camera to determine a temperature distribution, so that the problem described in the above-mentioned publication can be solved. However, there is a problem to be described below regarding utilization in operations such as constantly measuring a temperature distribution in a raceway and judging an abnormality from temperature data at an early stage.

【0006】これらの測定技術は、価格、汎用性、継続
性、拡張性、及び定量性に課題があり、必ずしも継続的
に測定する技術として定着していない。例えば、温度測
定に関しては放射温度計が使用されてきたが、ガラスの
汚れ、曇りなどにより測定の信頼性が大幅に低下する。
また二色温度計による測定、解析の報告もあるが、微粉
炭が吹き込まれるようになってからは測定位置が確定で
きず使用されなくなった。またCCDの羽口計測装置が
開発され測定位置同定は可能となつたが、画像の観察及
び輝度のみであり、温度の絶対値は測定できなかった。
[0006] These measurement techniques have problems in price, versatility, continuity, expandability, and quantitativeness, and have not always been established as techniques for continuous measurement. For example, a radiation thermometer has been used for temperature measurement, but the reliability of the measurement is greatly reduced due to contamination or fogging of the glass.
In addition, there are reports of measurement and analysis using a two-color thermometer, but after pulverized coal was blown, the measurement position could not be determined and the device was not used. Further, although a tuyere measuring device of CCD was developed and the measurement position could be identified, the absolute value of the temperature could not be measured because only the observation of the image and the luminance were possible.

【0007】[0007]

【課題を解決するための手段】本発明は、羽口からレー
スウエイの温度変化を非接触で、かつ的確に連続測定可
能で、羽口近傍での状態変化を推定することが出来る技
術を提供することにある。即ち、請求項1記載の発明
は、高炉羽口の観察窓を通してレースウエイ内燃焼場の
熱画像を異なる二波長で撮像する撮像装置と、前記撮像
装置が出力する画像信号をデジタル画像に変換するデジ
タル変換装置と、デジタル変換装置で変換したデジタル
画像の画素を二色輝度から温度を求めてヒストグラム化
し、ヒストグラムの形状で炉内温度を検知することを特
徴とする。また請求項2記載の発明は、1000〜30
00℃の範囲のヒストグラムを抽出し使用することを特
徴とする。更に請求項3記載の発明は、ヒストグラムの
歪度の大小により温度分布を推定することを特徴とす
る。
SUMMARY OF THE INVENTION The present invention provides a technique capable of continuously and accurately measuring a temperature change of a raceway from a tuyere in a non-contact manner and accurately, and estimating a state change near the tuyere. Is to do. That is, the invention according to claim 1 is an imaging device that captures a thermal image of a combustion field in a raceway at two different wavelengths through an observation window of a blast furnace tuyere, and converts an image signal output by the imaging device into a digital image. It is characterized in that a digital conversion device and a pixel of a digital image converted by the digital conversion device are used to obtain a temperature from two-color luminance to form a histogram, and the furnace temperature is detected in the form of the histogram. The invention according to claim 2 is a method according to claim 2,
It is characterized in that a histogram in the range of 00 ° C. is extracted and used. Further, the invention according to claim 3 is characterized in that the temperature distribution is estimated based on the magnitude of the skewness of the histogram.

【0008】即ち、高炉羽口の画像信号の画素を2色輝
度から温度を求めてヒストグラム化し、ヒストグラムを
形成することで、操業状態を判断することができる。即
ち、操業良好時のヒストグラムは、レースウエイの温度
分布は平均値を中央値としてほぼ左右対称の正規分布と
なる。これはレースウエイの健全に形成されている時に
は、上方から温度の低い未燃焼のコークスが連続的に供
給され、更に燃焼も連続的になされるため、レースウエ
イの内部には燃焼初期の温度の低温のコークスと、燃焼
後期の高温のコークスが混在するため、温度分布は正規
分布となる。しかしながら、レースウエイが健全に形成
されない場合には、燃焼が充分進まない、あるいは逆に
過燃焼となるため、ヒストグラムは分散の小さい温度分
布となる。また、レースウエイは健全なものの、融着帯
が低下した場合、あるいは鉱石の還元率が低下するなど
の場合には低温の未還元鉱石がレースウエイに流入する
ため、低温度部分が広がったいびつな分布のヒストグラ
ムとなる。以上のように理由はいくつか考えられるが、
ヒストグラムから正規分布の分散と平均、あるいは正規
分布からの偏差を見ることにより、レースウエイの状況
や炉内の状況が判断可能となる。
That is, the operation state can be determined by obtaining the temperature of the image signal pixels of the blast furnace tuyere from two color luminances and forming a histogram to form a histogram. In other words, the histogram when the operation is good indicates that the temperature distribution of the raceway has a substantially symmetrical normal distribution with the average value as the median value. This is because when the raceway is soundly formed, unburned coke having a low temperature is continuously supplied from above, and combustion is also performed continuously. Since low-temperature coke and high-temperature coke in the latter stage of combustion are mixed, the temperature distribution is normal. However, if the raceway is not formed properly, combustion does not proceed sufficiently, or conversely, overburns, so that the histogram has a temperature distribution with small variance. In addition, although the raceway is sound, if the cohesive zone decreases or the reduction rate of the ore decreases, low-temperature unreduced ore flows into the raceway, so that the low-temperature portion is widened. Histogram. As mentioned above, there are several possible reasons,
By looking at the variance and average of the normal distribution or the deviation from the normal distribution from the histogram, it is possible to determine the raceway condition and the condition in the furnace.

【0009】[0009]

【発明の実施の形態】以下には本発明の装置を操業中の
高炉に適用した一実施例を説明する。図1には高炉羽口
付近の模式図と発明装置の構成例を示す。高炉炉体3の
所定位置に設けた羽口4には熱風供給管6から熱風が高
圧で吹き込まれており、その風圧で炉内にレースウエイ
1が形成されている。羽口4には微粉炭を吹き込む供給
管5も備えられている。レースウエイ界面ではコークス
や微粉炭が燃焼して一酸化炭素が発生する高温燃焼反応
が生じている。羽口の炉外側の後端にはレースウエイを
直視できる観察窓7がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the apparatus of the present invention is applied to a blast furnace in operation will be described below. FIG. 1 shows a schematic diagram of the vicinity of a tuyere of a blast furnace and a configuration example of the inventive apparatus. Hot air is blown into the tuyere 4 provided at a predetermined position of the blast furnace furnace body 3 from a hot air supply pipe 6 at a high pressure, and the raceway 1 is formed in the furnace by the wind pressure. The tuyere 4 is also provided with a supply pipe 5 for blowing pulverized coal. At the raceway interface, a high-temperature combustion reaction occurs in which coke and pulverized coal burn to generate carbon monoxide. At the rear end of the tuyere outside the furnace, there is an observation window 7 through which the raceway can be viewed directly.

【0010】二波長撮像装置10は観察窓からレースウ
エイの画像を異なる2つの波長(x1,x2)で撮像す
る。これらの画像は同じ光軸で撮像するようにして、同
じ視野を見て波長のみが異なるようにする。分光して撮
像する方法として、ここではカラーCCDカメラのRG
B信号のうちR(赤)成分である中心波長650mmを
x1、G(緑)成分の中心波長550mmをx2とし
た。別の方法として、ハーフミラー等で光路を分け、透
過波長がそれぞれx1とx2の分光フィルタを備えた2
台のモノクロカメラを使用し、ハーフミラーで光路を分
岐させるなどして同軸で撮像する方法も考えられる。二
波長撮像装置が出力する波長の異なる2枚の画像信号は
画像デジタル変換装置11に入力され、デジタル信号に
変換された。その後、パソコン等の小型計算機12に送
られる。計算機12は画像から温度分布を計算する演算
を実行し、結果をモニタ14表示したり、記憶装置(図
示を省略)にデータを保存する。撮像制御装置13は計
算機14からの指示に基づきCCDカメラの電子シャタ
露光時間あるいはレンズ絞りを設定する信号を撮像装置
に発信する機能を担う。本実施例では、CCDカメラが
有する高速電子シャッタの露光時間を想定される明るさ
の範囲で段階的に制御することとした。
The two-wavelength image pickup device 10 picks up an image of the raceway from the observation window at two different wavelengths (x1, x2). These images are taken with the same optical axis so that only the wavelengths are different while viewing the same field of view. As a method of spectrally imaging, here, RG of a color CCD camera is used.
The center wavelength 650 mm of the R (red) component of the B signal was x1, and the center wavelength 550 mm of the G (green) component was x2. As another method, an optical path is divided by a half mirror or the like, and a spectral filter having transmission wavelengths of x1 and x2 is provided.
A method of using a single monochrome camera and coaxially capturing an image by splitting the optical path with a half mirror is also conceivable. Two image signals of different wavelengths output from the two-wavelength imaging device were input to the image digital converter 11 and converted into digital signals. After that, it is sent to a small computer 12 such as a personal computer. The computer 12 executes an operation for calculating the temperature distribution from the image, displays the result on the monitor 14, and saves the data in a storage device (not shown). The imaging control device 13 has a function of transmitting a signal for setting an electronic shutter exposure time of the CCD camera or a lens aperture to the imaging device based on an instruction from the computer 14. In the present embodiment, the exposure time of the high-speed electronic shutter of the CCD camera is controlled stepwise within an assumed brightness range.

【0011】次に、計算機で実行される画像演算処理の
詳細を説明する。図2のフローチャートに示すように、
測定が開始されると、まず観察波長の異なる2枚の画像
が取り込まれる(S1)。ここで波長x1およびx2の
画像をそれぞれP1,P2とする。画像P1の各画素の
輝度はp1(i、j)(i、j)はそれれ画像の縦方
向、横方向の座標)とする。同じく画像P2の各画素の
輝度はP2(i,j)とする。S2ではそれぞれの画像
に対して最高輝度を検索し抽出する処理を実行する。画
像P1およびP2の最高輝度をそれぞれLmx1,Lmx2と
する。温度計算を実施する際に、受光素子が飽和あるい
はそれに近い状態で画像輝度が上限値になるほど画像が
明るかったり、逆に画像が暗すぎてノイズの影響が大き
くなると、温度精度が極端に悪化するので、S3で最高
輝度の値から画像が適切な明るさで撮像されているかを
判断する。Lmx1あるいはLmx2のどちらかが予め定めた
許容輝度上限値Lhiより大きい場合は、S4で撮像装置
の露光時間を短くする指令を撮像制御装置に出す。逆
に、Lmx1あるいはLmx2のいずれかが許容輝度下限値L
loより小さい場合はS4で露光時間を長くする信号を発
し、再度画像取り込みを実行する。画像が適正な明るさ
範囲にあることが確認されると、それぞれの画像ごとに
ノイズ除去のフィルタリングを施す(S5)。この実施
例では3×3画素の2次元スムージング処理とした。
Next, details of the image calculation processing executed by the computer will be described. As shown in the flowchart of FIG.
When the measurement is started, first, two images having different observation wavelengths are captured (S1). Here, the images of the wavelengths x1 and x2 are referred to as P1 and P2, respectively. The luminance of each pixel of the image P1 is defined as p1 (i, j) (i, j is the vertical and horizontal coordinates of the image). Similarly, the brightness of each pixel of the image P2 is P2 (i, j). In S2, a process of searching for and extracting the highest luminance from each image is executed. The maximum luminance of the images P1 and P2 is Lmx1 and Lmx2, respectively. When performing the temperature calculation, if the image brightness is higher than the image brightness reaches the upper limit value in a state where the light receiving element is saturated or close to it, or if the image is too dark and the influence of noise increases, the temperature accuracy is extremely deteriorated. Therefore, in S3, it is determined from the value of the highest luminance whether the image is captured with appropriate brightness. If either Lmx1 or Lmx2 is larger than the predetermined allowable luminance upper limit Lhi, a command to shorten the exposure time of the imaging device is issued to the imaging control device in S4. Conversely, either Lmx1 or Lmx2 is the allowable luminance lower limit L
If it is smaller than lo, a signal for extending the exposure time is issued in S4, and the image capture is executed again. When it is confirmed that the images are in the appropriate brightness range, filtering for noise removal is performed for each image (S5). In this embodiment, two-dimensional smoothing processing of 3 × 3 pixels is performed.

【0012】S6では画像P1とP2の画面間除算から
2波長の2色比(輝度比)を計算する。すなわち、カラ
ー画像の2色輝度(グリーン輝度G / レッド輝度
R)から温度Tへの変換式は、 温度T=K3・Ratio+K2・Ratio+K1・Ratio+K0 (1) 但しRatio:( G − Bg ) / ( R −
Br ) Bg:グリーンバイアス輝度 Br:レッドバイアス輝度 K3:0、K2:−3529.2、K1:6269.
8、K0:−527.4 ここで、K0〜K3はパラメータファイルで変更可能で
あり、上述の例では、Ratio=xとおくと(1)式下記
(2)となる。 T=−3529.2x×6269.8x−527.44 (2) この(2)式は図3に示すように温度変換できる。尚、
実際には画素感度むら補正や画像輝度ゼロレベル(完全
な暗状態での画像信号のオフセット出力)補正などの若
干の前処理を実施するが、説明を簡便にするためここで
は詳細な記述を省略する。
In S6, a two-color ratio (luminance ratio) of two wavelengths is calculated from the inter-screen division of the images P1 and P2. That is, the conversion formula from 2 colors luminance of a color image (green luminance G / red luminance R) to a temperature T, the temperature T = K3 · Ratio 3 + K2 · Ratio 2 + K1 · Ratio + K0 (1) where Ratio :( G - Bg ) / (R-
Br) Bg: Green bias luminance Br: Red bias luminance K3: 0, K2: -3529.2, K1: 6269.
8, K0: -527.4 Here, K0 to K3 can be changed in the parameter file. In the above example, if Ratio = x, Expression (1) is given by the following expression (2). T = −3529.2 × 2 × 6269.8 × −527.44 (2) The temperature of this equation (2) can be converted as shown in FIG. still,
Actually, some pre-processing such as pixel sensitivity unevenness correction and image luminance zero level (image signal offset output in a completely dark state) correction is performed, but detailed description is omitted here for simplicity of description. I do.

【0013】次に、S7では、上記S6で求めた画素の
温度に基づきヒストグラムを作成する。例えば、400
00画素(縦200画素×横200画素)のCCDカメ
ラを使用し、この全画素をTminからTmaxまで、原則的
に1℃ごとスキャンして画素数をカウントしヒストグラ
ムを形成する。
Next, in S7, a histogram is created based on the pixel temperatures obtained in S6. For example, 400
Using a CCD camera of 00 pixels (200 pixels vertically × 200 pixels horizontally), all the pixels are scanned from Tmin to Tmax in principle at 1 ° C. to count the number of pixels and form a histogram.

【0014】次に、S7で求めたヒストグラムの形状を
基に、炉操業状態を判別する(S8)。具体的には、無
効画素を除いた有効温度画素(PV)を基に判別する。
上記ヒストグラムでは、CCDカメラの全画素が被測定
物を測定するわけではなく、被測定物の部分以外ののぞ
き窓の外側部分等をも含まれ、全ての画素をヒストグラ
ムとして作成すると、図4に示す如くなり、不要な部分
が多数存在する他、データ量を少なくするためにも、こ
れらのデータを除去することが好ましい。だたし、不要
なデータの部分は、炉内の羽口の温度状態の把握に際
し、明確に温度領域が異なることより、不要なデータを
残していても、温度状況等の判別にはあまり影響がな
い。
Next, a furnace operation state is determined based on the histogram shape obtained in S7 (S8). Specifically, the determination is made based on the effective temperature pixels (PV) excluding the invalid pixels.
In the above histogram, not all the pixels of the CCD camera measure the object to be measured, but also include the outside of the viewing window other than the portion of the object to be measured. As shown in the figure, there are many unnecessary portions, and it is preferable to remove these data in order to reduce the amount of data. However, the unnecessary data part has a clear difference in temperature range when grasping the temperature condition of the tuyere in the furnace, so even if unnecessary data is left, it has little effect on the determination of the temperature condition etc. There is no.

【0015】ここで、無効画素は、例えば全画素のう
ち、G及びRの輝度値が240以上の場合には、温度変
換した場合、実際の温度とは異なった値となる為、有効
に使用することが出来ず、画素数で上限外温度画素数
(PNU)として無効画素として取り扱う。また、G−
Bg及びR−Brが10以下の場合には、温度変換した
場合も、下限温度はずれて有効に使用することが出来な
い画素数となり下限外温度画素数(PNL)として、同
様に無効画素として除いている。前者は、本CCDカメ
ラのシャッタースピードや絞りの範囲では測定出来なか
った領域で、後者は非常に低温の領域であり、微粉炭バ
ーナーなどレースウエイの被測定部以外部分であると推
認出来るからである。このようにして形成した、ヒスト
グラムに基づいて、上下限温度値で挟まれた温度領域の
平均温度を平均値1として算出する(式(3))
Here, the invalid pixel is effectively used because, for example, when the luminance values of G and R are 240 or more out of all the pixels, the value becomes different from the actual temperature when the temperature is converted. And the number of pixels is treated as an invalid pixel as the number of pixels outside the upper limit (PNU). G-
When Bg and R-Br are 10 or less, even if the temperature is converted, the lower limit temperature is shifted and the number of pixels cannot be used effectively, so that the number of pixels outside the lower limit temperature (PNL) is similarly excluded as invalid pixels. ing. The former is an area that could not be measured in the range of the shutter speed and aperture of this CCD camera, and the latter is a very low temperature area, which can be inferred to be a part other than the part to be measured of the raceway, such as a pulverized coal burner. is there. Based on the histogram thus formed, the average temperature in the temperature region sandwiched between the upper and lower limit temperature values is calculated as the average value 1 (Equation (3)).

【数1】 (Equation 1)

【0016】次に、上限温度値から指定された画素数範
囲の平均温度を平均値2として算出する(式(4))。
この式(4)は、有効温度画素中一定割合以上の部分の
平均温度を示すもので、この平均値2を求めるのは、例
えば、生鉱石落ちがあった場合、この部分は大幅に温度
が低下する。この為、この生鉱石落ちでない部分の温度
を求める必要があるときなどに利用する。
Next, the average temperature in the specified pixel number range from the upper limit temperature value is calculated as the average value 2 (Equation (4)).
This equation (4) indicates the average temperature of a portion of the effective temperature pixel that is equal to or greater than a certain percentage. The average value 2 is obtained, for example, when raw ore fall occurs, the temperature of this portion is significantly increased. descend. Therefore, it is used when it is necessary to obtain the temperature of the portion where the raw ore does not fall.

【数2】 ここで、nは、指定した上下限温度値領域内画素数Nに
対する割合(%)で、この時の画素数Npとする。ま
た、上限温度値から低温方向に画素数をNpになるまで
カウントし,Npとなる画素が存在する温度をTpとして
いる。
(Equation 2) Here, n is a ratio (%) to the number N of pixels in the specified upper / lower limit temperature value area, and is the number of pixels Np at this time. Further, the number of pixels is counted from the upper limit temperature value in the low temperature direction until the number of pixels reaches Np, and the temperature at which the pixel having the value Np exists is defined as Tp.

【0017】そして、ヒストグラムを正規分布と仮定
し、平均、分散および正規分布とのずれを計算し、併せ
て、有効ケース数を n,各ケースの測定値を Xi ( i
= 1,2,… ,n )としヒストグラムの歪度、尖度を求
める。ここで、歪度Skは、下式(5)となり、図5に
示す如く、Sk=0で左右対称な正規分布となる。ま
た、Sk>0の時は左に偏った分布となり、温度分布が
低温側に移動していることが判る。逆にSk<0の時
は、右に偏った分布となり、温度分布が高温側に移動し
ていることが判り、このデータから複数の羽口の情報を
併せて、炉内の温度分布を把握し、最適な炉操業をする
ことが出来る。
Then, assuming that the histogram is a normal distribution, the mean, the variance, and the deviation from the normal distribution are calculated. In addition, the number of effective cases is n, and the measured value of each case is Xi (i
= 1, 2, ..., n), and the skewness and kurtosis of the histogram are obtained. Here, the skewness Sk is represented by the following equation (5), and as shown in FIG. 5, a skewed normal distribution with Sk = 0 is obtained. When Sk> 0, the distribution is shifted to the left, indicating that the temperature distribution moves to the lower temperature side. Conversely, when Sk <0, the distribution is deviated to the right, indicating that the temperature distribution is moving to the higher temperature side. From this data, the temperature distribution in the furnace is grasped by combining information on multiple tuyeres. In addition, optimal furnace operation can be performed.

【数3】 (Equation 3)

【0018】また尖度Kwは、図6に示す如く、Kw=0
で左右対称な正規分布と同程度を表し。Kw>0の時
は、正規部分布より尖った形で、中心への集中度が高い
分布となり、温度分布が一点へ集中していることが判
る。逆にKw<0の時は、正規部分布より扁平な形で、
中心への集中度が低い分布となり、温度分布が分散して
いることが判る。
The kurtosis Kw is, as shown in FIG.
Indicates the same degree as a symmetric normal distribution. When Kw> 0, the distribution is sharper than the normal part distribution, the distribution is highly concentrated at the center, and the temperature distribution is concentrated at one point. Conversely, when Kw <0, the distribution is flatter than the normal distribution,
It can be seen that the distribution has a low degree of concentration at the center, and the temperature distribution is dispersed.

【数4】 (Equation 4)

【0019】操業良好時にはレースウエイの温度分布は
平均値を中央値として、ほぼ左右対称の正規分布のヒス
トグラムとなる。これはレースウエイの健全に形成され
ている時には、上方から温度の低い未燃焼のコークスが
連続的に供給され、更に燃焼も連続的になされるため、
レースウエイの内部には燃焼初期の温度の低温のコーク
スと、燃焼後期の高温のコークスが混在するため、温度
分布は正規分布となる。しかしながら、レースウエイが
健全に形成されない場合には、燃焼が充分進まない、あ
るいは、逆に過燃焼となるため、分散の小さい温度分
布、即ち尖度Kw>0の表示となる。また、レースウエ
イは健全なものの、融着帯が低下した場合、あるいは鉱
石の還元率が低下するなどの場合には低温の未還元鉱石
がレースウエイに流入するため、低温度部分が広がった
いびつな分布、即ち尖度Kw<0の表示となる。ただ
し、操業が好調な時も若干分散が低下するケースもあ
る。以上のように理由はいくつか考えられるが、正規分
布の分散と平均、あるいは正規分布からの偏差を見るこ
とにより、レースウエイの状況や炉内の状況が判断可能
である。
When the operation is good, the temperature distribution of the raceway becomes a histogram of a substantially symmetrical normal distribution with the average value as the median value. This is because when the raceway is formed soundly, unburned coke with a low temperature is continuously supplied from above, and furthermore, combustion is also made continuously,
The low temperature coke at the early stage of combustion and the high temperature coke at the late stage of the combustion are mixed in the raceway, so that the temperature distribution becomes a normal distribution. However, if the raceway is not formed properly, combustion does not proceed sufficiently, or conversely, overburns, so that a temperature distribution with small dispersion, that is, a kurtosis Kw> 0 is displayed. In addition, although the raceway is sound, if the cohesive zone decreases or the reduction rate of the ore decreases, low-temperature unreduced ore flows into the raceway, so that the low-temperature portion is widened. Display, that is, kurtosis Kw <0. However, there are some cases where dispersion is slightly reduced even when the operation is good. As described above, there are several possible reasons. By looking at the variance and average of the normal distribution or the deviation from the normal distribution, it is possible to judge the raceway condition and the furnace condition.

【0020】このように上述ヒストグラムを作成し、有
効温度画素数PV、上限外温度画素数PNU、下限外温
度画素数PNL、平均値1、平均値2、標準偏差(分
散)、歪度Sk、尖度Kwを求めることにより、羽口の温
度分布を正確に把握でき、この結果をモニター等の表示
器に表示し(S9)、炉内温度等の炉内状況を検知し作
業者に知らせる。
In this manner, the above-mentioned histogram is created, and the number of effective temperature pixels PV, the number of outside temperature pixels PNU, the number of outside temperature pixels PNL, the average value 1, the average value 2, the standard deviation (variance), the skewness Sk, By determining the kurtosis Kw, the temperature distribution of the tuyere can be accurately grasped, and the result is displayed on a display such as a monitor (S9), and the conditions inside the furnace such as the temperature inside the furnace are detected to inform an operator.

【0021】上記一連の画像処理はキーボード等からの
測定終了の指示が、入力されるまで繰り返される(S1
0)。この際、上記測定は、等間隔の10個程度の羽口
の測定を繰り返し測定することが、炉内の温度の円周バ
ランスを正確に把握するうえで好ましい。
The above series of image processing is repeated until a measurement end instruction from a keyboard or the like is input (S1).
0). At this time, it is preferable to repeat the measurement of about 10 tuyeres at equal intervals in order to accurately grasp the circumferential balance of the temperature in the furnace.

【0022】(実施例1)図7は、操業好調時の測定
例、図8は操業不調時を示した図である。それぞれ
(a)は原画、(b)は画像処理し温度分布として表し
た図、(c)は、(b)に基づき、ヒストグラムとして
表した図である。この実施例では、中央の部分に観察窓
があり、その周りは高炉の外周であり下限値温度画素で
あり、全画素40000個の内、35682個が下限値
温度画素であった。また、100個が上限値温度画素
で、残り4218個が有効温度画素数PVとなり、これ
をヒストグラムに表している。また、この時の平均値1
は1887℃、上限値から15領域の平均値2は、20
66℃であった。そして、標準偏差は、64.1、歪度
Skは−0.000039であった。
(Example 1) FIG. 7 is a diagram showing a measurement example when the operation is good, and FIG. 8 is a diagram showing a time when the operation is not good. (A) is an original image, (b) is a diagram represented as a temperature distribution after image processing, and (c) is a diagram represented as a histogram based on (b). In this example, there was an observation window in the center, and the periphery was the outer periphery of the blast furnace, which was the lower limit temperature pixel, and 35,682 of the 40,000 pixels were lower limit temperature pixels. Also, 100 pixels are the upper limit temperature pixels, and the remaining 4218 pixels are the effective temperature pixel number PV, which is shown in the histogram. At this time, the average value 1
Is 1887 ° C., and the average value 2 in 15 areas from the upper limit is 20
66 ° C. The standard deviation was 64.1 and the skewness Sk was -0.000039.

【0023】この図からも判ることより、レースウエイ
の温度分布は平均値を中央値として、ほぼ左右対称の正
規分布のヒストグラムとなり、操業良好時と推定でき
る。また、比較例として図7の例では、全画素4000
0個の内、36394個が下限値温度画素であった。ま
た、100個が上限値温度画素で、残り3506個が有
効温度画素数PVとなり、これをヒストグラムに表して
いる。また、この時の平均値1は1844℃、上限値か
ら15領域の平均値2は、1990℃であった。そし
て、標準偏差は、94.1、歪度Skは−0.0002
63であった。この図からも判るように、低温度部分が
広がったいびつな分布となり、融着帯が低下した場合、
あるいは鉱石の還元率が低下するなどの場合等、操業が
やや不良時と推定できる。
As can be seen from this figure, the temperature distribution of the raceway becomes a histogram of a substantially symmetrical normal distribution with the mean value as the median value, and it can be estimated that the operation is good. As a comparative example, in the example of FIG.
Of the 0 pixels, 36394 were the lower limit temperature pixels. Also, 100 pixels are the upper limit temperature pixels, and the remaining 3506 pixels are the effective temperature pixel number PV, which is shown in the histogram. At this time, the average value 1 was 1844 ° C., and the average value 2 in the 15 regions from the upper limit was 1990 ° C. The standard deviation is 94.1 and the skewness Sk is -0.0002.
63. As can be seen from this figure, when the low-temperature portion has a distorted distribution that spreads out and the cohesive zone decreases,
Alternatively, it can be estimated that the operation is slightly defective, such as when the ore reduction rate decreases.

【0024】(実施例2)図8は、上記の歪度を利用し
た長期的な操業状態を把握するのに用いた実施例を示す
もので、操業不調高炉の場合(図8(a))の、標準偏
差と、歪度をプロットすると、標準偏差が低く、歪度が
マイナス、つまり温度分布が小さく低温側に尾を引いた
分布になっている(同図I)。その後操業が改善する
と、標準偏差は50〜100に回復しており、歪度も0
に近くなっている(同図II)。一方操業の好調な高炉の
場合(図8(b))は、標準偏差は50以上、歪度は0
近傍に保たれている。
(Embodiment 2) FIG. 8 shows an embodiment used for grasping a long-term operation state using the above-mentioned skewness. In the case of a malfunctioning blast furnace (FIG. 8 (a)) When the standard deviation and the skewness are plotted, the standard deviation is low and the skewness is negative, that is, the distribution has a small temperature distribution and is tailed toward the low temperature side (I in the same figure). Then, when the operation improves, the standard deviation has recovered to 50-100, and the skewness is also 0.
(Fig. II). On the other hand, in the case of a blast furnace with good operation (FIG. 8 (b)), the standard deviation is 50 or more and the skewness is 0.
It is kept close.

【0025】[0025]

【発明の効果】本発明は以上のようにして高炉羽口のぞ
き窓から炉内レースウスイの温度分布を測定するが、前
述のごとく2波長で熱放射画像を撮像し、それらの画像
データから各画素の温度温度分布をヒストグラムに表す
ことにより、温度分布状態を把握することが出来、高炉
レースウスイ温度分布が常に定量的に監視ができるよう
になり、作業者は炉状況の変化を迅速かつ正確に把握し
て操業することが可能になる.その結果、高い生産性と
安定した銑鉄品質の確保が実現できる。
As described above, the present invention measures the temperature distribution of the in-furnace race loudspeaker from the sight of the blast furnace tuyere as described above. By displaying the temperature distribution of the pixels in a histogram, the temperature distribution can be grasped, and the temperature distribution of the blast furnace race sui can be monitored quantitatively at all times. It is possible to grasp and operate. As a result, high productivity and stable pig iron quality can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the apparatus of the present invention.

【図2】本発明の実施例において、画像からヒストグラ
ムを作成する手順を示したフローチャートを示す説明図
である。
FIG. 2 is an explanatory diagram showing a flowchart illustrating a procedure for creating a histogram from an image in the embodiment of the present invention.

【図3】温度と2色比の関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between a temperature and a two-color ratio.

【図4】画像に含まれ得ている画素をそのままヒストグ
ラムとしたときの説明図である。
FIG. 4 is an explanatory diagram when pixels that can be included in an image are directly used as a histogram.

【図5】本発明の実施例において使用する、ヒストグラ
ムの歪度を表す説明図である。
FIG. 5 is an explanatory diagram showing a skewness of a histogram used in the embodiment of the present invention.

【図6】本発明の実施例において使用する、ヒストグラ
ムの尖度を表す説明図である。
FIG. 6 is an explanatory diagram showing the kurtosis of a histogram used in the embodiment of the present invention.

【図7】操業好調時の測定例を示す説明図である。FIG. 7 is an explanatory diagram showing a measurement example when the operation is good.

【図8】操業不調時の測定例を示す説明図である。FIG. 8 is an explanatory diagram showing an example of measurement at the time of operation failure.

【図9】長期的な操業状態を把握するのに用いた、標準
偏差と歪度の関係を示す説明図である。
FIG. 9 is an explanatory diagram showing a relationship between a standard deviation and a skewness used for grasping a long-term operation state.

【符号の説明】[Explanation of symbols]

1 レースウエイ 2 炉内充填物 3 高炉炉体 4 羽口 5 微粉炭供給管 6 熱風供給管 7 観察窓 10 二波長撮像装置 l1 画像デジタル変換装置 12 小型計算機 l3 撮像制御装置 14 表示装置 DESCRIPTION OF SYMBOLS 1 Raceway 2 Furnace filling 3 Blast furnace furnace 4 Tuyere 5 Pulverized coal supply pipe 6 Hot air supply pipe 7 Observation window 10 Dual wavelength imaging device 11 Image digital conversion device 12 Small computer 13 Imaging control device 14 Display device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01J 5/48 G01J 5/48 D G06T 1/00 300 G06T 1/00 300 (72)発明者 伊藤 雅浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 2G066 AA04 AC01 AC11 BA14 BC02 BC07 BC15 CA02 CA20 4K012 BB01 4K015 KA01 KA05 5B057 AA17 BA02 CA01 CA08 CA12 CA16 CB01 CC01 CE02 DB06 DB09 DC02 DC19 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01J 5/48 G01J 5/48 D G06T 1/00 300 G06T 1/00 300 (72) Inventor Masahiro Ito Chiba 20-1 Shintomi, Futtsu-shi, Japan DC19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高炉羽口の観察窓を通してレースウエイ内
燃焼場の熱画像を異なる2波長で撮像する撮像装置と、 前記撮像装置が出力する画像信号をデジタル画像に変換
するデジタル変換装置と、 デジタル変換装置で変換したデジタル画像の画素を二色
輝度から温度を求めてヒストグラム化し、ヒストグラム
の形状で炉内温度状況を検知することを特徴とする炉内
温度の検知方法。
An imaging device for capturing thermal images of a combustion field in a raceway at two different wavelengths through an observation window of a blast furnace tuyere, a digital converter for converting an image signal output by the imaging device into a digital image, A method for detecting a temperature in a furnace, comprising: obtaining a temperature from two-color luminance of a pixel of a digital image converted by a digital converter, forming a histogram, and detecting a furnace temperature condition in a histogram shape.
【請求項2】1000〜3000℃の範囲のヒストグラ
ムを抽出し使用することを特徴とする請求項1記載の炉
内温度の検知方法。
2. The method according to claim 1, wherein a histogram in the range of 1000 to 3000 ° C. is extracted and used.
【請求項3】請求項2記載のヒストグラムの歪度の大小
により温度分布を推定することを特徴とする炉内温度の
検知方法。
3. A method according to claim 2, wherein the temperature distribution is estimated based on the magnitude of the skewness of the histogram.
JP2001110403A 2001-04-09 2001-04-09 Detection method of furnace conditions Expired - Lifetime JP4873788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110403A JP4873788B2 (en) 2001-04-09 2001-04-09 Detection method of furnace conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110403A JP4873788B2 (en) 2001-04-09 2001-04-09 Detection method of furnace conditions

Publications (2)

Publication Number Publication Date
JP2002309307A true JP2002309307A (en) 2002-10-23
JP4873788B2 JP4873788B2 (en) 2012-02-08

Family

ID=18962182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110403A Expired - Lifetime JP4873788B2 (en) 2001-04-09 2001-04-09 Detection method of furnace conditions

Country Status (1)

Country Link
JP (1) JP4873788B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119110A (en) * 2004-09-24 2006-05-11 Nippon Steel Corp Blast furnace tapping temperature measurement method and measurement device
JP2007248148A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Blast furnace tapping temperature measuring system, blast furnace tapping temperature measuring method, and computer program
KR100960382B1 (en) 2007-12-21 2010-05-28 주식회사 포스코 Apparatus for measuring depth of raceway for sintering mixture
JP2013185234A (en) * 2012-03-09 2013-09-19 Nippon Steel & Sumitomo Metal Corp Method and apparatus for observing condition of blast furnace tuyere
WO2015015936A1 (en) * 2013-07-29 2015-02-05 Jfeスチール株式会社 Abnormality detection method and blast-furnace operation method
JP2015052149A (en) * 2013-09-06 2015-03-19 新日鐵住金株式会社 Method for determining operational situation of blast furnace
CN114622047A (en) * 2022-02-25 2022-06-14 首钢集团有限公司 Method, device and equipment for determining working state of blast furnace hearth and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148739A (en) * 1984-08-17 1986-03-10 Nippon Steel Corp Temperature measuring method by infrared light
JPS6263605A (en) * 1985-09-12 1987-03-20 Kobe Steel Ltd Method for controlling temperature of molten iron in blast furnace
JPH09256010A (en) * 1996-03-21 1997-09-30 Kawasaki Steel Corp Method for measuring temperature distribution of coke in raceway and instrument therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148739A (en) * 1984-08-17 1986-03-10 Nippon Steel Corp Temperature measuring method by infrared light
JPS6263605A (en) * 1985-09-12 1987-03-20 Kobe Steel Ltd Method for controlling temperature of molten iron in blast furnace
JPH09256010A (en) * 1996-03-21 1997-09-30 Kawasaki Steel Corp Method for measuring temperature distribution of coke in raceway and instrument therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119110A (en) * 2004-09-24 2006-05-11 Nippon Steel Corp Blast furnace tapping temperature measurement method and measurement device
JP4516854B2 (en) * 2004-09-24 2010-08-04 新日本製鐵株式会社 Blast furnace tapping temperature measuring method and measuring device
JP2007248148A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Blast furnace tapping temperature measuring system, blast furnace tapping temperature measuring method, and computer program
JP4669420B2 (en) * 2006-03-14 2011-04-13 新日本製鐵株式会社 Blast furnace tapping temperature measuring system, blast furnace tapping temperature measuring method, and computer program
KR100960382B1 (en) 2007-12-21 2010-05-28 주식회사 포스코 Apparatus for measuring depth of raceway for sintering mixture
JP2013185234A (en) * 2012-03-09 2013-09-19 Nippon Steel & Sumitomo Metal Corp Method and apparatus for observing condition of blast furnace tuyere
WO2015015936A1 (en) * 2013-07-29 2015-02-05 Jfeスチール株式会社 Abnormality detection method and blast-furnace operation method
TWI512110B (en) * 2013-07-29 2015-12-11 Jfe Steel Corp Abnormal detection methods and blast furnace operation methods
CN105392904A (en) * 2013-07-29 2016-03-09 杰富意钢铁株式会社 Abnormality detection method and blast-furnace operation method
US9799110B2 (en) 2013-07-29 2017-10-24 Jfe Steel Corporation Abnormality detection method and blast furnace operation method
JP2015052149A (en) * 2013-09-06 2015-03-19 新日鐵住金株式会社 Method for determining operational situation of blast furnace
CN114622047A (en) * 2022-02-25 2022-06-14 首钢集团有限公司 Method, device and equipment for determining working state of blast furnace hearth and storage medium

Also Published As

Publication number Publication date
JP4873788B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
CN105392904B (en) Method for detecting abnormality and method for operating blast furnace
CN106017691B (en) Contactless melting metallic solution temperature continuous detecting method and system
JP6414102B2 (en) Refining furnace discharge flow determination apparatus, refining furnace discharge flow determination method, and molten metal refining method
JPWO2010064727A1 (en) Hot metal temperature detection method and blast furnace operation method using the same
JP4873788B2 (en) Detection method of furnace conditions
CN106755683A (en) A kind of blast-furnace roasting band temperature field detection device based on colorimetric method
CN108871189A (en) A kind of the clinker position detecting device and its detection method of metal smelt deslagging
KR20200081541A (en) Imaging apparatus and driving method of the same
JPS5855512A (en) Method for judging condition of blast furnace
JP2000249670A (en) Displacement-measuring device at hot temperature
JP2003344166A (en) In-furnace monitoring system for measuring temperature
TWI465702B (en) Non-contact temperature measurung method
JP2001318002A (en) Temperature distribution measuring instrument for race way in tuyere of blast furnace
JP2013185234A (en) Method and apparatus for observing condition of blast furnace tuyere
JP5956935B2 (en) Image processing method and image processing apparatus
JPH02157502A (en) Temperature monitoring device for boiler tube
CN1069960C (en) Method and apparatus for detecting combustion temperature profile in boiler chamber at power station
JP2006275692A (en) Combustion condition monitoring system, and combustion condition monitoring program
CN106595868B (en) A kind of blast-furnace roasting band temperature field detection method based on improvement three-color process
JP6515342B2 (en) Blast furnace tuyere closure removal device and blast furnace tuyere closure removal method
JP2006126062A (en) Temperature measurement method and apparatus for molten metal
JP7335512B2 (en) Temperature measuring device and temperature measuring method
TWI697561B (en) Method for evaluating melting loss of bottom blowing hole of converter
JP2022144010A (en) Method, device and program for evaluating tuyere landscape of blast furnace
JP2857701B2 (en) Method and apparatus for measuring firing state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4873788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term