JP2002305496A - 直交周波数分割多重信号受信装置 - Google Patents
直交周波数分割多重信号受信装置Info
- Publication number
- JP2002305496A JP2002305496A JP2002016840A JP2002016840A JP2002305496A JP 2002305496 A JP2002305496 A JP 2002305496A JP 2002016840 A JP2002016840 A JP 2002016840A JP 2002016840 A JP2002016840 A JP 2002016840A JP 2002305496 A JP2002305496 A JP 2002305496A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- guard interval
- frequency
- ifft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
確な同期信号が容易に得られるようにする。 【構成】 OFDM信号の送信装置側では、多値QAM
変調信号を発生させるIFFT回路と、ガードインター
バル設定回路と、前記両回路を駆動するクロック信号発
生回路とを有し、前記IFFT回路により複数のシンボ
ル区間の開始点において位相が所定の値に設定され、ク
ロック信号と所定の周波数比にある高次周波数のパイロ
ット信号を発生させ、前記パイロット信号はガードイン
ターバル区間を含めて複数のシンボル区間に亘って連続
的に送出されるようにし、受信装置側では、このパイロ
ット信号を復調して得ることにより、装置を駆動するた
めの正確なクロック信号を生成する。
Description
波数分割多重 Orthogonal Frequen
cy Division Multiplexing)
信号の受信装置に係り、特にディジタル移動通信に好適
なOFDM信号の受信を行なうための受信装置に関す
る。
置について説明する。まず、ディジタル情報データ信号
が、入力端子を介して直並列変換回路70に供給され、
必要に応じて誤り訂正符号の付与がなされる。この回路
70の出力信号は、IFFT回路71に供給され、その
出力信号は、マルチパス歪を軽減させるためのガードイ
ンターバル回路72を介して、D/A変換器73に供給
される。ここでアナログ信号に変換され、次のLPF7
4により必要な周波数帯域の成分のみが通過させられ
る。アナログ値のリアル、イマジナリパートの出力信号
は、直交変調器75に供給され、OFDM信号が出力さ
れる。
に周波数変換器76により周波数変換されて、次の送信
部77に供給され、これを構成しているリニア増幅器と
送信アンテナとを介して、送信される。中間周波数発生
回路78の出力信号と90°シフト回路78Aを介した
信号とが直交変調器75に夫々供給される。また、この
回路78の出力信号は、クロック信号発生回路79に供
給される。回路79の出力クロック信号は、直並列変換
回路70、IFFT回路71、ガードインターバル回路
72、D/A変換器73に夫々供給される。
装置について説明する。受信部80は、これを構成して
いる受信アンテナにより得た前記送信部77からの信号
を高周波増幅器により増幅し、搬送波周波数を中間周波
数に変換する周波数変換器81を介して、中間周波増幅
回路82に供給され、更に、直交復調器83に供給され
る。回路82の出力信号はキャリア検出回路90を介し
て中間周波数発生回路89に供給される。回路89の出
力信号と90°シフト回路89Aを介した信号とが、直
交復調器83に夫々供給されて、リアル、イマジナリパ
ートの出力信号が復号される。直交復調器83の出力信
号は、LPF84を介してA/D変換器85に供給さ
れ、ディジタル信号に変換されると共に、直交復調器8
3の出力信号は、同期信号発生回路91にも供給され
る。
ターバル回路86を介して、FFT,QAM復号回路8
7に供給される。このFFT、QAM復号回路87は供
給される同期信号発生回路91の同期信号を基にして、
複素フーリエ演算を行ない、入力信号の各周波数毎の実
数部、虚数部信号(リアルパート、イマジナリパート)
のレベルを求め、ディジタル情報伝送用キャリアで伝送
される量子化されたディジタル信号のレベルが求めら
れ、ディジタル情報が復号される。FFT,QAM復号
回路87の出力信号は、並直列変換回路88を介して出
力される。ここで、送信装置の中間周波数と受信装置の
中間周波数とが完全に一致しておれば変調成分のみが得
られ、問題はないが、中間周波数発生回路、周波数変換
器の局部発振器(図示せず)に周波数安定度が高くない
ものを使用したり、両出力信号間に位相誤差があったり
すると、それ以降の復調動作に影響を与え、シンボルエ
ラーの発生確率が増大する。
号を受信する受信装置においては、受信されるすべての
搬送波の位相を時間軸の変動成分を有することなく、完
全に再生することは、大変困難であり、更に、マルチパ
ス歪みを軽減するために、送信側でガードインターバル
回路が設定されているので、このような条件の送信信号
を受信する場合は、有効シンボル期間部分とガードイン
ターバル部分とで、伝送信号の位相を送信側と完全に同
一状態で再生することは、一層困難であるという問題が
あった。本発明は上記の点に着目してなされたものであ
り、OFDMの特定キャリアをパイロット信号用キャリ
アとして設定し、これにより、受信側での同期関係を一
定に保持出来るようにしたOFDM信号の受信装置を提
供することを目的とする。
手段よりなる。すなわち、ディジタル情報信号が供給さ
れ多値QAM変調信号を発生させるIFFT,パイロッ
ト信号生成回路と、前記変調信号の一部を所定の時間繰
り返して伝送するように構成するガードインターバル設
定回路と、前記両回路を駆動するクロック信号を発生さ
せるクロック信号発生回路とを有し、前記IFFT,パ
イロット信号生成回路により複数の有効シンボル区間の
開始点における位相が隣接する有効シンボル区間におい
て同相に保たれており、且つ前記クロック信号と整数の
周波数比関係にある高次周波数のパイロット信号を、前
記ガードインターバル設定回路で設定するガードインタ
ーバル区間に半波長の奇数倍存在させるようにして、複
数の前記シンボル区間に亘り連続的な信号として直交周
波数分割多重信号送信装置により生成され、前記装置よ
り送出された直交周波数分割多重信号を受信する直交周
波数分割多重信号受信装置であって、前記直交周波数分
割多重信号より送出されたパイロット信号を復調し、こ
の復調されたパイロット信号を基に前記IFFTと相補
的に動作するFFTを駆動するための駆動信号を生成
し、その生成された駆動信号を基に前記送出された直交
周波数分割多重信号のうち前記ガードインターバルの期
間を除いた期間の前記直交周波数分割多重信号のフーリ
エ演算を行なうことによリ前記デジタル情報信号を得る
ように構成したことを特徴とする直交周波数分割多重信
号受信装置。
の実施例について、添付の図1乃至図4を参照して、以
下に説明する。図1は、本発明に適用されるOFDM信
号送信装置の実施例であり、ここで伝送されるディジタ
ルデータは、圧縮されたオーディオ、ビデオ信号等であ
る。OFDM信号送信装置は、多数のキャリアを直交し
て配置し、夫々のキャリアで独立したディジタル情報を
伝送するもので、キャリアが直交しているので、隣接す
るキャリアのスペクトラムは当該キャリアの周波数位置
で零になる。この直交するキャリアを作るためIFFT
回路技術が使用される。IFFTにおける窓区間である
時間間隔Tの間にN個の複素数による逆DFT(離散フ
ーリエ変換)を実行すれば、OFDM信号を生成でき、
逆DFTの各点が変調信号出力に相当する。前記Nは、
IFFTやFFTの周期とも呼ばれ、詳細は、コロナ社
発行(発行日:1993年5月20日)の「テレビジョ
ン学会編 今井 聖著信号処理工学」の第74〜75ペ
ージなどで説明されている。
基本的な仕様は、下記に示す通りである。 (a) 中心キヤリア周波数…100MHz (b) 伝送用キャリア数…248波 (c) 変調方式…256QAM OFDM (d) 使用キャリア数…257波 (e) 伝送帯域幅…100kHz, 使用帯域幅…99kHz (f) 転送レート…750kbps (g) ガードインターバル…60.6μsec 図1に示すように、例えば、MPEG等の符号化方式に
より情報信号が圧縮されたオーディオ、ビデオ信号であ
るディジタル情報信号が、入力端子1を介して直並列変
換回路2に供給され、必要に応じ誤り訂正符号の付与が
なされる。この回路2で、入力信号は、256QAM変
調用信号として配列され、出力される。この256QA
M変調は、情報を伝送すべき各キャリアに対して、振幅
方向に16レベル、角度方向に16レベルを定義し、1
6×16の256の値を特定して伝送する方式である。
本実施例では、257波のキャリアの内、248波を用
いて情報を伝送するようにして、残りの9波は、キャリ
ブレーション用、その他の補助信号の伝送用として使用
される。
に248バイトのディジタルデータ、即ち、1シンボル
期間中に4ビットずつの並列データ248組を出力する
ように構成する。直並列変換回路2の出力信号は、IF
FT,パイロット信号生成回路3に供給される。この回
路3は、クロック信号発生回路10から出力されるクロ
ック信号により動作し、248波のキャリアに対し、2
56QAM変調を行ない、各出力信号をリアル、イマジ
ナリ成分として出力する。また、IFFT、パイロット
信号生成回路3では周期NのIFFT回路が用いられて
おり、このIFFT回路で設定される各有効シンボル期
間におけるN個の離散周波数点(サンプル点)に対応し
た離散周波数点情報が、前記IFFT、パイロット信号
生成回路3から出力される。ナイキスト周波数は、前記
周期NのIFFTにおけるサンプルクロック周波数の1
/2に相当し、パイロット信号は、前記ナイキスト周波
数が持つ情報即ちナイキスト周波数情報として伝送され
る。このナイキスト周波数は前記サンプルクロック周波
数の1/2であるため、受信装置で前記ナイキスト周波
数情報を復号、逓倍し、FFT回路を動作させるための
標本化位置信号(サンプルクロック信号)をつくること
ができる。このナイキスト周波数情報は、IFFT,パ
イロット信号生成回路3のIFFTの実数部入力端子R
(虚数部入力端子I)におけるN/2番目の周波数の端子
に一定レベルの信号を印加することにより得られる。
路3の出力信号は、次のRAM(ランダムアクセスメモ
リ)4Aを有するガードインターバル設定回路4に供給
され、このガードインターバル設定回路4により、伝送
路におけるマルチパス歪を軽減させるための所定区間の
ガードインターバルgiが図3に示されるように設定さ
れる。ガードインターバル設定回路4は、クロック信号
発生回路10から出力されるクロック信号により動作
し、IFFT,パイロット信号生成回路3より得られる
窓区間(有効シンボル期間ts)内の最後の部分を、窓区
間の直前にも配置する。前記ガードインターバルを設定
する為に、前記ガードインターバル設定回路4は、これ
が有するRAM(4A)に取り込んだ、IFFT,パイ
ロット信号生成回路3よりの信号を読み出すときに、有
効シンボル期間の最後の期間(giに等しくこの期間を
設定する。)から読み出しては、有効シンボル期間の最
初に戻り、有効シンボル期間tsのデータを読み出し
て、シンボル期間taの信号を送出するようにしてい
る。前記ナイキスト周波数情報(パイロット信号)は、
ガードインターバル内でも伝送されるが、前後のIFF
T窓区間信号との連続性を保持させるため、ガードイン
ターバル内で、伝送されるパイロット信号が整数波長存
在するようにさせる。
波数を用いる場合について述べたが、サンプルクロック
信号と簡単な整数比の関係にあれば、必ずしもナイキス
ト周波数である必要はなく、伝送される周波数の中の高
いものを用いてもよい。周期MのIFFTを考えると
き、ナイキスト周波数の1/2の位置に、即ちM/4番
目の周波数にパイロット信号を配置し、OFDMで送出
するキャリアは、IFFTにおける第1番目より第M/
4番目まで、及び、第3M/4番目より第M番目までと
して出力される信号を用いる。このように周期M=2N
のIFFTを用いても、周期NのIFFTを用いた時と
等価なIFFTの出力信号を得ることができる。従っ
て、ガードインターバルも含めて連続したパイロット信
号を伝送出来ると共に、このパイロット信号を復号し、
4逓倍することにより、サンプルクロック信号を得るこ
とが出来る。FFTの窓区間信号情報を別途復号できれ
ば、本実施例により得られたサンプルクロック信号と組
み合わせて、OFDM信号のFFT演算が出来、OFD
M信号の復号を行なうことが出来る。
回路4で設定されるシンボル期間について述べる。ま
ず、使用帯域幅99kHz、IFFTの周期をN=25
6とするとき、有効シンボル周波数fsと有効シンボル
期間tsは夫々次のようになる。 fs=99,000/256=387Hz ts=1/fs=2586μsec これに、マルチパス歪除去用区間であるガードインター
バル期間giをパイロット信号3波長分に決定すると、
giは下記のように設定される。 gi=(1/49,500)×3=60.6μsec このときのシンボル期間taとシンボル周波数faは夫
々次のようになる。 ta=ts+gi=2586+60.6=2646.6
μsec fa=1/ta=378Hz
出力信号は、D/A変換器5に供給され、ここでアナロ
グ信号に変換され、次のLPF6により必要な周波数帯
域の成分のみが通過させられる。アナログ値のリアル、
イマジナリ出力信号は、次の直交変調器7に供給され、
また、この変調器7には、10.7MHz中間周波発生
回路9の出力信号と90°シフト回路8を介した信号と
が夫々供給され、OFDM信号が出力される。このOF
DM信号は、伝送すべき周波数帯に周波数変換器11に
より周波数変換されて、次の送信部12に供給され、こ
れを構成しているリニア増幅器と送信アンテナを介し
て、送信される。また、10.7MHz中間周波数発生
回路9の出力信号は、クロック信号発生回路10にも供
給されている。前記クロック信号発生回路10では、前
記IFFT,パイロット信号生成回路3を駆動するクロ
ック信号とガードインターバル設定回路4を駆動するク
ロック信号とが、前記中間周波数発生回路9から供給さ
れる共通のクロック信号を基に生成される。尚、248
組の4+4ビットの並列データは、248波のキャリア
により伝送されるため、本装置の伝送速度は1シンボル
期間当り248バイトである。従って、1秒当りの伝送
速度は略750Kビットである。
同期信号(パイロット信号)の位相関係について図と共
に以下に夫々説明する。尚ここで、図7、図8、及び図
10に係る記述は本実施例の参考例として述べたもので
ある。参考例として示した図7において、各シンボル期
間に同一位相の同期信号(パイロット信号)が発生さ
れ、ガードインターバルに整数波長の同期信号が存在す
る場合について説明する。(極性を反転させずに連続し
た同期信号を発生させる第1の例である。) 図7に示すIFFTは有効シンボル期間及びIFFT期
間と同義であり、IFFT期間の終わりの部分(右部)
の1サイクルが、そのままIFFT期間の手前(左部)
のガードインターバルGの信号とされる。この例では、
IFFT期間毎に同位相の同期信号(パイロット信号)
が発生させられており、ガードインターバル区間も同期
信号(パイロット信号)が整数波存在するので、複数の
シンボル期間に亘りパイロット信号は連続的に発生させ
られている。既に述べた図3の場合は図7の場合と同じ
であり、ガードインターバル区間も同期信号(パイロッ
ト信号)が整数波存在するので、複数のシンボル期間に
亘りパイロット信号は連続的に発生させられている。
きのシンボル期間に同一位相の同期信号(パイロット信
号)が発生され、ガードインターバルに半波長の奇数倍
の同期信号が存在する場合について説明する。(極性を
反転させずに連続した同期信号を発生させる第2の例で
ある。) IFFTは有効シンボル期間及びIFFT期間と同義で
あり、IFFT期間の終わりの部分(右部)の1/2サ
イクルがそのままIFFT期間の手前の(左部)のガー
ドインターバルの信号とされる。この例では、IFFT
期間毎に逆極性の同期信号(パイロット信号)が発生さ
せられており、ガードインターバル区間も半波長の奇数
倍の同期信号が存在するので、複数のシンボル区間(シ
ンボル期間)に亘りパイロット信号は連続的に発生させ
られている。
期信号が半波長の奇数倍存在する場合について説明す
る。(極性を反転した同期信号を発生させる第1の例で
ある。) この場合は、ガードインターバルの開始点でパイロット
信号の極性が反転されており、シンボル期間毎のパイロ
ット信号の位相は同相である。即ち、周波数分割多重信
号を発生させるIFFTの同期信号を発生させる周波数
に対応する端子電圧はシンボル毎に一定とし、常に同位
相の同期信号を発生させている。従って、ガードインタ
ーバルが半波長の奇数倍のときは、受信装置側でシンボ
ル期間1つ置き毎に同期信号の極性を反転させると同期
信号は連続信号となる。この場合は、図11に示すよう
な位相同期回路でPLL回路を用いて同期信号の検出を
行うことが出来る。
ドインターバルに同期信号(パイロット信号)が半波長
の偶数倍存在する場合について説明する。(極性を反転
した同期信号を発生させる第2の例である。) 図10に示されるように、ガードインターバルに存在す
る同期信号(パイロット信号)が整数波(半波長の偶数
倍)のときであっても、同期信号を図9の場合と同様
に、シンボル期間1つ置きに反転して出力するとシンボ
ル毎に極性が反転する同期出力が得られる。この場合
も、図11に示すようなPLL回路を用いて同期信号の
検出を行うことが出来る。
される同期信号を検出する位相同期回路である。この位
相同期回路は、位相比較器PD2(112)、Amp
(増幅器 113)、LPF(114)、VCO回路
(115)で構成されるPLL回路のVCO出力にイク
スクルーシブORで構成される信号切換器116が挿入
されている構成である。位相比較器PD1(111)
は、前記位相同期回路のVCO出力を入力とする同期検
波回路を構成している。入力端子110に印加された同
期信号を含む周波数多重分割信号は位相同期回路と同期
検波回路PD1(111)の両者に入力される。この位
相同期回路は位相比較器PD2(112)、増幅器(1
13)、LPF(114)、VCO(115)、信号切
換器(116)で構成されるPLLよりなる。同期検波
されたPD1(111)の出力に応じて信号切換器(1
16)でPLLのVCO回路115の出力を反転するよ
うに構成しているが、シンボル毎に極性反転される同期
信号は前記同期検波回路により検出され、PLLを構成
する位相比較器PD2(112)には極性反転されたV
CO出力が供給されるため極性反転された同期信号に対
しても連続的にロック動作を行う。
力波形である。出力Aは同期信号出力波形で、出力Bは
シンボル周期(シンボル期間)毎に極性反転されて伝送
されるシンボル同期信号である。図13は図11に対す
る別の実施例で、信号切換器136は位相比較器PD2
(132)とアンプ133の間に挿入されている。同期
信号が反転されると同時にそれを検出して誤差信号の極
性を反転するもので、動作の様態は図11と同様に行わ
れる。いずれの場合も同期信号がシンボル周期(シンボ
ル期間)1つ置きに反転していてもそれを検出してPL
Lのループの特性を反転するため、VCOは反転される
こと無く連続した動作を継続する。従って同期信号の復
号を正常に行うことが出来ている。
施例について、図2及び図4と共に説明する。受信装置
の各構成は前記送信装置と逆に動作する回路により構成
される。受信部20は、これを構成している受信アンテ
ナにより得た前記送信部12からの信号を高周波増幅器
により増幅し、周波数変換器21に供給する。この出力
信号は中間周波増幅回路22に供給され、前記中間周波
増幅回路22から所定レベルの受信信号として出力され
る。中間周波増幅回路22の出力信号は、直交復調器2
3とキャリア検出(キャリア抽出)回路29とに夫々供
給される。キャリア検出回路29は、図4に例示する位
相比較器(乗算器)41、LPF42、VCO回路4
3、1/4分周回路45で構成されるPLL回路を有し
ており、この出力信号が供給される中間周波数発振回路
31は、中心キャリアを位相誤差少なく抽出する回路で
ある。
は、シンボル周波数である378Hz毎に隣接、配置さ
れ、OFDM信号を構成している。中心キャリアに隣接
する情報キャリアも378Hz離れているのみで、中心
キャリアは隣接情報キャリアの影響を受けずに情報の伝
送を行なう必要があり、選択度の高い回路が使用されて
いる。本実施例では、PLL回路を用いて中心キャリア
の抽出を行なうが、隣接するキャリア周波数間隔の略1
/2である±200Hz程度で発振する水晶発振子(V
CXO)を電圧制御発振器(VCO)43として用い、
回路を動作させる。PLL回路中に用いられるLPFも
378Hzに対して十分に低いカットオフ周波数のもの
を用いている。この中間周波数発生回路31の出力信号
と90°シフト回路30を介した信号とが乗算器40、
41を有する直交復調器23に夫々供給されて、リア
ル、イマジナリパート(実数部、虚数部)の出力信号が
復号される。この実数部、虚数部出力信号は、LPF2
4に供給され、OFDM信号情報として伝送された、必
要な周波数帯域の信号を通過させ、入力されるアナログ
信号のサンプリングを行ない、出力信号をA/D変換器
(サンプリング回路)25に供給し、ディジタル信号に
変換する。
数逓倍される前のサンプルクロック信号がパイロット信
号に位相同期するPLL回路により発生され、この回路
には直交復調器23のアナログ出力信号が供給される。
ガードインターバルの期間を含む、各シンボル区間で
連続信号として伝送されるパイロット信号にPLLが位
相同期し、復調されたパイロット信号が得られる。前記
送信装置において、パイロット信号は、サンプルクロッ
ク周波数に対して所定の整数比に設定されており、周波
数比に応じた周波数逓倍を行ない、サンプルクロック信
号を得る。ガードインターバル処理回路26は、伝送さ
れた信号より、シンボル期間ta内の任意のタイミングで
期間tsの有効シンボル期間信号を得られ、その中から
マルチパス歪の影響が少ない方の有効シンボル期間信号
を得て、FFT,QAM復号回路27に出力信号を供給
する。
ル同期信号発生回路33は、前記シンボル期間を検出す
る。次のFFT,QAM復号回路27は、前記得られた
クロック同期信号とシンボル同期信号とが供給されて、
複素フーリエ演算を行ない、入力信号の各周波数毎の実
数部、虚数部信号(リアルパート、イマジナリパート)
のレベルを求める。このようにして得られた各周波数毎
の実数部、虚数部信号レベルと、伝送される各キャリア
の実数部、虚数部の基準値を伝送するための参照用キャ
リアの復調出力とを比較し、ディジタル情報伝送用キャ
リアで伝送される量子化されたディジタル信号のレベル
が求められ、ディジタル情報が復号される。この回路2
7の出力信号は、並直列変換回路28を介して出力され
る。
及び、サンプル同期(サンプルクロック)信号発生回路
32について以下に述べる。本回路は一定レベルで伝送
されるパイロット信号を抽出し、これを基に正確なサン
プル同期(サンプルクロック)信号を生成することを目
的としている。まず、キャリア検出回路29を構成する
VCO回路43を中間周波数10.7MHzの4倍であ
る42.8MHzの周波数で発振させる。VCO回路4
3の出力信号は、夫々1/4分周回路44、45を介し
て、乗算器40、41に供給される。片方の乗算器41
よりの出力信号はLPF42に供給され、シンボル周波
数以下の成分が取り出され、その出力信号はVCO回路
43を制御する。乗算器41、LPF42、VCO回路
43、分周回路45によるループはPLL回路を構成し
ている。
増幅された信号が印加され、本回路により直交復号がな
され、実数部と虚数部の出力信号が得られる。サンプル
同期信号発生回路32は、直交復調器23よりの実数部
出力信号が供給され、パイロット信号として送信される
ナイキスト周波数成分を検出する。分周比可変回路(V
CO回路)50には、VCO回路43の出力信号が供給
され、分周比は1/426から1/438までに設定さ
れるように構成する。サンプル同期信号発生回路32に
おける乗算器52は、直交復調器23よりの出力信号
と、VCO回路の信号を1/2分周回路51を介した信
号とが供給され、位相比較器としての動作を行なう。
より周波数制御に係わる誤差信号のみを通過させる。遅
延回路54と加算回路55は、隣接するキャリア成分を
減衰させるための回路で、シンボル周波数である387
Hzにディップを持たせる特性としている。VCO回路
(分周比可変回路)50、乗算器52、LPF53より構
成されるPLL回路では、キャリア抽出部の直交復調器
23の実数部出力信号中に含まれる連続するパイロット
信号に同期したVCO出力信号が発振され、99kHz
のサンプルクロック出力信号として出力される。上記実
施例では、257波のキャリアを発生させるために周期
が256のIFFTを用いる場合について述べたが、他
の実施例として、周期が512のIFFTを用いる例に
ついて以下に述べる。この周期が512のIFFTを用
いる実施例では、パイロット周波数として、ナイキスト
周波数が用いられるのではなく、このサンプルクロック
信号と簡単な整数比の関係にある次数の高い周波数を用
いて行なう。
イキスト周波数の1/2の位置に、即ちM/4番目の周
波数にパイロット信号を配置し、OFDMで送出するキ
ャリアは、IFFTにおける第1番目より第M/4番目
まで、及び、第3M/4番目より第M番目までとして出
力される信号を用いる。このように周期M=2NのIF
FTを用いても、周期NのIFFTを用いた時と等価な
IFFTの出力信号を得ることができる。従って、ガー
ドインターバルも含めて連続したパイロット信号を伝送
出来ると共に、このパイロット信号を復号し、4逓倍す
ることにより、サンプルクロック信号を得ることが出来
る。
生回路では、パイロット信号の周波数は上記の周期Nを
256とした実施例と同じであるが、図2に示すFF
T,QAM復号回路27を駆動するサンプルクロック周
波数は周期Nを256とした場合の2倍となる。それに
従って、2倍の198kHzのサンプルクロック信号を
出力する。よって、このサンプル同期信号発生回路は、
上記の実施例とは分周比可変回路50の分周比が1/2
13〜1/219、及び、1/2分周回路51の分周比
が1/4になっている点が異なっており、それ以外の構
成は図4と同じであり、その説明は省略する。
置では、ガードインターバル期間がIFFT,パイロッ
ト信号生成回路を駆動するものと同じサンプルクロック
により決められ、サンプルクロック情報の伝送に用いら
れるパイロット信号は、ガードインターバル期間も連続
するように設定されており、実際に伝送されるパイロッ
ト信号の周波数スペクトラムは単一となる。従って、受
信装置内でジッタのないパイロット信号を復号出来、送
信装置内で動作するIFFT回路と受信装置内で動作す
るFFT回路の時間関係を同一に設定することが容易に
なり、IFFT動作を行なった信号に近い形でのFFT
動作を行なうことが出来、より正確な情報の受信が可能
となる。また、本発明による位相同期方式は、連続し
て、または、シンボル周期(シンボル期間)毎に反転さ
れて伝送される同期信号情報に対して正常に同期情報を
復号することが出来る。このことは、移動受信等におい
て、時分割同期信号が位相雑音を伴って復号されたとき
でもそれを修正しながら受信できるため、クロック同期
信号、シンボル位置信号を良好に復号出来る。さらに、
情報信号として伝送されるパイロット信号に、シンボル
同期情報を挿入して行うため、時分割同期信号が入来す
る前に同期信号を復号できるため、受像機のチャンネル
切り換え時などでも短時間で周波数分割多重信号の復号
を行う事が出来るなどの効果を有している。
施例のブロック図である。
ック図である。
期間とガードインターバルの関係を示した図である。
キャリア抽出部及びサンプル同期信号発生部のブロック
図である。
る。
る。
ある。
ある。
した図である。
である。
Claims (1)
- 【請求項1】ディジタル情報信号が供給され多値QAM
変調信号を発生させるIFFT,パイロット信号生成回
路と、前記変調信号の一部を所定の時間繰り返して伝送
するように構成するガードインターバル設定回路と、前
記両回路を駆動するクロック信号を発生させるクロック
信号発生回路とを有し、 前記IFFT,パイロット信号生成回路により複数の有
効シンボル区間の開始点における位相が隣接する有効シ
ンボル区間において同相に保たれており、且つ前記クロ
ック信号と整数の周波数比関係にある高次周波数のパイ
ロット信号を、前記ガードインターバル設定回路で設定
するガードインターバル区間に半波長の奇数倍存在させ
るようにして、複数の前記シンボル区間に亘り連続的な
信号として直交周波数分割多重信号送信装置により生成
され、前記装置より送出された直交周波数分割多重信号
を受信する直交周波数分割多重信号受信装置であって、 前記直交周波数分割多重信号より送出されたパイロット
信号を復調し、この復調されたパイロット信号を基に前
記IFFTと相補的に動作するFFTを駆動するための
駆動信号を生成し、その生成された駆動信号を基に前記
送出された直交周波数分割多重信号のうち前記ガードイ
ンターバルの期間を除いた期間の前記直交周波数分割多
重信号のフーリエ演算を行なうことによリ前記デジタル
情報信号を得るように構成したことを特徴とする直交周
波数分割多重信号受信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002016840A JP3518753B2 (ja) | 2002-01-25 | 2002-01-25 | 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002016840A JP3518753B2 (ja) | 2002-01-25 | 2002-01-25 | 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000053296A Division JP3518739B2 (ja) | 1994-05-31 | 2000-02-29 | 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002305496A true JP2002305496A (ja) | 2002-10-18 |
JP3518753B2 JP3518753B2 (ja) | 2004-04-12 |
Family
ID=19192017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002016840A Expired - Lifetime JP3518753B2 (ja) | 2002-01-25 | 2002-01-25 | 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3518753B2 (ja) |
-
2002
- 2002-01-25 JP JP2002016840A patent/JP3518753B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3518753B2 (ja) | 2004-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3055541B2 (ja) | 直交周波数分割多重信号送受信装置 | |
JP2874729B2 (ja) | 直交周波数分割多重信号送受信装置 | |
JP3055540B2 (ja) | 直交周波数分割多重信号送受信装置 | |
JP3584249B2 (ja) | 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法 | |
JP3804865B2 (ja) | 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法 | |
JP3531830B1 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP2002305503A (ja) | 直交周波数分割多重信号受信装置 | |
JP3531829B2 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP2002305496A (ja) | 直交周波数分割多重信号受信装置 | |
JP3531827B1 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP2002305495A (ja) | 直交周波数分割多重信号受信装置 | |
JP3531825B2 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP3676740B2 (ja) | 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法 | |
JP2002305499A (ja) | 直交周波数分割多重信号受信装置 | |
JP3531834B1 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP3518761B2 (ja) | 直交周波数分割多重信号送信装置及び直交周波数分割多重信号の送信方法 | |
JP3531823B2 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP3531832B2 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP2002305491A (ja) | 直交周波数分割多重信号送信装置 | |
JP3531822B2 (ja) | 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法 | |
JP2002305492A (ja) | 直交周波数分割多重信号送信装置 | |
JP3531826B2 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP3531828B2 (ja) | 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法 | |
JP2002305498A (ja) | 直交周波数分割多重信号受信装置 | |
JP2002305502A (ja) | 直交周波数分割多重信号受信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |