JP2002309237A - Method for manufacturing raw material for cerium- containing abrasive, and raw material manufactured thereby - Google Patents

Method for manufacturing raw material for cerium- containing abrasive, and raw material manufactured thereby

Info

Publication number
JP2002309237A
JP2002309237A JP2000375535A JP2000375535A JP2002309237A JP 2002309237 A JP2002309237 A JP 2002309237A JP 2000375535 A JP2000375535 A JP 2000375535A JP 2000375535 A JP2000375535 A JP 2000375535A JP 2002309237 A JP2002309237 A JP 2002309237A
Authority
JP
Japan
Prior art keywords
cerium
rare earth
raw material
abrasive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000375535A
Other languages
Japanese (ja)
Other versions
JP3838870B2 (en
Inventor
Hidehiko Yamazaki
秀彦 山▲崎▼
Yoshiji Uchino
義嗣 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000375535A priority Critical patent/JP3838870B2/en
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to US09/980,123 priority patent/US6562092B1/en
Priority to BR0106273-5A priority patent/BR0106273A/en
Priority to EA200200170A priority patent/EA003909B1/en
Priority to KR10-2001-7016083A priority patent/KR100453802B1/en
Priority to EEP200200016A priority patent/EE05140B1/en
Priority to EP01919807A priority patent/EP1285956A4/en
Priority to PCT/JP2001/002988 priority patent/WO2001088056A1/en
Priority to CNB018011683A priority patent/CN1162499C/en
Priority to AU46852/01A priority patent/AU762001B2/en
Priority to TW090110595A priority patent/TW524843B/en
Priority to MYPI20012192A priority patent/MY127740A/en
Publication of JP2002309237A publication Critical patent/JP2002309237A/en
Application granted granted Critical
Publication of JP3838870B2 publication Critical patent/JP3838870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a raw material for abrasives that can be sintered at a relatively low baking temperature, and does not cause abnormal grain growth when used for manufacturing cerium-containing abrasives. SOLUTION: This is a manufacturing method to produce a raw material for cerium-containing abrasives comprising, as a main component, a mixture of a cerium-containing rare earth carbonate and a cerium-containing rare earth oxide, wherein part of the carbonate is converted into the oxide by calcining at 400-800 deg.C. The baking time is preferably 0.1-48 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化セリウムを主
成分とするセリウム系研摩材の製造に用いられる原料の
製造方法に関し、更に、この原料を用いた研摩特性に優
れるセリウム系研摩材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material used for producing a cerium-based abrasive containing cerium oxide as a main component, and further relates to a cerium-based abrasive having excellent polishing characteristics using the raw material.

【0002】[0002]

【従来の技術】セリウム系研摩材は、種々のガラス材料
の研摩に用いられており、特に近年では、ハードディス
ク等の磁気記録媒体用ガラス、液晶ディスプレイ(LC
D)のガラス基板といった電気・電子機器で用いられて
いるガラス材料の研摩にも用いられており、その応用分
野が広がっている。
2. Description of the Related Art Cerium-based abrasives have been used for polishing various glass materials. In particular, in recent years, glass for magnetic recording media such as hard disks and liquid crystal displays (LC) have been used.
It is also used for polishing glass materials used in electric and electronic devices such as the glass substrate of D), and its application fields are expanding.

【0003】このセリウム系研摩材は、主成分である酸
化セリウム(CeO)粒子と、他の希土類金属酸化物
粒子とからなる研摩材粒子よりなり、酸化セリウムの全
希土酸化物含有量(以下、TREOという。)に対する
含有量により高セリウム研摩材と低セリウム研摩材とに
分類されているが、その製造工程には大差はない。即
ち、いずれのセリウム系研摩材も、まず、原料を粉砕後
に化学処理(湿式処理)を施す。これは、セリウム系研
摩材においてその高い切削性を確保するためにフッ素成
分の添加を行ない、場合によってはこれに加えて、後の
焙焼工程時に異常粒成長の原因となるナトリウム等のア
ルカリ金属を除去するためである。そして、湿式処理後
の原料は、濾過、乾燥後高温加熱して焙焼することによ
り原料粒子同士を焼結し、これを再度粉砕して分級する
ことで所望の粒径、粒度分布を有する研摩材が製造され
る。
[0003] This cerium-based abrasive comprises abrasive particles composed of cerium oxide (CeO 2 ) particles as a main component and other rare earth metal oxide particles, and the total rare earth oxide content of cerium oxide ( (Hereinafter referred to as TREO)), but are classified into high cerium abrasives and low cerium abrasives, but there is no significant difference in the production process. That is, any cerium-based abrasive is first subjected to a chemical treatment (wet treatment) after pulverizing the raw material. This is done by adding a fluorine component to the cerium-based abrasive to ensure its high machinability. In some cases, in addition to this, an alkali metal such as sodium which causes abnormal grain growth during the subsequent roasting process In order to remove. Then, the raw material after the wet treatment is filtered, dried, heated to a high temperature and then roasted to sinter the raw material particles, and then crushed and classified again to obtain a desired particle size and polishing having a desired particle size distribution. The material is manufactured.

【0004】ここで、セリウム系研摩材の製造のために
用いられる原料としては、従来は、バストネサイトと呼
ばれる希土鉱石を選鉱したバストネサイト精鉱という天
然原料を使用することが多かったが、最近ではバストネ
サイト鉱や比較的安価な中国産複雑鉱を化学処理するこ
とにより、希土類金属濃度を富化したセリウム系希土類
炭酸塩(以下、炭酸希土と称する)、又は、この希土類
炭酸塩について研摩材製造工程におく前に高温で仮焼す
ることにより酸化物としたセリウム系希土類酸化物(以
下、酸化希土と称する)を原料とすることが多くなって
いる。
Here, as a raw material used for the production of a cerium-based abrasive, a natural raw material called bastnaesite concentrate, which is a beneficiated rare earth ore, has conventionally been used in many cases. Recently, however, cerium-based rare earth carbonates (hereafter referred to as rare earth carbonates) that have been enriched in rare earth metal concentration by chemically treating bastnaesite ores and relatively inexpensive complex ores in China, Cerium-based rare earth oxides (hereinafter referred to as rare earth oxides), which are oxides obtained by calcining carbonates at a high temperature prior to the abrasive production process, are often used as raw materials.

【0005】[0005]

【発明が解決しようとする課題】ところで、研摩材とし
て十分な切削性を確保するためには、焙焼工程において
原料粒子を焼結させ適度な大きさの研摩粒子を製造する
ことが重要である。そのため、上記炭酸希土及び酸化希
土を原料として製造する場合においては、焙焼温度を1
000℃近傍と比較的高温域に設定するのが通常であ
る。これは、いずれの原料を適用するにしても、かかる
温度範囲でなければ、原料粒子の十分な焼結を生じさせ
ることができないことが経験的に明らかとなっているか
らである。
Incidentally, in order to ensure sufficient machinability as an abrasive, it is important to sinter the raw material particles in the roasting step to produce abrasive particles of an appropriate size. . Therefore, when the rare earth carbonate and the rare earth oxide are used as raw materials, the roasting temperature is set to 1
Usually, the temperature is set to a relatively high temperature range of around 000 ° C. This is because no matter which material is used, it is empirically clarified that the raw material particles cannot be sufficiently sintered unless the temperature is within such a temperature range.

【0006】しかしながら、焙焼温度を高くすること
は、焼結を促進するという効果がある一方で異常粒成長
の要因となる。そして、この異常粒成長により粗大粒子
が生じ、場合によってはそれが最終製品となる研摩材中
に混入することがある。そして、このような粗大粒子
は、傷の原因となることからできるだけその含有率を低
減させる必要がある。従来は、焙焼後の分級工程の調製
により行なわれていたが、粗粒子濃度を低くしようとす
るあまり分級条件を厳密にすることは研摩材の生産効率
を低下させそのコスト上昇の要因ともなる。
However, raising the roasting temperature has the effect of promoting sintering, but causes abnormal grain growth. Then, coarse particles are generated by the abnormal grain growth, and in some cases, may be mixed in the abrasive as a final product. Since such coarse particles cause scratches, it is necessary to reduce the content as much as possible. In the past, it was performed by preparing a classification process after roasting.However, if the classification conditions were too strict to lower the coarse particle concentration, the production efficiency of the abrasive was reduced and the cost was increased. .

【0007】従って、粗粒子の混入を抑制し、且つ、生
産効率を確保するためには、焙焼工程において異常粒成
長を抑制するため、できるだけ低い温度で焙焼させるこ
とができることが望ましいといえる。
[0007] Therefore, in order to suppress the mixing of coarse particles and secure production efficiency, it can be said that it is desirable to be able to perform roasting at the lowest possible temperature in order to suppress abnormal grain growth in the roasting step. .

【0008】そこで、本発明は、研摩材製造において焙
焼温度が比較的低温であっても焼結可能であり、異常粒
成長のおそれのない研摩材用原料を製造する方法を提示
することを目的とする。そして、この方法により製造さ
れる研摩材用原料及びこれにより製造される高品位の研
摩面を形成可能なセリウム系研摩材を提供することを目
的とする。
Accordingly, the present invention provides a method for producing a raw material for an abrasive, which is capable of sintering even at a relatively low roasting temperature in the production of an abrasive, and which is free from abnormal grain growth. Aim. An object of the present invention is to provide a raw material for an abrasive produced by this method and a cerium-based abrasive produced by the method and capable of forming a high-quality polished surface.

【0009】[0009]

【課題を解決するための手段】かかる課題を解決すべ
く、本発明者らは、鋭意研究を行ない、上記した炭酸希
土及び酸化希土を用いた際の焙焼時の焼結機構につき検
討した。本発明者等によれば、炭酸希土及び酸化希土に
ついて高温での焙焼が必要な理由としては以下のような
ものが考えられる。
Means for Solving the Problems In order to solve such problems, the present inventors have conducted intensive studies and studied the sintering mechanism at the time of roasting using the above-mentioned rare earth carbonate and rare earth oxide. did. According to the present inventors, the reason why roasting of rare earth carbonate and rare earth oxide at a high temperature is necessary is as follows.

【0010】まず、炭酸希土については図1に示すよう
なものである。原料として搬入される炭酸希土は、希土
類炭酸塩粒子が結束した粗大な凝集体よりなる。そし
て、炭酸希土を原料とした研摩材の製造工程では、ま
ず、この原料を粉砕する工程におかれるが、この炭酸希
土の凝集体は結束力が強く、また、この粉砕工程では原
料をスラリー化して粉砕する湿式粉砕が適用されること
が多いが、このスラリーの粘度は酸化希土の凝集力より
も高いため粉砕効率が低く、完全に微粒とすることが困
難なため、粉砕後の微粒炭酸希土の中には部分的に粗大
粒子が残留した状態となる。
First, the rare earth carbonate is as shown in FIG. The rare earth carbonate carried in as a raw material is composed of coarse aggregates in which rare earth carbonate particles are bound. In the process of manufacturing an abrasive using rare earth carbonate as a raw material, first, the raw material is crushed. The aggregate of the rare earth carbonate has a strong binding power. Although wet pulverization of slurrying and pulverization is often applied, since the viscosity of this slurry is higher than the cohesive force of rare earth oxide, the pulverization efficiency is low, and it is difficult to make it into fine particles completely. Coarse particles are partially left in the fine rare earth carbonate.

【0011】粉砕工程後の原料は、フッ化処理される
が、このフッ化処理においては、炭酸希土中の一部の炭
酸成分がフッ素と交換され、炭酸希土はフッ化炭酸希土
となり、これに伴い粗大粒子の破壊が生じる。しかし、
フッ化処理で添加されるフッ素の量には最終製品のフッ
素濃度との関係から制限があることから粗大粒子の破壊
は十分にはなされない。
The raw material after the pulverizing step is subjected to a fluorination treatment. In the fluorination treatment, a part of the carbonic acid component in the rare earth carbonate is exchanged for fluorine, and the rare earth carbonate becomes rare earth fluorocarbonate. Accordingly, the coarse particles are destroyed. But,
Since the amount of fluorine added in the fluorination treatment is limited due to the relationship with the fluorine concentration of the final product, coarse particles are not sufficiently destroyed.

【0012】そして、フッ化処理された炭酸希土は、焙
焼されるが、炭酸希土中の大部分の炭酸成分はこの焙焼
時にCOとして放出され、これにより炭酸希土粒子は
密度の低い多孔質の形骸粒子となる。このような形骸粒
子は焼結速度が遅いため高温でなければ焼結が進行しな
い。特に、炭酸希土は上述のように粗大粒子が多く残留
していることから、この粗大粒子は粗大な形骸粒子を形
成するが、この粗大な形骸粒子は焼結速度が極めて遅
い。このような理由から炭酸希土を原料として研摩材を
製造する際、焙焼温度を高温にする必要があるのであ
る。
Then, the fluorinated rare earth carbonate is roasted, and most of the carbonate component in the rare earth carbonate is released as CO 2 during the roasting. And low porous particles. Since the sintering speed of such shaped particles is low, sintering does not proceed unless the temperature is high. In particular, since the rare earth carbonate has a large amount of coarse particles remaining as described above, the coarse particles form coarse shaped body particles, but the coarse shaped body particles have a very low sintering rate. For this reason, when producing an abrasive using rare earth carbonate as a raw material, it is necessary to raise the roasting temperature.

【0013】一方、酸化希土についての焼結機構を図示
すると、図2のようになる。上記したように、酸化希土
は炭酸希土を高温で仮焼したものであるから、酸化希土
の原料となる炭酸希土は、図1と同様に粗大粒子を形成
している。しかし、この炭酸希土を仮焼することで、そ
の炭酸成分の放出が生じて形骸粒子を形成するが、この
形骸粒子は脆く仮焼工程中に受ける衝撃により崩壊し、
ある程度微粒の炭酸希土粒子を形成する。そして、これ
ら微粒の炭酸希土はその後の加熱により酸化し酸化希土
となる。
On the other hand, the sintering mechanism for rare earth oxide is illustrated in FIG. As described above, the rare earth oxide is obtained by calcining the rare earth carbonate at a high temperature. Therefore, the rare earth carbonate as the raw material of the rare earth oxide forms coarse particles as in FIG. However, by calcining this rare earth carbonate, the release of the carbonic acid component occurs to form shaped particles, which are brittle and collapse by the impact received during the calcining process,
Form some fine particles of rare earth carbonate. Then, these fine particles of rare earth carbonate are oxidized by the subsequent heating to become rare earth oxide.

【0014】しかし、この高温での仮焼工程において
は、生成した酸化希土粒子同士が焼結し凝集体を形成す
る。この酸化希土の凝集体は結束力が強くその後の粉砕
工程によってもその一部がそのままの形状で残留する。
これにより、このような凝集体については、フッ化処理
を行なった際内部までフッ化されることなく中心部の酸
化希土粒子は酸化物のままとなる。
However, in the calcining step at this high temperature, the generated rare earth oxide particles sinter together to form an aggregate. This rare earth oxide aggregate has a strong binding force and a part thereof remains in the same shape even in the subsequent pulverization step.
As a result, such an agglomerate is not fluorinated to the inside when the fluorination treatment is performed, and the rare earth oxide particles at the center remain as oxide.

【0015】このようなフッ化の不均一はその後の焙焼
時における焼結工程に対して悪影響を与える。即ち、か
かるフッ化が不均一になされた凝集体は、焙焼工程下に
おける加熱、衝撃により崩壊するがこれによりフッ化が
十分なされた酸化希土粒子とフッ化されていない又はフ
ッ素濃度の低い酸化希土粒子とが混在した状態となる。
そして、前者は速やかに焼結するが、後者は焼結速度が
遅く相当高温下でなければ十分な焼結速度が得られな
い。このような理由から酸化希土を原料として研摩材を
製造する際には、焙焼温度を高温にする必要があるので
ある。
[0015] Such non-uniformity of fluoridation adversely affects the sintering step in the subsequent roasting. That is, the agglomerates in which such fluorination is made nonuniform are collapsed by heating and impact during the roasting step, but are not fluorinated with the rare earth oxide particles that have been sufficiently fluorinated by this, or have a low fluorine concentration. It becomes a state in which rare earth oxide particles are mixed.
The former sinters quickly, but the latter does not have a sufficient sintering rate unless the sintering rate is low and the temperature is considerably high. For this reason, when producing an abrasive using rare earth oxide as a raw material, it is necessary to raise the roasting temperature.

【0016】本発明者等は、以上のような炭酸希土及び
酸化希土の焼結機構を考慮し、焙焼時に形骸粒子を存在
させず、且つ、フッ化処理を均一に行なうことができる
原料を製造する方法として、酸化希土と同様に粉砕前の
炭酸希土を仮焼しつつ、この仮焼による炭酸希土から酸
化希土への変化が部分的に生じるようにすることで、上
記課題を解決可能であると考えた。このような部分的仮
焼の過程を図3に示す。
The present inventors have considered the sintering mechanism of rare earth carbonate and rare earth oxide as described above, and can perform the fluorination treatment uniformly without the presence of shaped particles during roasting. As a method of manufacturing the raw material, by calcining the rare earth carbonate before pulverization in the same manner as the rare earth oxide, by causing the change from the rare earth carbonate to the rare earth oxide by the calcination to occur partially, We thought that the above problem could be solved. FIG. 3 shows the process of such partial calcination.

【0017】この部分的仮焼においては、酸化希土の製
造方法と同様、炭酸希土を仮焼するものであるから、仮
焼初期において炭酸希土粒子に生じる変化は酸化希土と
同様である。つまり、炭酸成分がCOとして放出され
炭酸希土粒子が形骸粒子となり、崩壊し微粒の炭酸希土
粒子を形成する。そして、これら炭酸希土粒子は酸化さ
れ加熱時間の経過にともない粒子中の酸化物の割合が増
加していくことになる。本発明に係る部分的仮焼ではこ
の炭酸希土が完全に酸化希土となる前に仮焼を中止し、
原料を構成する粒子を酸化物炭酸塩とからなる混合希土
とするものである。
In this partial calcination, the rare earth carbonate is calcined similarly to the method for producing the rare earth oxide. Therefore, the change occurring in the rare earth carbonate particles in the initial stage of the calcination is the same as that of the rare earth oxide. is there. In other words, the carbonic acid component is released as CO 2 , and the rare earth carbonate particles become skeleton particles, disintegrate, and form fine rare earth carbonate particles. Then, the rare earth carbonate particles are oxidized, and the proportion of the oxide in the particles increases as the heating time elapses. In the partial calcination according to the present invention, the calcination is stopped before the rare earth carbonate is completely turned into a rare earth oxide,
The particles constituting the raw material are mixed rare earths composed of oxide carbonate.

【0018】この部分的仮焼により形成された混合希土
粒子は、その後の粉砕工程及びフッ化処理により、残留
した形骸粒子の破壊及び更なる微粒化が進行することと
なる。また、フッ化処理においては、酸化希土の場合の
ように凝集粒子が存在していないので均一なフッ化がな
される。その結果、仮焼工程においては形骸粒子やフッ
化の不十分な粒子のような焼結を妨げる要因がないの
で、比較的低温においても焼結が進行するのである。
In the mixed rare earth particles formed by the partial calcination, the remaining pulverized particles are broken and further atomized by the subsequent pulverization step and fluorination treatment. In the fluoridation treatment, uniform fluorination is performed because no aggregated particles exist as in the case of rare earth oxide. As a result, in the calcining step, there is no factor that hinders sintering, such as shaped particles or particles with insufficient fluorination, so that sintering proceeds even at a relatively low temperature.

【0019】このように、本発明者らが提唱する部分的
仮焼によれば、炭酸希土及び酸化希土が有する高温でな
ければ焼結が生じがたいという問題を生じさせることの
ない研摩材用原料が製造可能である。
As described above, according to the partial calcination proposed by the present inventors, polishing which does not cause a problem that sintering is difficult to occur unless the high temperature of the rare earth carbonate and the rare earth oxide is present. Raw materials for materials can be manufactured.

【0020】一方、この部分的仮焼においては、如何に
炭酸希土を適度に酸化させて混合希土とするかが肝要で
ある。加熱が過度であると炭酸希土が完全に酸化希土と
なり、上述のように不均一にフッ化されることとなるか
らであり、また、加熱が不足すると十分な形骸粒子の破
壊が生じないから、いずれの場合も焼結性に問題がある
原料となるからである。本発明者等は、このような部分
的仮焼を行なって研摩材用原料を製造するにあたり差異
的な条件を見出すべく鋭意検討を行なった結果、本願請
求項1記載の発明を想到するに至った。
On the other hand, in this partial calcination, it is important how the rare earth carbonate is appropriately oxidized into a mixed rare earth. If the heating is excessive, the rare earth carbonate becomes completely a rare earth oxide and is fluorinated non-uniformly as described above, and if the heating is insufficient, sufficient destruction of the skeleton particles does not occur. This is because in any case, the raw material has a problem in sinterability. The present inventors have conducted intensive studies to find out different conditions in producing the raw material for an abrasive by performing such partial calcination, and as a result, have come to the invention described in claim 1 of the present application. Was.

【0021】即ち、本願請求項1記載の発明は、セリウ
ム系希土類炭酸塩とセリウム系希土類酸化物との混合希
土類塩を主成分とするセリウム系研摩材用原料の製造方
法であって、セリウム系希土類炭酸塩を400℃〜80
0℃で仮焼することにより、一部のセリウム系希土類炭
酸塩をセリウム系希土類酸化物に変化させるセリウム系
研摩材用原料の製造方法である。
That is, the invention according to claim 1 of the present application is a method for producing a raw material for a cerium-based abrasive mainly comprising a mixed rare-earth salt of a cerium-based rare earth carbonate and a cerium-based rare earth oxide, Rare earth carbonate at 400 ° C ~ 80
This is a method for producing a raw material for a cerium-based abrasive, in which a part of the cerium-based rare earth carbonate is converted into a cerium-based rare earth oxide by calcining at 0 ° C.

【0022】この仮焼温度を、400〜800℃とした
のは、かかる温度で仮焼することにより炭酸希土から適
度に炭酸成分を放出させるためである。即ち、800℃
を超えると酸化希土への変化が早くなり完全な酸化希土
になってしまうと共に、400℃未満では、十分な炭酸
成分の放出、粗大粒子の破壊が生じないからである。そ
して、同様に炭酸希土から適度に炭酸成分を放出させる
観点からこの温度範囲で、部分的仮焼を行うにあたって
は、請求項2記載のように仮焼時間を0.1〜48時間
とするのが好ましい。
The reason for setting the calcination temperature to 400 to 800 ° C. is to release the carbonate component from the rare earth carbonate appropriately by calcination at such a temperature. That is, 800 ° C
If the temperature exceeds 400 ° C., the conversion to rare earth oxide will be rapid and complete rare earth oxide will be obtained, and if the temperature is lower than 400 ° C., sufficient release of carbonic acid component and destruction of coarse particles will not occur. Similarly, in performing the partial calcination in this temperature range from the viewpoint of appropriately releasing the carbonate component from the rare earth carbonate, the calcination time is set to 0.1 to 48 hours as described in claim 2. Is preferred.

【0023】そして、本発明により製造された原料は、
従来のセリウム系研摩材の製造工程にそのまま適用する
ことができ、粉砕及びフッ化処理を行うことにより、粗
大粒子が少ない上に均一にフッ化することができる。こ
れにより焙焼工程の焙焼温度を低減することができる。
The raw material produced according to the present invention is
It can be applied as it is to the conventional cerium-based abrasive production process, and by performing pulverization and fluorination treatment, it is possible to reduce the amount of coarse particles and uniformly fluorinate. Thereby, the roasting temperature in the roasting step can be reduced.

【0024】ここで、焙焼時の焼結性に加えて原料運搬
の利便性そして最終製品である研摩材の生産性を考慮す
れば、より好ましい原料としては、請求項4記載のよう
にこのセリウム系研摩材用原料を含むものであって、1
000℃で1時間加熱した場合の強熱減量が乾燥重量基
準で1.0〜20%であるセリウム系研摩材用原料が好
ましい。
Here, in consideration of the convenience of transporting the raw materials and the productivity of the abrasive as a final product in addition to the sinterability during roasting, more preferable raw materials are as described in claim 4. It contains raw materials for cerium-based abrasives,
Cerium-based abrasive raw materials having a loss on ignition of 1.0 to 20% on a dry weight basis when heated at 000 ° C. for 1 hour are preferred.

【0025】強熱減量(以下、LOI(Loss On
Ignition)と称する。)とは、対象物を強熱
した際の重量減少率をいう。セリウム系研摩材用原料に
おいて、この強熱減量が高いということは、焙焼時に焙
焼前の原料重量に対して最終製品の重量が低くなること
から、生産性が悪いということを意味する。この強熱減
量の値は炭酸希土は約30%と高く、高温で十分仮焼さ
れた酸化希土については約0.5%と低い値を示すこと
がわかっている。従って、本発明においてLOIの値は
炭酸希土と酸化希土の存在比率を間接的に表示する指標
ともいえる。尚、本発明において強熱減量の基準を10
00℃で1時間加熱した場合としたのは、炭酸希土の場
合、500℃以上の加熱で強熱減量の値が安定し始める
ことが実験的に確認されていることから、1000℃で
の加熱が最も安定的な指標として適用可能であるという
考えに基づくものである。
Loss on ignition (hereinafter referred to as LOI (Loss On)
Ignition). ) Means the rate of weight loss when the object is ignited. The high ignition loss in the cerium-based abrasive material means that the productivity is poor because the weight of the final product is lower than the weight of the raw material before roasting during roasting. It is known that the value of this ignition loss is as high as about 30% for rare earth carbonate and about 0.5% for rare earth oxide which has been sufficiently calcined at a high temperature. Therefore, in the present invention, the value of LOI can be said to be an index for indirectly indicating the existence ratio of rare earth carbonate and rare earth oxide. In the present invention, the standard for ignition loss is 10
The case of heating at 00 ° C. for 1 hour is because, in the case of rare earth carbonate, it has been experimentally confirmed that the value of loss on ignition starts to stabilize by heating at 500 ° C. or more. It is based on the idea that heating can be applied as the most stable indicator.

【0026】そして、本発明において強熱減量を1.0
〜20%としたのは、本発明者らの試験結果から、かか
る範囲であれば、比較的低温で焙焼しても焼結が十分に
かつ均一に進行することから、研摩値がある程度高く傷
がほとんど発生しない研摩材を得ることができるからで
ある。ここで、強熱減量の範囲を1.0〜20%とする
ためには、本発明に係る方法により上記仮焼温度及び仮
焼時間範囲において、所望の強熱減量となるように炭酸
希土を加熱することで炭酸希土と酸化希土の配分を調整
することによる。また、本発明により製造した原料に、
酸化希土又は炭酸希土を適宜に混合することによっても
調製可能である。
In the present invention, the ignition loss is 1.0
According to the test results of the present inventors, within the above range, sintering proceeds sufficiently and uniformly even when roasting at a relatively low temperature. This is because it is possible to obtain an abrasive which scarcely generates scratches. Here, in order to set the range of the loss on ignition to 1.0 to 20%, the rare earth carbonate is adjusted so that the desired loss on ignition is obtained in the above-mentioned range of the calcination temperature and the calcination time by the method according to the present invention. By adjusting the distribution of rare earth carbonate and rare earth oxide by heating. Also, in the raw material produced according to the present invention,
It can also be prepared by appropriately mixing rare earth oxide or rare earth carbonate.

【0027】上述のように本発明に係る研摩材用原料は
比較的低温で焙焼しても十分な焼結速度にて焼結可能で
ある。そこで、請求項5記載の発明は、この原料を粉砕
しフッ化処理を行なった後、フッ化処理後のセリウム系
研摩材用原料を700〜1000℃の温度範囲で焙焼す
る工程を含むセリウム系研摩材の製造方法とした。この
ように低温で焙焼することにより、異常粒成長を抑制
し、傷発生のない高品位の研摩面が形成可能なセリウム
系研摩材を製造することができる。
As described above, the raw material for an abrasive according to the present invention can be sintered at a sufficient sintering rate even when roasted at a relatively low temperature. Therefore, the invention according to claim 5 includes a step of pulverizing and fluorinating this raw material, and then roasting the fluorinated cerium-based abrasive raw material in a temperature range of 700 to 1000 ° C. A method for producing abrasives. By roasting at such a low temperature, it is possible to produce a cerium-based abrasive capable of suppressing abnormal grain growth and forming a high-quality polished surface without flaws.

【0028】尚、このセリウム系研摩材の製造方法にお
いては、焙焼工程前にフッ化処理を行なうこととなる
が、このフッ化処理はフッ化アンモニウムを用いて行な
うのが好ましい。フッ化処理についてはフッ酸も適用可
能であるが、フッ化アンモニウムはフッ化反応が緩やか
に進行するので、原料中にフッ素を寄り均一に分布させ
ることができるからである。そして、これによりより低
温での焙焼が可能となるからである。
In the method for producing a cerium-based abrasive, a fluorination treatment is performed before the roasting step. This fluorination treatment is preferably performed using ammonium fluoride. Hydrofluoric acid can also be used for the fluoridation treatment, but ammonium fluoride allows the fluorination reaction to proceed slowly, so that fluorine can be more uniformly distributed in the raw material. This is because roasting at a lower temperature becomes possible.

【0029】[0029]

【発明の実施の形態】以下、本発明の好適な実施形態を
比較例と共に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below along with comparative examples.

【0030】第1実施形態:TREO中の酸化セリウム
含有量60%(TREO:70%(乾燥重量基準))の
炭酸希土20kgをマッフル炉で、500℃で2時間仮
焼することで研摩材用原料を製造した。そして、この際
のLOIを測定した。
First Embodiment : Abrasive materials are prepared by calcining 20 kg of rare earth carbonate having a cerium oxide content of 60% in TREO (TREO: 70% (dry weight basis)) in a muffle furnace at 500 ° C. for 2 hours. Raw materials were manufactured. Then, the LOI at this time was measured.

【0031】LOIの測定は次のように行なった。予め
重量を測定したるつぼに研摩材用原料を入れその重量を
測定した後、電気炉中で1000℃、1時間加熱した後
乾燥雰囲気下で放冷した。放冷後るつぼの重量を測定
し、下記計算式に従いLOIの値を求めた。その結果、
本実施形態により製造された研摩材用原料のLOIは5
%であった。
The LOI was measured as follows. The raw material for an abrasive was placed in a crucible whose weight was measured in advance, and the weight thereof was measured. After that, the material was heated in an electric furnace at 1000 ° C. for 1 hour and then allowed to cool in a dry atmosphere. After cooling, the weight of the crucible was measured, and the value of LOI was determined according to the following formula. as a result,
The LOI of the raw material for the abrasive produced according to this embodiment is 5
%Met.

【0032】[0032]

【数1】 (B:強熱減量(%)、W:加熱前の研摩材用原料と
るつぼの重量(g)、W :加熱後の研摩材用原料とる
つぼの重量(g)、W:るつぼの重量)
(Equation 1)(B: Loss on ignition (%), W1: Raw material for abrasive before heating
Crucible weight (g), W 2: Take raw material for abrasive after heating
Pot weight (g), W3: Crucible weight)

【0033】次に、この研摩材用原料2kgと純水2l
とを直径5mmの鋼製の粉砕媒体12kgが充填された
湿式ボールミル(容量5l)にて5時間粉砕し、平均粒
径(マイクロトラック法D50(累積50%粒径))1
μmの粉体からなるスラリーとした。その後、最終状態
の研摩材中のフッ素濃度が6%となるようにすべく、粉
砕スラリーに濃度1mol/lのフッ化アンモニウム溶
液を添加した後に、純水で洗浄後濾過してケーキを得
た。次に、このケーキを乾燥後、900℃で3時間焙焼
し、再度粉砕した後分級してセリウム系研摩材を得た。
Next, 2 kg of this abrasive material and 2 l of pure water
Were crushed for 5 hours in a wet ball mill (volume: 5 l) filled with 12 kg of a steel crushing medium having a diameter of 5 mm, and the average particle size (microtrack method D50 (cumulative 50% particle size)) 1
The slurry was made of a powder of μm. Then, a 1 mol / l ammonium fluoride solution was added to the pulverized slurry so that the fluorine concentration in the abrasive in the final state became 6%, followed by washing with pure water and filtration to obtain a cake. . Next, after drying this cake, it was roasted at 900 ° C. for 3 hours, pulverized again, and classified to obtain a cerium-based abrasive.

【0034】第2〜第4実施形態:第1実施形態で製造
した原料を用いて焙焼温度を変化させてセリウム系研摩
材を製造した。焙焼温度は、850℃、950℃、10
50℃とした。尚、焙焼温度以外の条件は第1実施形態
と同様とした。
Second to Fourth Embodiments : Cerium-based abrasives were manufactured by changing the roasting temperature using the raw materials manufactured in the first embodiment. The roasting temperature is 850 ° C., 950 ° C., 10
50 ° C. The conditions other than the roasting temperature were the same as in the first embodiment.

【0035】第5実施形態:本実施形態では、炭酸希土
の仮焼温度、仮焼時間を変えて研摩材用原料を製造し、
LOIを測定後、セリウム系研摩材を製造した。この際
の、研摩材用原料の製造条件は仮焼温度を400℃、仮
焼時間を18時間とした以外は第1実施形態と同様とし
た。また、研摩材の製造条件は、焙焼温度を900℃と
した以外は第1実施形態と同様とした。本実施形態で製
造された研摩材用原料のLOIも5%であった。
Fifth Embodiment : In this embodiment, a raw material for an abrasive is manufactured by changing the calcination temperature and calcination time of rare earth carbonate.
After measuring the LOI, a cerium-based abrasive was manufactured. At this time, the production conditions of the raw material for the abrasive were the same as in the first embodiment except that the calcination temperature was 400 ° C. and the calcination time was 18 hours. The production conditions of the abrasive were the same as in the first embodiment except that the roasting temperature was 900 ° C. The LOI of the raw material for abrasives produced in this embodiment was also 5%.

【0036】第6〜第8実施形態:第5実施形態で製造
した原料を用いて焙焼温度を変化させてセリウム系研摩
材を製造した。焙焼温度は、850℃、950℃、10
50℃とした。尚、焙焼温度以外の条件は第5実施形態
と同様とした。
Sixth to Eighth Embodiments : Cerium-based abrasives were manufactured by changing the roasting temperature using the raw materials manufactured in the fifth embodiment. The roasting temperature is 850 ° C., 950 ° C., 10
50 ° C. The conditions other than the roasting temperature were the same as in the fifth embodiment.

【0037】比較例1:第1〜第8実施形態で製造した
セリウム系研摩材材に対する比較例として、炭酸希土を
仮焼して酸化希土からなる研摩材用原料を製造し、この
酸化希土からセリウム系研摩材を製造した。酸化希土の
製造は、第1実施形態と同様の炭酸希土20kgをマッ
フル炉にて、900℃で3時間仮焼して酸化希土とし
た。また、セリウム系研摩材の製造は焙焼温度を980
℃とした以外は、第1実施形態と同様の工程にて行なっ
ている。
Comparative Example 1 : As a comparative example for the cerium-based abrasives manufactured in the first to eighth embodiments, a rare earth carbonate was calcined to produce an abrasive material consisting of rare earth oxide. A cerium-based abrasive was manufactured from rare earth. Rare earth oxide was produced by calcining 20 kg of the same rare earth carbonate as in the first embodiment at 900 ° C. for 3 hours in a muffle furnace to obtain a rare earth oxide. The production of cerium-based abrasives requires a roasting temperature of 980.
Except that the temperature was set to ° C., the same process as in the first embodiment was performed.

【0038】比較例2〜比較例5:比較例1の酸化希土
からセリウム系研摩材を製造する工程において、焙焼温
度を850℃、900℃、950℃、1050℃と変化
させてセリウム系研摩材を製造した。
Comparative Examples 2 to 5 : In the step of producing a cerium-based abrasive from the rare earth oxide of Comparative Example 1, the roasting temperature was changed to 850 ° C., 900 ° C., 950 ° C., and 1050 ° C. Abrasives were manufactured.

【0039】比較例6:次に、研摩材用原料として炭酸
希土を用いてセリウム系研摩材を製造した。研摩材用原
料としての炭酸希土は第1実施形態と同じものを用い
た。また、この炭酸希土からセリウム系研摩材を製造す
る工程における製造条件は、焙焼温度も含めて比較例1
と同様とした。
Comparative Example 6 Next, a cerium-based abrasive was manufactured using rare earth carbonate as a raw material for the abrasive. The same rare earth carbonate as the abrasive material used in the first embodiment was used. The production conditions in the process of producing the cerium-based abrasive from the rare earth carbonate were the same as those in Comparative Example 1 including the roasting temperature.
The same as above.

【0040】比較例7〜比較例10:比較例1と同様研
摩材用原料として炭酸希土を用い、焙焼温度を850
℃、900℃、950℃、1050℃と変化させてセリ
ウム系研摩材を製造した。
Comparative Examples 7 to 10 : As in Comparative Example 1, rare earth carbonate was used as a raw material for an abrasive, and the roasting temperature was 850.
The cerium-based abrasive was manufactured by changing the temperature to 900C, 950C, and 1050C.

【0041】そして、これらのセリウム系研摩材の内、
第2〜第4実施形態及び第6〜第8実施形態、並びに、
比較例2、4,5及び比較例7,9,10の焙焼温度を
変化させて製造したセリウム系研摩材について、焙焼後
の研摩粒子の大きさを検討すべく比表面積の測定を行な
った。比表面積の測定はBET法にて行なった。この結
果を表1に示す。
And among these cerium-based abrasives,
Second to fourth embodiments and sixth to eighth embodiments, and
For the cerium-based abrasives produced by changing the roasting temperature in Comparative Examples 2, 4, 5 and Comparative Examples 7, 9, and 10, the specific surface area was measured in order to examine the size of the abrasive particles after roasting. Was. The specific surface area was measured by the BET method. Table 1 shows the results.

【0042】[0042]

【表1】 [Table 1]

【0043】この結果、酸化希土、炭酸希土を原料とし
た研摩材については、1050℃という相当高温でなけ
れば比表面積が小さくなっていないこと、つまり焼結が
生じていないことが確認された。一方、第2〜第4実施
形態及び第6〜第8実施形態に係るセリウム系研摩材
は、850℃程度の焙焼でも比表面積が小さくなってい
る。これは、これらの実施形態のように比較的低温での
仮焼を行なった研摩材原料は焼結が容易であることを示
している。
As a result, it was confirmed that the abrasive using the rare earth oxide or the rare earth carbonate as a raw material had a small specific surface area, that is, did not undergo sintering, unless the temperature was as high as 1050 ° C. Was. On the other hand, the cerium-based abrasives according to the second to fourth embodiments and the sixth to eighth embodiments have a small specific surface area even when roasted at about 850 ° C. This indicates that the abrasive raw material that has been calcined at a relatively low temperature as in these embodiments can be easily sintered.

【0044】次に、第1及び第5実施形態に係るセリウ
ム系研摩材と比較例1、3、6、8に係るセリウム系研
摩材について、研摩材中の粗粒子(粒径10μm以上の
研摩粒子)の濃度を分析し、更にこれらのセリウム系研
摩材を用いて、ガラス材料の研摩を行い、研摩値の測定
及び研摩面の状態を比較評価した。
Next, with regard to the cerium-based abrasives according to the first and fifth embodiments and the cerium-based abrasives according to Comparative Examples 1, 3, 6, and 8, coarse particles in the abrasive (polishing having a particle size of 10 μm or more) were used. The cerium-based abrasive was used to polish a glass material, and the polishing value was measured and the state of the polished surface was compared and evaluated.

【0045】粗粒子濃度の測定は、以下のようにして行
なった、各セリウム系研摩材200gを秤量採取し、こ
れを分散剤として0.1%のヘキサメタリン酸ナトリウ
ムを含有する水溶液に分散させ2分間攪拌しスラリーを
製造した。このスラリーを孔径10μmのマイクロシー
ブで濾過し、篩上の残滓を回収した。回収した残滓を再
度0.1%ヘキサメタリン酸ナトリウム溶液に分散させ
スラリー化した。このとき、分散は超音波攪拌を1分間
行っている。そして、スラリーを孔径10μmのマイク
ロシーブで濾過した。この回収残滓の再スラリー化、濾
過は2回行って粗粒子を回収した。その後、この粗粒子
を十分乾燥させた後秤量し、この粗粒子重量から粗粒子
濃度を求めた。
The measurement of the coarse particle concentration was carried out as follows. 200 g of each cerium-based abrasive was weighed, collected and dispersed in an aqueous solution containing 0.1% sodium hexametaphosphate as a dispersant. The mixture was stirred for minutes to produce a slurry. This slurry was filtered through a micro sieve having a pore size of 10 μm, and the residue on the sieve was recovered. The collected residue was again dispersed in a 0.1% sodium hexametaphosphate solution to form a slurry. At this time, the dispersion was carried out by ultrasonic stirring for 1 minute. Then, the slurry was filtered with a micro sieve having a pore size of 10 μm. Re-slurry and filtration of the collected residue were performed twice to collect coarse particles. Thereafter, the coarse particles were sufficiently dried and weighed, and the coarse particle concentration was determined from the weight of the coarse particles.

【0046】また、研摩値の測定及び研摩面の状態の評
価は、まず、各研摩材を水に分散させて10重量%の研
摩材スラリーとした。この研摩材スラリーは研摩試験
中、攪拌機にて常時攪拌し、研摩材が沈降しないように
した。そして、ガラス材料の研摩は、高速研摩機で65
mmφの平面パネル用ガラスを被研摩材としてポリウレ
タン製の研摩パッドを用いて研摩した。研摩条件は、研
摩材スラリーを5ml/minの速度で供給し、研摩面
に対する圧力を15.7kg/cmに設定して研摩機
の回転速度を1000rpmとした。研摩後のガラス材
料は、純水で洗浄し無塵状態で乾燥させた。
For the measurement of the polishing value and the evaluation of the state of the polished surface, first, each abrasive was dispersed in water to obtain an abrasive slurry of 10% by weight. This abrasive slurry was constantly stirred with a stirrer during the polishing test so that the abrasive did not settle. Polishing of glass material is performed with a high-speed polishing machine.
The glass for flat panel of mmφ was polished using a polishing pad made of polyurethane as a material to be polished. The polishing conditions were such that the abrasive slurry was supplied at a rate of 5 ml / min, the pressure on the polished surface was set at 15.7 kg / cm 2, and the rotation speed of the polisher was 1000 rpm. The polished glass material was washed with pure water and dried in a dust-free state.

【0047】この評価試験における研摩値の測定は、研
摩前後のガラスの重量を測定することで研摩による重量
減を求め、この重量減から研摩値を表すし、比較例8の
研摩材による重量源を100として相対的に評価した。
また、研摩面の表面仕上りの評価は、研摩表面の傷の有
無及び研摩材粒子の研摩面への残存の有無を基準として
評価した。具体的には、研摩後のガラスの表面に30万
ルクスのハロゲンランプを照射し、反射法にてガラス表
面を観察することにより行なった。この際、傷の評価に
ついては、傷の程度(大きさ)及びその大きさにより点
数付けをし、100点満点からの減点方式にて評価し
た。この評価結果を表2に示す。
The polishing value in this evaluation test was determined by measuring the weight of the glass before and after polishing to determine the weight loss due to polishing, and expressing the polishing value from this weight reduction. Was relatively evaluated as 100.
The surface finish of the polished surface was evaluated based on the presence or absence of scratches on the polished surface and the presence or absence of abrasive particles on the polished surface. Specifically, the surface of the polished glass was irradiated with a halogen lamp of 300,000 lux, and the glass surface was observed by a reflection method. At this time, the evaluation of the flaw was scored according to the degree (size) of the flaw and its size, and evaluated by a deduction system from 100 points. Table 2 shows the evaluation results.

【0048】[0048]

【表2】 [Table 2]

【0049】この結果から、第1、第5実施形態に係る
セリウム系研摩材は、研摩値も良好であり、また、研摩
面にも傷発生がなく優れた研摩面を形成できることがわ
かった。一方、比較例である酸化希土及び炭酸希土を原
料とするセリウム系研摩材は、焙焼温度が同じ場合には
儀図の表かはほぼ同じであるが、焼結性が劣るために研
摩値が低い。また、焼結温度を高くするとある程度は研
摩値が上昇するが、傷の発生が見られ研摩面の評価が低
くなった。この結果は、粗粒子濃度の測定結果に見られ
るように、比較例1及び6の研摩材中には400ppm
以上の粗粒子が混入していることによるものと考えられ
るが、この粗粒子は酸化希土、炭酸希土については焙焼
を高温で行なうことで焼結を生じさせていることから、
異常粒成長が生じこれにより生成した粗粒子が最終製品
である研摩材に残留したことによるものと考えられる。
From these results, it was found that the cerium-based abrasives according to the first and fifth embodiments had good polishing values, and could form an excellent polished surface with no scratches on the polished surface. On the other hand, the comparative example is a cerium-based abrasive using rare earth oxide and rare earth carbonate as raw materials. Polishing value is low. When the sintering temperature was increased, the polishing value increased to some extent, but scratches were observed and the evaluation of the polished surface was lowered. This result is, as can be seen from the measurement results of the coarse particle concentration, 400 ppm in the abrasives of Comparative Examples 1 and 6.
It is considered that the above coarse particles are mixed, but since these coarse particles cause sintering by performing roasting at a high temperature for rare earth oxides and rare earth carbonates,
It is considered that abnormal grain growth occurred, and the coarse particles thus generated remained in the final abrasive product.

【0050】[0050]

【発明の効果】以上説明したように本発明は、炭酸希土
を部分的に仮焼しこの炭酸希土が完全に酸化希土となる
前に仮焼を中止し、原料を構成する粒子を酸化物炭酸塩
とからなる混合希土としてこれを研摩材用原料とするも
のである。本発明によれば、研摩材製造において焙焼温
度が比較的低温であっても焼結可能な研摩材用原料を製
造することができる。そして、この研摩材用原料によれ
ば、異常粒成長による粗大粒子の混入もなく高品位の研
摩面を形成可能なセリウム系研摩材を製造することがで
きる。
As described above, according to the present invention, the rare earth carbonate is partially calcined, the calcining is stopped before the rare earth carbonate is completely converted to the rare earth oxide, and the particles constituting the raw material are removed. This is used as a raw material for an abrasive as a mixed rare earth composed of an oxide carbonate. ADVANTAGE OF THE INVENTION According to this invention, the raw material for abrasives which can be sintered even if roasting temperature is relatively low in abrasive production can be manufactured. According to this raw material for an abrasive, a cerium-based abrasive capable of forming a high-quality polished surface without mixing of coarse particles due to abnormal grain growth can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】研摩材製造工程における炭酸希土粒子の変化を
示す図。
FIG. 1 is a diagram showing a change in rare earth carbonate particles in an abrasive production process.

【図2】研摩材製造工程における酸化希土粒子の変化を
示す図。
FIG. 2 is a view showing a change of rare earth oxide particles in an abrasive production process.

【図3】本発明に係る部分的仮焼を行なった時の研摩材
用原料粒子の変化を示す図。
FIG. 3 is a diagram showing a change in raw material particles for an abrasive when partial calcination according to the present invention is performed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内野 義嗣 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社素材事業本部レアメタル事 業部内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yoshitsugu Uchino 1-11-1 Osaki, Shinagawa-ku, Tokyo Rare Metals Division, Materials Business Unit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セリウム系希土類炭酸塩とセリウム系希
土類酸化物との混合希土類塩を主成分とするセリウム系
研摩材用原料の製造方法であって、 セリウム系希土類炭酸塩を400℃〜800℃で仮焼す
ることにより、一部のセリウム系希土類炭酸塩をセリウ
ム系希土類酸化物に変化させるセリウム系研摩材用原料
の製造方法。
1. A method for producing a raw material for a cerium-based abrasive mainly comprising a mixed rare-earth salt of a cerium-based rare-earth carbonate and a cerium-based rare-earth oxide, wherein the cerium-based rare-earth carbonate is heated to 400 ° C. to 800 ° C. A method for producing a raw material for cerium-based abrasives, wherein a part of the cerium-based rare earth carbonate is converted into a cerium-based rare earth oxide by calcining.
【請求項2】 仮焼時間を0.1〜48時間とする請求
項1記載のセリウム系研摩材用原料の製造方法。
2. The method according to claim 1, wherein the calcination time is 0.1 to 48 hours.
【請求項3】 請求項1又は請求項2記載の方法により
製造されるセリウム系研摩材用原料。
3. A raw material for a cerium-based abrasive produced by the method according to claim 1.
【請求項4】 請求項3記載のセリウム系研摩材用原料
を含むものであって、 1000℃で1時間加熱した場合の強熱減量が乾燥重量
基準で1.0〜20%であるセリウム系研摩材用原料。
4. A cerium-based abrasive material containing the cerium-based abrasive material according to claim 3, wherein a loss on ignition when heated at 1000 ° C. for 1 hour is 1.0 to 20% on a dry weight basis. Raw material for abrasives.
【請求項5】 請求項3又は請求項4記載のセリウム系
研摩材用原料を粉砕しフッ化処理を行なった後、フッ化
処理後のセリウム系研摩材用原料を700〜1000℃
の温度範囲で焙焼する工程を含むセリウム系研摩材の製
造方法。
5. The cerium-based abrasive raw material according to claim 3 is pulverized and fluorinated, and then the cerium-based abrasive raw material after fluorination is treated at 700 to 1000 ° C.
A method for producing a cerium-based abrasive, comprising a step of roasting in a temperature range of 1.
【請求項6】 フッ化処理はフッ化アンモニウムにて行
なう請求項5記載のセリウム系研摩材の製造方法。
6. The method for producing a cerium-based abrasive according to claim 5, wherein the fluorination treatment is performed with ammonium fluoride.
【請求項7】 請求項5又は請求項6記載の方法により
製造されるセリウム系研摩材。
7. A cerium-based abrasive produced by the method according to claim 5.
JP2000375535A 2000-05-16 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method Expired - Fee Related JP3838870B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2000375535A JP3838870B2 (en) 2000-12-11 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
CNB018011683A CN1162499C (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
EA200200170A EA003909B1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
KR10-2001-7016083A KR100453802B1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
EEP200200016A EE05140B1 (en) 2000-05-16 2001-04-06 Source material for cerium-based abrasives, its manufacturing method, cerium-based abrasives manufacturing method and cerium-based abrasives
EP01919807A EP1285956A4 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
US09/980,123 US6562092B1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
BR0106273-5A BR0106273A (en) 2000-05-16 2001-04-06 Cerium based abrasive, raw material for said abrasive and methods of producing said abrasive and said raw material
AU46852/01A AU762001B2 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
PCT/JP2001/002988 WO2001088056A1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
TW090110595A TW524843B (en) 2000-05-16 2001-05-03 Cerium based abrasive material, raw material thereof and method for their preparation
MYPI20012192A MY127740A (en) 2000-05-16 2001-05-11 Cerium-based abrasive, stock material therefor, and methods of producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375535A JP3838870B2 (en) 2000-12-11 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method

Publications (2)

Publication Number Publication Date
JP2002309237A true JP2002309237A (en) 2002-10-23
JP3838870B2 JP3838870B2 (en) 2006-10-25

Family

ID=18844536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375535A Expired - Fee Related JP3838870B2 (en) 2000-05-16 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method

Country Status (1)

Country Link
JP (1) JP3838870B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068312A (en) * 2003-08-26 2005-03-17 Mitsui Mining & Smelting Co Ltd Fluorine-containing cerium-based abrasive and method for manufacturing the same
JP2007008809A (en) * 2006-07-11 2007-01-18 Mitsui Mining & Smelting Co Ltd Mixed rare earth salt and raw material for cerium-based abrasive
CN108161713A (en) * 2017-12-15 2018-06-15 湖北鼎龙控股股份有限公司 A kind of polishing pad and the method for being used to prepare polishing pad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068312A (en) * 2003-08-26 2005-03-17 Mitsui Mining & Smelting Co Ltd Fluorine-containing cerium-based abrasive and method for manufacturing the same
JP2007008809A (en) * 2006-07-11 2007-01-18 Mitsui Mining & Smelting Co Ltd Mixed rare earth salt and raw material for cerium-based abrasive
CN108161713A (en) * 2017-12-15 2018-06-15 湖北鼎龙控股股份有限公司 A kind of polishing pad and the method for being used to prepare polishing pad
CN108161713B (en) * 2017-12-15 2020-06-12 湖北鼎龙控股股份有限公司 Polishing pad and method for preparing polishing pad

Also Published As

Publication number Publication date
JP3838870B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
KR100453802B1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
JP3929481B2 (en) Cerium oxide-based abrasive, its production method and use
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
WO2006025614A1 (en) Mixed rare earth oxide, mixed rare earth fluoride, cerium-based abrasive using the materials and production processes thereof
WO2003104149A1 (en) Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
TWI308927B (en) Method for evaluating the quality of abrasive grains, polishing method and abrasive for polishing glass
JP2002348563A (en) Method for producing cerium abrasive material
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP4585991B2 (en) Cerium-based abrasive
JP3694478B2 (en) Cerium-based abrasive and method for producing the same
KR102423338B1 (en) A method for producing a raw material for a cerium-based abrasive, and a method for producing a cerium-based abrasive
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP3838871B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP3995411B2 (en) Method for producing cerium-based abrasive
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP4070180B2 (en) Method for producing cerium-based abrasive
JP2007008809A (en) Mixed rare earth salt and raw material for cerium-based abrasive
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP3917953B2 (en) Light rare earth raw material for cerium abrasive production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3838870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees