JP2002304937A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JP2002304937A
JP2002304937A JP2001106566A JP2001106566A JP2002304937A JP 2002304937 A JP2002304937 A JP 2002304937A JP 2001106566 A JP2001106566 A JP 2001106566A JP 2001106566 A JP2001106566 A JP 2001106566A JP 2002304937 A JP2002304937 A JP 2002304937A
Authority
JP
Japan
Prior art keywords
contact
movable
fixed
arc
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001106566A
Other languages
Japanese (ja)
Inventor
Kunio Yokokura
邦夫 横倉
Yoshimi Nitta
工美 仁田
Yoshimitsu Niwa
芳充 丹羽
Kosuke Sasage
浩資 捧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001106566A priority Critical patent/JP2002304937A/en
Publication of JP2002304937A publication Critical patent/JP2002304937A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To break high current even in a high voltage circuit by utilizing permanent magnets and appropriately rotating an arc in the peripheral direction of a contact to prevent the accumulation of the arc in the specific portion. SOLUTION: Permanent magnets 21a, 21b are arranged on the back side of a fixed side contact, 19 so as to locate a fixed side power supply shaft 15 between them, and permanent magnets 22a, 22b are arranged on the back side of a moving side contact 20, so as to locate a moving side power supply shaft 16 between them. Magnetic poles of the permanent magnets 21a, 21b, 22a, 22b are arranged so as to form N poles on the outer circumferential side and S poles on the center side, for example, so that the outside in the diameter direction of the fixed side contact 19 or the moving side contact 20 coincides with the center part side, and a magnetic flux along the diameter direction is generated between the contacts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遮断性能を向上さ
せた真空バルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve having improved shutoff performance.

【0002】[0002]

【従来の技術】真空バルブに要求される基本3大特性と
して、遮断性能、耐電圧性能、耐溶着性能が挙げられ
る。このうち、遮断性能を向上させる手段としては、遮
断時において電極(または接点)間に発生するアークが
特定箇所に停滞しないように、アークを電極の周方向に
回転駆動させるものがある。ここで、アークを回転駆動
させる為の電極構造の一例として、図11を参照しなが
ら説明する。同図において、真空容器(図示せず)内に
設けられた一対の通電軸1、2のそれぞれの一端には、
断面が凹型のカップ型電極3、4が設けられる。カップ
型電極3、4の開口部側には中心部に孔を有する接点
5、6が取付けられ、閉口部側が通電軸1、2の一端に
取付けられる。一方、カップ型電極3、4の側面部には
傾斜した複数のスリット7、8が傾斜の向きを逆方向に
してそれぞれ等配され、それぞれの電極におけるスリッ
ト7、8の位置が円周方向に互い違いに位置するように
設けられる。ここで、通電状態において、一方の通電
軸、例えば通電軸2に外部操作力が与えられ接点5、6
が開離すると接点5、6間にはアーク9が発生するが、
発生したアーク9にはカップ型電極3におけるスリット
7間並びにカップ型電極4におけるスリット8間をスリ
ット7、8と略同じ傾きで流れる電流により生じる磁束
とアーク電流の相互作用によって円周方向電磁力が働
く。その結果、アーク9は接点5、6間を周方向に回転
して特定の箇所に停滞しなくなるため、接点5、6は高
温のアーク9が停滞することがなくなる。従って、接点
5、6の損傷が抑制されるので、大電流の遮断を行なう
ことができる。
2. Description of the Related Art As three basic characteristics required for a vacuum valve, there are a breaking performance, a withstand voltage performance, and a welding resistance performance. Among these, as a means for improving the breaking performance, there is a means for rotating the arc in the circumferential direction of the electrode so that the arc generated between the electrodes (or the contacts) does not stay at a specific location at the time of breaking. Here, an example of an electrode structure for rotationally driving the arc will be described with reference to FIG. In the figure, one end of each of a pair of conducting shafts 1 and 2 provided in a vacuum vessel (not shown) is
Cup-shaped electrodes 3 and 4 having a concave cross section are provided. Contacts 5 and 6 having holes in the center are attached to the opening sides of the cup-shaped electrodes 3 and 4, and the closed side is attached to one end of the conducting shafts 1 and 2. On the other hand, a plurality of inclined slits 7 and 8 are equally arranged on the side surfaces of the cup-shaped electrodes 3 and 4 with the inclined directions being opposite to each other, and the positions of the slits 7 and 8 in each electrode are set in the circumferential direction. It is provided so as to be located alternately. Here, in the energized state, an external operating force is applied to one energized shaft, for example, energized shaft 2 and contacts 5, 6
Is opened, an arc 9 is generated between the contacts 5 and 6,
The generated arc 9 has a circumferential electromagnetic force due to the interaction between the magnetic flux generated by the current flowing between the slits 7 in the cup-shaped electrode 3 and between the slits 8 in the cup-shaped electrode 4 at substantially the same inclination as the slits 7 and the arc current, and the arc current. Works. As a result, since the arc 9 rotates in the circumferential direction between the contacts 5 and 6 and does not stay at a specific location, the high-temperature arc 9 does not stay at the contacts 5 and 6. Therefore, damage to the contacts 5 and 6 is suppressed, so that a large current can be cut off.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような真空バルブにおいては、高電圧回路に適用するた
めに接点間距離を大きくすると、カップ型電極3におけ
るスリット7間並びにカップ型電極4におけるスリット
8間をスリット7、8と略同じ傾きで流れる電流により
生じる磁束は接点間距離に反比例することから小さくな
り、アーク9を円周方向に駆動する電磁力が小さくな
る。このため、アーク9は特定箇所に停滞するようにな
り、接点5、6におけるアーク9の停滞箇所の損傷が大
きくなり大電流の遮断ができない。一方、アークの特定
箇所への停滞を防ぐことができる別の手段として、縦磁
界または縦磁界と横磁界を発生させる真空バルブが、例
えば特開平9−115398号公報に開示されている。
すなわち、主電極(接点)間にアークと平行な磁束を発
生させるコイル電極を設けて縦磁界を発生させることに
よりアークを分散させるものである。この場合、主電極
間におけるコイル電極が発生する縦磁界の磁束分布は、
主電極間の径方向中央部で最大となり径方向外周側に向
かうほど小さくなる略正弦波状の分布となる。すると、
アークには強い磁束の領域に集中するという特性がある
ことから、主電極間の径方向中央部にアークが集中して
しまい、主電極の径方向中央部の損傷が大きくなって大
電流の遮断ができなくなる。
However, in the above-described vacuum valve, when the distance between the contacts is increased for application to a high voltage circuit, the slit between the slits 7 in the cup-shaped electrode 3 and the slit in the cup-shaped electrode 4 are increased. The magnetic flux generated by the current flowing between the slits 8 at substantially the same inclination as the slits 7 and 8 is small because it is inversely proportional to the distance between the contacts, and the electromagnetic force for driving the arc 9 in the circumferential direction is small. For this reason, the arc 9 stagnates at a specific location, and the stagnation location of the arc 9 at the contacts 5 and 6 is greatly damaged, so that a large current cannot be cut off. On the other hand, as another means that can prevent stagnation of an arc at a specific location, a vacuum valve that generates a vertical magnetic field or a vertical magnetic field and a horizontal magnetic field is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 9-115398.
That is, the arc is dispersed by providing a coil electrode for generating a magnetic flux parallel to the arc between the main electrodes (contacts) to generate a vertical magnetic field. In this case, the magnetic flux distribution of the vertical magnetic field generated by the coil electrode between the main electrodes is
The distribution has a substantially sinusoidal shape that becomes maximum at the radial center portion between the main electrodes and becomes smaller toward the radially outer peripheral side. Then
Since the arc has the property of concentrating in the region of strong magnetic flux, the arc concentrates at the radial center between the main electrodes, and the radial center of the main electrode is greatly damaged, cutting off large currents. Can not be done.

【0004】そこで、特開平9−115398号公報に
開示されている真空バルブでは、縦磁界に加えて、一対
の通電軸のそれぞれに永久磁石を対向する側の磁極が同
じになるように通電軸の軸方向に沿って収納させ、これ
により主電極間の径方向中央部に軸方向と直交方向の横
磁界を発生させ、この横磁界で主電極間の径方向中央部
のアークを径方向外周側へ駆動させることで、主電極間
の径方向中央部におけるアークの集中を防いでいる。し
かしながら、このような真空バルブは、高電圧回路への
適用は可能であるが、縦磁界を発生させるためにコイル
電極を別に設ける必要があり、更に通電軸に孔を形成し
永久磁石を収納させることから構造上複雑となる。ま
た、主電極間の径方向中央部のアークを径方向外周側に
駆動させるにしても、基本的には主電極間の径方向中央
部にアークが集中しやすい縦磁界電極を利用したもので
あることから、十分な遮断性能を得ることが困難であ
る。更に、場合によっては、アークが固定側接点及び可
動側接点の間から外側にはみ出し、そのアークが特定箇
所へ停滞することにより損傷を来たすことがあり、この
点の改善も要求される。本発明の第一の目的は、高電圧
回路に適用する場合であっても、簡単な構造でアークを
接点の周方向に回転駆動させて遮断性能を向上させるこ
とができる真空バルブを提供することにある。
Therefore, in the vacuum valve disclosed in Japanese Patent Application Laid-Open No. Hei 9-115398, in addition to the longitudinal magnetic field, the energizing shafts of the pair of energizing shafts are arranged such that the permanent magnets on the side facing the permanent magnets are the same. In the axial direction of the main electrode, thereby generating a transverse magnetic field in the central portion in the radial direction between the main electrodes in the direction perpendicular to the axial direction. By driving to the side, the concentration of the arc at the radial center portion between the main electrodes is prevented. However, such a vacuum valve can be applied to a high voltage circuit, but it is necessary to separately provide a coil electrode to generate a vertical magnetic field, and furthermore, a hole is formed in an energized shaft to accommodate a permanent magnet. Therefore, the structure becomes complicated. In addition, even if the arc at the center in the radial direction between the main electrodes is driven to the outer periphery in the radial direction, basically, a vertical magnetic field electrode at which the arc tends to concentrate at the center in the radial direction between the main electrodes is used. For this reason, it is difficult to obtain sufficient blocking performance. Further, in some cases, the arc protrudes outside from between the fixed contact and the movable contact, and the arc stagnates to a specific location, causing damage, and improvement in this respect is also required. A first object of the present invention is to provide a vacuum valve capable of improving the breaking performance by driving the arc to rotate in the circumferential direction of the contact with a simple structure even when applied to a high-voltage circuit. It is in.

【0005】また、本発明の第二の目的は、高電圧回路
に適用する場合であっても、簡単な構造で固定側接点と
可動側接点の間から外側にはみ出したアークを周方向に
回転駆動させることができる真空バルブを提供すること
にある。
A second object of the present invention is to rotate an arc protruding outward from between a fixed contact and a movable contact in a circumferential direction with a simple structure even when applied to a high voltage circuit. It is to provide a vacuum valve that can be driven.

【0006】[0006]

【課題を解決するための手段】上記第一の目的を達成す
る本発明は、真空容器と、この真空容器内に貫設される
固定側通電軸及び可動側通電軸と、固定側通電軸及び可
動側通電軸の各々の一端に取付けられ、真空容器内で接
離可能な固定側接点及び可動側接点と、固定側接点及び
可動側接点の内の少なくとも一方の接点に、この接点が
取付けられた通電軸を挟むようにして設けられ、遮断時
に固定側接点と可動側接点の間に発生するアークを接点
の周方向に回転駆動させるべく磁束を発生させる永久磁
石とを有する真空バルブである。このような構成によれ
ば、固定側接点及び可動側接点の内の少なくとも一方の
対向する接点に設けた永久磁石により、接点間に接点の
径方向に沿った磁束を発生させ、遮断時に発生するアー
クを接点の周方向に回転駆動させることができる。ま
た、第二の目的を達成する本発明は、上記の発明に加え
て、固定側接点及び可動側接点の周囲を覆うように真空
容器内に設けられたシールドと、シールドの外周側に設
けられ、遮断時に固定側接点及び可動側接点の間から外
側にはみ出すアークをシールドの周方向に回転駆動させ
るべく磁束を発生させる永久磁石とを有する真空バルブ
である。
SUMMARY OF THE INVENTION In order to achieve the first object, the present invention provides a vacuum vessel, a fixed-side current-carrying shaft and a movable-side current-carrying shaft penetrating through the vacuum vessel, and a fixed-side current-carrying shaft. The fixed-side contact and the movable-side contact which are attached to one end of each of the movable-side energized shafts and which can be separated and contacted in the vacuum vessel, and the contact are attached to at least one of the fixed-side contact and the movable-side contact. And a permanent magnet for generating a magnetic flux for rotating an arc generated between the fixed contact and the movable contact in the circumferential direction of the contact when the arc is cut off. According to such a configuration, the permanent magnet provided on at least one of the fixed-side contact and the movable-side contact generates a magnetic flux between the contacts in the radial direction of the contact, which is generated at the time of interruption. The arc can be driven to rotate in the circumferential direction of the contact. In addition, the present invention that achieves the second object is, in addition to the above-described invention, a shield provided in a vacuum vessel so as to cover the periphery of the fixed contact and the movable contact, and provided on the outer peripheral side of the shield. And a permanent magnet for generating a magnetic flux so that an arc which protrudes outside from between the fixed side contact and the movable side contact at the time of interruption is rotated in the circumferential direction of the shield.

【0007】このような構成によれば、固定側接点及び
可動側接点の周囲を覆うようにして設けられたシールド
の外周に配置した永久磁石が発生する磁束により、固定
側接点及び可動側接点の間から外側にはみ出したアーク
をシールドの周方向に回転駆動させることができる。
According to such a configuration, the magnetic flux generated by the permanent magnet disposed on the outer periphery of the shield provided so as to cover the periphery of the fixed side contact and the movable side contact causes the fixed side contact and the movable side contact to be formed. The arc protruding outside from between can be driven to rotate in the circumferential direction of the shield.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら詳細に説明する。 (第1の実施の形態)図1は、本発明の実施の形態を説
明するための真空バルブの断面図である。同図におい
て、円筒状の絶縁筒10の両端をふた11、12により
密閉し内部を高真空に維持して真空容器を形成してい
る。真空容器の内部には、固定側電極部13と可動側電
極部14がそれぞれの接点を介して接離可能に設けら
れ、固定側電極部13は固定側通電軸15の一端へ取付
けられ、可動側電極部14は可動側通電軸16の一端へ
取付けられる。可動側通電軸16は、その周囲に形成さ
れたベローズ17により軸方向の動作が可能なようにし
て外部へ真空気密に導出される。固定側電極部13と可
動側電極14は、可動側通電軸16の他端が受ける図示
しない操作機構からの駆動力により接離可能となってお
り、真空バルブと操作機構とを備えた真空遮断器とし
て、回路に流れる電流の開閉を行う。一方、固定側電極
部13と可動側電極部14の外周を覆うようにして形成
されるシールド18は、絶縁筒10に取付けられ、例え
ば真空容器内を浮遊する粉塵などが絶縁筒10の内面に
付着するのを防いでいる。
Embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment) FIG. 1 is a sectional view of a vacuum valve for explaining an embodiment of the present invention. In the figure, a vacuum vessel is formed by sealing both ends of a cylindrical insulating tube 10 with lids 11 and 12 and maintaining the inside at a high vacuum. Inside the vacuum vessel, a fixed-side electrode portion 13 and a movable-side electrode portion 14 are provided so as to be able to contact and separate from each other via respective contacts, and the fixed-side electrode portion 13 is attached to one end of a fixed-side energized shaft 15 and is movable. The side electrode portion 14 is attached to one end of the movable side conducting shaft 16. The movable-side energized shaft 16 is drawn out to the outside in a vacuum-tight manner so that it can be operated in the axial direction by a bellows 17 formed around the movable-side energized shaft 16. The fixed-side electrode portion 13 and the movable-side electrode 14 can be brought into contact with and separated from each other by a driving force from an operation mechanism (not shown) received at the other end of the movable-side energized shaft 16, and provided with a vacuum valve and an operation mechanism. Open and close the current flowing through the circuit. On the other hand, a shield 18 formed so as to cover the outer periphery of the fixed-side electrode portion 13 and the movable-side electrode portion 14 is attached to the insulating cylinder 10, and, for example, dust floating in the vacuum vessel or the like is formed on the inner surface of the insulating cylinder 10. Prevents sticking.

【0009】ここで、上述したような真空バルブの構成
のうち、固定側電極部13と可動側電極部14につき、
図2を参照しながら説明する。尚、図1と同等の構成に
ついては同一番号を付す。同図において、固定側電極部
13における円板状のの固定側接点19と可動側電極部
14における円板状の可動側接点20は開極した状態で
あって、固定側接点19の可動側接点20に対向する面
と反対側の面(以下、背面という。)には磁束発生手段
として直方体をなす複数の永久磁石21a、21bが固
定側通電軸15を挟むようにし且つそれぞれ径方向に延
びるようにして設けられる。更に各永久磁石21a、2
1bは、固定側接点19の径方向の外周側に位置する磁
極と中央部側に位置する磁極がそれぞれ一致するよう
に、例えば外周側がN極、中央部側がS極となるように
配置される。同様にして、可動側接点20の固定側接点
19に対向する面とは反対側の面(以下、背面とい
う。)にも直方体をなす複数の永久磁石22a、22b
が可動側通電軸16を挟むようにし且つそれぞれ径方向
に延びるようにして設けられる。更に各永久磁石22
a、22bは、可動側接点20の径方向の外周側に位置
する磁極と中央部側に位置する磁極がそれぞれ一致する
ように、例えば外周側がN極、中央部側がS極となるよ
うに配置される。
Here, of the above-described vacuum valve configuration, the fixed side electrode portion 13 and the movable side electrode portion 14 are:
This will be described with reference to FIG. Note that the same components as those in FIG. 1 are denoted by the same reference numerals. In the same figure, the disc-shaped fixed contact 19 in the fixed electrode 13 and the disc-shaped movable contact 20 in the movable electrode 14 are in an open state, and the movable contact of the fixed contact 19 is movable. A plurality of permanent magnets 21a and 21b each forming a rectangular parallelepiped as a magnetic flux generating means are provided on a surface (hereinafter, referred to as a back surface) opposite to a surface facing the contact 20 so as to sandwich the fixed-side energizing shaft 15 and extend in the radial direction. It is provided in such a manner. Furthermore, each permanent magnet 21a, 2
1b is arranged such that the magnetic pole located on the radially outer peripheral side of the fixed side contact 19 and the magnetic pole located on the central part side respectively match, for example, such that the outer peripheral side is an N pole and the central part is an S pole. . Similarly, a plurality of permanent magnets 22a and 22b each forming a rectangular parallelepiped are provided on a surface of the movable contact 20 opposite to the surface facing the fixed contact 19 (hereinafter referred to as a back surface).
Are provided so as to sandwich the movable-side energized shaft 16 and extend in the radial direction, respectively. Furthermore, each permanent magnet 22
a and 22b are arranged such that the magnetic pole located on the outer peripheral side in the radial direction of the movable side contact 20 and the magnetic pole located on the central part side respectively match, for example, such that the outer peripheral side is an N pole and the central part is an S pole. Is done.

【0010】このような構成において、永久磁石21a
と21b及び22aと22bはそれぞれ径方向の中央部
側で反発しあい、接点19、20間でも反発しあうの
で、固定側接点19と可動側接点20の間には、永久磁
石21a、21bにより固定側接点19の径方向に沿っ
た磁束23a、23bが発生し、永久磁石22a、22
bにより可動側接点20の径方向に沿った磁束24a、
24bが発生する。これら磁束23a、23b、24
a、24bは、固定側接点19と可動側接点20との間
に発生するアーク25に対して直交することになる。こ
のように、アーク25と磁束23a、23b、24a、
24bが直交すると、アーク25に流れる電流Iと直交
する磁束23a、23b、24a、24bの磁束密度B
により、アーク25にはB×Iに比例した電磁力が図2
の紙面上垂直方向、換言すれば固定側接点19と可動側
接点20の通電軸15、16を中心として周方向に作用
し、アーク25はこの電磁力により固定側接点19と可
動側接点20との間を周方向に回転駆動することにな
る。このように、本実施の形態によれば、接点の背面に
永久磁石を設けるという簡単な構造で、アーク25が固
定側接点19と可動側接点20との間を接点の周方向に
回転駆動することができ、これによりアーク25が接点
の特定箇所に停滞することが無くなる。このため、固定
側接点19と可動側接点20の損傷が少なくなり、大電
流を遮断することができる。しかも、接点間の開極距離
が大きくなっても、永久磁石による磁束の発生が損なわ
れることがないので、高電圧回路への適用も可能とな
る。
In such a configuration, the permanent magnet 21a
21b and 22a and 22b repel each other at the center in the radial direction, and repel each other between the contacts 19 and 20, so that the permanent magnets 21a and 21b fix the fixed contact 19 and the movable contact 20 between them. Magnetic fluxes 23 a and 23 b are generated along the radial direction of the side contact 19, and the permanent magnets 22 a and 22 b
b, the magnetic flux 24a along the radial direction of the movable contact 20;
24b occurs. These magnetic fluxes 23a, 23b, 24
a and 24b are orthogonal to the arc 25 generated between the fixed contact 19 and the movable contact 20. Thus, the arc 25 and the magnetic fluxes 23a, 23b, 24a,
When the angle 24b is orthogonal, the magnetic flux density B of the magnetic fluxes 23a, 23b, 24a, 24b orthogonal to the current I flowing through the arc 25
As a result, an electromagnetic force proportional to B × I is applied to the arc 25 in FIG.
Of the fixed side contact 19 and the movable side contact 20 in the circumferential direction around the conducting shafts 15 and 16 of the fixed side contact 19 and the movable side contact 20. Is driven to rotate in the circumferential direction. As described above, according to the present embodiment, the arc 25 rotates between the fixed contact 19 and the movable contact 20 in the circumferential direction of the contact with a simple structure in which the permanent magnet is provided on the back surface of the contact. This prevents the arc 25 from stagnating at a specific point of the contact. Therefore, damage to the fixed side contact 19 and the movable side contact 20 is reduced, and a large current can be cut off. Moreover, even if the opening distance between the contacts is increased, the generation of magnetic flux by the permanent magnet is not impaired, so that application to a high-voltage circuit is also possible.

【0011】また、固定側接点19の背面の永久磁石2
1a、21bの磁極と、可動側接点20の背面の永久磁
石22a、22bの磁極は、固定側接点19と可動側接
点20を介して同じ極性同士が対向して互いに反発しあ
っていることから、その反発力が固定側接点19と可動
側接点20に対し開極方向の力として作用していること
になる。このため、固定側接点19と可動側接点20の
開極力が大きくなって開極速度が速くなり、このことか
らも大電流遮断性能が向上する。尚、図2では、永久磁
石21a、21b、22a、22bの磁極は、それぞれ
固定側接点19及び可動側接点20の径方向の外周側が
N極、中央部側がS極としたが、逆に外周側がS極、中
央部側がN極となるようにそれぞれ配置しても同様の効
果を奏する。一方、図2においては、固定側接点19及
び可動側接点20のそれぞれの背面に永久磁石21a、
21b、22a、22bを配置しているが、どちらか一
方、例えば図3に示すように固定側接点19の背面にの
み永久磁石21a、21bを配置する構成であってもよ
い。すなわち、アーク25に流れる電流Iと永久磁石2
1a、21bによる磁束23a、23bの磁束密度Bが
直交することから、アーク25にはB×Iに比例した電
磁力が図3の紙面上垂直方向、換言すれば固定側接点1
9と可動側接点20の周方向に作用し、アーク25はこ
の電磁力により固定側接点19と可動側接点20との間
を周方向に回転駆動する。このため、アーク25が接点
の特定箇所に停滞することが無くなるので、固定側接点
19と可動側接点20の損傷が少なくなり、大電流を遮
断することができる。
The permanent magnet 2 on the back of the fixed contact 19
Since the magnetic poles 1a and 21b and the magnetic poles of the permanent magnets 22a and 22b on the back of the movable contact 20 have the same polarity opposite to each other via the fixed contact 19 and the movable contact 20, they repel each other. The repulsive force acts on the fixed contact 19 and the movable contact 20 as a force in the opening direction. For this reason, the opening force of the fixed side contact 19 and the movable side contact 20 increases, and the opening speed increases, which also improves the large current interruption performance. In FIG. 2, the magnetic poles of the permanent magnets 21 a, 21 b, 22 a, and 22 b are N-pole on the radially outer side of the fixed-side contact 19 and the movable-side contact 20, and S-pole on the center side. Similar effects can be obtained by arranging the S pole on the side and the N pole on the center side. On the other hand, in FIG. 2, a permanent magnet 21a is provided on the back surface of each of the fixed contact 19 and the movable contact 20.
Although 21b, 22a, and 22b are arranged, a configuration in which the permanent magnets 21a and 21b are arranged only on one of them, for example, only on the back surface of the fixed contact 19 as shown in FIG. That is, the current I flowing through the arc 25 and the permanent magnet 2
Since the magnetic flux densities B of the magnetic fluxes 23a and 23b due to the magnetic fluxes 1a and 21b are orthogonal to each other, an electromagnetic force proportional to B × I is applied to the arc 25 in the vertical direction on the paper of FIG.
Acting in the circumferential direction between the fixed contact 9 and the movable contact 20, the arc 25 rotates in the circumferential direction between the fixed contact 19 and the movable contact 20 by this electromagnetic force. For this reason, the arc 25 does not stay at a specific portion of the contact, so that the fixed contact 19 and the movable contact 20 are less damaged, and a large current can be cut off.

【0012】更に、固定側接点19と可動側接点20を
閉極する(投入する)とき、両者には永久磁石21a、
21bによる反発しあう力が作用しないことから、この
場合には可動側通電軸16への駆動力は小さくてよい。
従って、この駆動力を供給する操作機構は小型のもので
よく、真空遮断器として小型化を図るのに有利である。
また、図4に示すように、固定側接点19と永久磁石2
1a、21bの間や可動側接点20と永久磁石22a、
22bの間に、例えば銅板26、27を配置させても良
い。このような構成によれば、固定側接点19及び可動
側接点20における接点の機能として、良好な通電特性
を維持するのに効果がある。更に、永久磁石の磁束が貫
通することによってうず電流が発生し、そのうず電流に
よる磁束が永久磁石21a、21b、22a、22bが
発生する磁束を打消す方向に作用することが懸念される
場合には、固定側接点19や可動側接点20に周方向に
分断するスリットを設けるのはアークを周方向に回転駆
動させる上で好ましくないので、銅版26、27に周方
向に分断するスリットを設けることにより、うず電流の
発生を抑制すればよい。また、図5に示すように、図2
で示す固定側通電軸15、可動側通電軸16の代わり
に、永久磁石を貫通する型の固定側貫通通電軸15a及
び可動側貫通通電軸16aとし、固定側貫通通電軸15
aの一端に永久磁石21a、21bを貫通させて固定側
接点19を取付け、可動側貫通通電軸16aの一端に永
久磁石22a、22bを貫通させて可動側接点20を取
付けるようにしても良い。
Further, when the fixed contact 19 and the movable contact 20 are closed (closed), permanent magnets 21a,
In this case, the driving force to the movable-side energized shaft 16 may be small, since the repulsive force by 21b does not act.
Therefore, the operating mechanism for supplying the driving force may be small, which is advantageous for miniaturizing the vacuum circuit breaker.
Further, as shown in FIG.
1a and 21b, the movable contact 20 and the permanent magnet 22a,
For example, copper plates 26 and 27 may be arranged between 22b. According to such a configuration, the function of the contacts in the fixed side contact 19 and the movable side contact 20 is effective in maintaining good conduction characteristics. Further, when the magnetic flux of the permanent magnet penetrates, an eddy current is generated, and there is a concern that the magnetic flux due to the eddy current acts in a direction to cancel the magnetic flux generated by the permanent magnets 21a, 21b, 22a, 22b. It is not preferable to provide a slit for dividing the fixed contact 19 and the movable contact 20 in the circumferential direction in rotating the arc in the circumferential direction. Therefore, it is preferable to provide a slit for dividing the copper plates 26 and 27 in the circumferential direction. Thus, the generation of the eddy current may be suppressed. Also, as shown in FIG.
Instead of the fixed-side energizing shaft 15 and the movable-side energizing shaft 16, a fixed-side penetrating energizing shaft 15 a and a movable-side energizing energizing shaft 16 a penetrating a permanent magnet are provided.
The fixed-side contact 19 may be attached to one end of a through the permanent magnets 21a and 21b, and the movable-side contact 20 may be attached to one end of the movable through-current-carrying shaft 16a by penetrating the permanent magnets 22a and 22b.

【0013】このような構成において、電極部の構造
上、上述した実施の形態では固定側通電軸15−固定側
接点19−アーク25−可動側接点20−可動側通電軸
16の電流経路が長くなるためアーク25に作用する力
が大きくなり、固定側接点19と可動側接点20の外周
部からアーク25がはみ出す確率が大きくなって遮断性
能に悪影響を及ぼすが、図5の構成であればアーク25
と通電軸15a、15bの間における径方向の電流経路
が短くなるので、アーク25を固定側接点19と可動側
接点20の間から外側にはみ出す確率を小さくすること
ができる。 (第2の実施の形態)図6は、本発明の第2の実施の形
態を示す拡大断面図であって、第1の実施の形態におけ
る図4に示した固定側電極部13と可動側電極部14に
代えて、固定側通電軸15側及び可動側通電軸16側の
内の少なくとも一方に、接点から通電軸に至る孔を設け
たものである。本実施の形態では、固定側接点19から
固定側通電軸15へ至る孔28と、可動側接点20から
可動側通電軸16へ至る穴29を設けているが、いずれ
か一方の孔28または29だけでもよい。このような構
成によれば、上述した第1の実施の形態による効果のほ
か、次のような効果も奏する。
In such a configuration, due to the structure of the electrode portion, in the above-described embodiment, the current path of the fixed-side conducting shaft 15, the fixed-side contact 19, the arc 25, the movable-side contact 20, and the movable-side conducting shaft 16 is long. Therefore, the force acting on the arc 25 increases, and the probability that the arc 25 protrudes from the outer peripheral portions of the fixed side contact 19 and the movable side contact 20 increases, thereby adversely affecting the breaking performance. 25
Therefore, the probability that the arc 25 protrudes outside from between the fixed contact 19 and the movable contact 20 can be reduced. (Second Embodiment) FIG. 6 is an enlarged sectional view showing a second embodiment of the present invention, in which the fixed side electrode portion 13 and the movable side shown in FIG. 4 in the first embodiment are shown. Instead of the electrode section 14, at least one of the fixed-side energized shaft 15 side and the movable-side energized shaft 16 side is provided with a hole extending from the contact point to the energized shaft. In this embodiment, the hole 28 extending from the fixed contact 19 to the fixed energizing shaft 15 and the hole 29 extending from the movable contact 20 to the movable energizing shaft 16 are provided. Or just According to such a configuration, in addition to the effects of the above-described first embodiment, the following effects are also achieved.

【0014】すなわち、仮にアーク25が固定側接点1
9と可動側接点20の間の径方向の中央部側である固定
側通電軸15と可動側通電軸16の軸心上付近に点弧し
たとすると、上述した第1の実施の形態で示した図4の
ような構成では永久磁石21a、21b、22a、22
bによる磁束23a、23b、24a、24bがアーク
25と殆ど鎖交しなくなるので、アークを接点の周方向
に回転駆動させることができず、この部分でアークが停
滞して固定側接点19と可動側接点20の損傷が大きく
なるおそれがある。本実施の形態によれば、孔28,2
9を設けたことにより、固定側通電軸15と可動側通電
軸16の軸心上付近の軸間距離が長くなるので、この付
近でアーク25が点弧することを防ぐことができる。従
って、アーク25は、固定側接点19と可動側接点20
との間であって永久磁石21a、21b、22a、22
bによる磁束23a、23b、24a、24bが十分に
作用する位置に発生し、アーク25を確実に接点の周方
向に回転駆動させることができる。また、図6で示した
孔28、29に対し、図7に示すように、固定側接点1
9や可動側接点20の接点材料と同種の材料、例えば金
属蒸気が出にくいCuCrを主成分とした材料30、3
1を表面に被覆すれば、固定側接点19と可動側接点2
0の径方向中央部付近でアーク25が点弧した場合に金
属蒸気の発生を抑制することができ、耐電圧性能の低下
を防ぐのに有利である。
That is, if the arc 25 is fixed to the fixed contact 1
Assuming that the ignition occurs near the center of the fixed-side energizing shaft 15 and the movable-side energizing shaft 16 at the radial center portion between the contact 9 and the movable-side contact 20, the first embodiment described above. In the configuration shown in FIG. 4, the permanent magnets 21a, 21b, 22a, 22
Since the magnetic fluxes 23a, 23b, 24a, and 24b due to b hardly interlink with the arc 25, the arc cannot be driven to rotate in the circumferential direction of the contact. There is a possibility that damage to the side contact 20 may increase. According to the present embodiment, holes 28 and 2
By providing 9, the distance between the fixed-side energized shaft 15 and the movable-side energized shaft 16 in the vicinity of the center of the axis becomes longer, so that it is possible to prevent the arc 25 from being ignited in this vicinity. Therefore, the arc 25 is composed of the fixed contact 19 and the movable contact 20.
And the permanent magnets 21a, 21b, 22a, 22
The magnetic fluxes 23a, 23b, 24a, and 24b are generated at positions where they sufficiently act, and the arc 25 can be reliably driven to rotate in the circumferential direction of the contact. Also, as shown in FIG. 7, the fixed contacts 1 are inserted into the holes 28 and 29 shown in FIG.
9 and the same material as the contact material of the movable contact 20, for example, a material 30, 3 containing CuCr as a main component which hardly emits metal vapor
1, the fixed contact 19 and the movable contact 2
When the arc 25 is ignited near the center in the radial direction of 0, the generation of metal vapor can be suppressed, which is advantageous in preventing a decrease in withstand voltage performance.

【0015】(第3の実施の形態)図8は、本発明の第
3の実施の形態を示す拡大断面図である。同図におい
て、固定側接点19と可動側接点20は開極した状態で
あって、固定側接点19の背面には磁束発生手段として
永久磁石32a、32bが固定側通電軸15を挟むよう
にして設けられる。永久磁石32a、32bは、磁極が
固定側通電軸15の軸方向に沿って配置され、可動側接
点20側に位置する磁極同士及び反接点側(図1のふた
11側)に位置する磁極同士がそれぞれ一致するよう
に、例えば接点側がN極、反接点側がS極となるように
配置される。同様にして、可動側接点20の背面にも永
久磁石33a、33bが可動側通電軸16を挟むように
して設けられる。永久磁石33a、33bは、磁極が可
動側通電軸16の軸方向に沿って配置され、固定側接点
19側に位置する磁極同士及び反接点側(図1のふた1
2側)に位置する磁極同士がそれぞれ一致するように、
例えば接点側がN極、反接点側がS極となるように配置
される。このような構成において、固定側接点19と可
動側接点20の間には、永久磁石32a、32bにより
固定側接点19の径方向に沿った磁束34a、34bが
発生し、永久磁石33a、33bにより可動側接点20
の径方向に沿った磁束35a、35bが発生する。
(Third Embodiment) FIG. 8 is an enlarged sectional view showing a third embodiment of the present invention. In the figure, the fixed side contact 19 and the movable side contact 20 are in an opened state, and permanent magnets 32 a and 32 b are provided on the back surface of the fixed side contact 19 as magnetic flux generating means so as to sandwich the fixed side conducting shaft 15. . The permanent magnets 32a and 32b are arranged such that the magnetic poles are arranged along the axial direction of the fixed-side energizing shaft 15, and the magnetic poles located on the movable contact 20 side and the magnetic poles located on the opposite contact side (the lid 11 side in FIG. 1). Are arranged so that, for example, the contact side is an N pole and the opposite contact side is an S pole. Similarly, permanent magnets 33 a and 33 b are provided on the back surface of the movable contact 20 so as to sandwich the movable conduction shaft 16. The permanent magnets 33a and 33b are arranged such that the magnetic poles are arranged along the axial direction of the movable-side energized shaft 16, and the magnetic poles located on the fixed-side contact 19 side and the counter-contact side (lid 1 in FIG. 1).
2) so that the magnetic poles located on
For example, they are arranged such that the contact side has an N pole and the opposite contact side has an S pole. In such a configuration, the permanent magnets 32a and 32b generate magnetic fluxes 34a and 34b along the radial direction of the fixed contact 19 between the fixed contact 19 and the movable contact 20, and the permanent magnets 33a and 33b generate the magnetic flux 34a and 34b. Movable contact 20
The magnetic fluxes 35a and 35b are generated along the radial direction of.

【0016】磁束34a、34b、35a、35bは、
固定側接点19と可動側接点20との間に発生するアー
ク25に対して直交することになり、アーク25に流れ
る電流Iと直交する磁束34a、34b、35a、35
bの磁束密度Bにより、アーク25にはB×Iに比例した
電磁力が図8の紙面上垂直方向、換言すれば固定側接点
19と可動側接点20の周方向に作用し、アーク25は
この電磁力により固定側接点19と可動側接点20との
間を周方向に回転駆動することになる。本実施の形態の
ように構成しても、簡単な構造で、アーク25が固定側
接点19と可動側接点20との間を回転駆動することに
より、アーク25が接点の特定箇所に停滞することが無
くなる。このため、固定側接点19と可動側接点20の
損傷が少なくなり、大電流を遮断することができる。 (第4の実施の形態)図9は、本発明の第4の実施の形
態を説明するための拡大断面図である。同図において、
例えば図3のような固定側電極部13及び可動側電極部
14を備え、固定側通電軸15の一端に設けられた固定
側接点19と可動側通電軸16の一端に設けられた可動
側接点20の周囲を覆うように形成されたシールド18
の外周には、磁束発生手段として複数の永久磁石36
a、36bが設けられる。また、永久磁石36a、36
bの磁極は、固定側接点19側と可動側接点20側がそ
れぞれ一致するように配置され、例えば固定側接点19
側をN極、可動側接点20側をS極とする。
The magnetic fluxes 34a, 34b, 35a, 35b are:
The magnetic fluxes 34a, 34b, 35a, and 35 are orthogonal to the arc 25 generated between the fixed contact 19 and the movable contact 20, and are orthogonal to the current I flowing through the arc 25.
Due to the magnetic flux density B of b, an electromagnetic force proportional to B × I acts on the arc 25 in the vertical direction on the paper of FIG. 8, in other words, in the circumferential direction of the fixed contact 19 and the movable contact 20, and the arc 25 With this electromagnetic force, the portion between the fixed contact 19 and the movable contact 20 is driven to rotate in the circumferential direction. Even if it is configured as in the present embodiment, the arc 25 stagnates at a specific position of the contact by rotating the arc 25 between the fixed contact 19 and the movable contact 20 with a simple structure. Disappears. Therefore, damage to the fixed side contact 19 and the movable side contact 20 is reduced, and a large current can be cut off. (Fourth Embodiment) FIG. 9 is an enlarged sectional view for explaining a fourth embodiment of the present invention. In the figure,
For example, a fixed-side electrode portion 13 and a movable-side electrode portion 14 as shown in FIG. 3 are provided, and a fixed-side contact 19 provided at one end of a fixed-side energized shaft 15 and a movable-side contact provided at one end of a movable-side energized shaft 16. A shield 18 formed so as to cover the periphery of 20
A plurality of permanent magnets 36
a and 36b are provided. Further, the permanent magnets 36a, 36
The magnetic pole b is arranged such that the fixed-side contact 19 and the movable-side contact 20 respectively correspond to each other.
The N side is the N pole, and the movable contact 20 side is the S pole.

【0017】このような構成において、シールド18の
内側には、永久磁石36a、36bから磁束37,38
が形成される。ここで、例えばアーク25が固定側接点
19及び可動側接点20の間からシールド18側へはみ
出した場合、従来ではシールド18の特定箇所にアーク
25が停滞することで穴が開く等の損傷を来たして遮断
性能が低下していたが、本実施の形態ではアーク25に
流れる電流Iと直交する成分の磁束37の磁束密度Bに
より、アーク25にはB×Iに比例した電磁力が図9の
紙面上垂直方向、換言すればシールド18内面の周方向
に沿った力として作用する。このため、アーク25は、
この電磁力によりシールド18内面を周方向に回転駆動
する。本実施の形態によれば、アーク25がシールド1
8の内面を周方向に回転駆動するので、アーク25がシ
ールド18の特定箇所に停滞することが無くなる。この
ため、永久磁石21a、21bによる効果に加えて、固
定側接点19と可動側接点20、並びにシールド18の
損傷が少なくなるので、大電流を遮断することができ
る。尚、図9では、シールド18の外周に配置する永久
磁石を1つとしたが、図10に示すように、シールド1
8に対して通電軸15、16の軸心を中心として点対称
の位置に永久磁石39aと39b、永久磁石39cと3
9dというようにそれぞれ2つの永久磁石を配置するよ
うにしても良い。但し、この場合、隣り合う永久磁石の
磁極の向きを合わせる必要があり、例えば図10におい
ては対向する側をS極、反対向側をN極とする。
In such a configuration, the magnetic fluxes 37, 38 from the permanent magnets 36a, 36b are provided inside the shield 18.
Is formed. Here, for example, if the arc 25 protrudes toward the shield 18 from between the fixed contact 19 and the movable contact 20, the arc 25 stagnates in a specific portion of the shield 18 in the past, causing damage such as opening a hole. In this embodiment, the electromagnetic force proportional to B × I is applied to the arc 25 by the magnetic flux density B of the component 37 perpendicular to the current I flowing through the arc 25 in FIG. It acts as a force along the vertical direction on the paper, in other words, the circumferential direction of the inner surface of the shield 18. For this reason, the arc 25
This electromagnetic force drives the inner surface of the shield 18 to rotate in the circumferential direction. According to the present embodiment, arc 25 is shield 1
Since the inner surface of the shield 8 is driven to rotate in the circumferential direction, the arc 25 does not stay at a specific position of the shield 18. Therefore, in addition to the effects of the permanent magnets 21a and 21b, damage to the fixed contact 19, the movable contact 20, and the shield 18 is reduced, so that a large current can be cut off. In FIG. 9, one permanent magnet is arranged on the outer periphery of the shield 18. However, as shown in FIG.
8, permanent magnets 39a and 39b and permanent magnets 39c and 3
For example, two permanent magnets such as 9d may be arranged. However, in this case, it is necessary to match the directions of the magnetic poles of the adjacent permanent magnets. For example, in FIG. 10, the opposite side is an S pole and the opposite side is an N pole.

【0018】このようにしても、例えばアーク25が固
定側接点19及び可動側接点20からシールド18側へ
はみ出した場合、アーク25をシールド18の内面で周
方向に回転駆動させることができるので、アーク25が
固定側接点19と可動側接点20、並びにシールド18
の特定箇所に停滞することが無くなる。このため、固定
側接点19と可動側接点20、並びにシールド18の損
傷が少なくなるので、大電流を遮断することができる。
一方、図9や図10に示す構成において、シールド18
の材料としては通常Cuとすることが多いが、これを大
電流遮断用に適したCuCrを主成分とした材料を用い
ると、遮断性能を向上させるのにより有利である。より
詳細には、例えばアーク25がシールド18に達すると
シールド18が実質的に中間電極となり、アーク25は
固定側接点19からシールド18を通って可動側接点2
0に形成されるため、シールド18にはカソードスポッ
トやアノードスポットができ、固定側接点19と可動側
接点20がアーク25に曝された状態と同じになる。こ
のため、シールド18の材料として、例えば大電流遮断
用としてのCuCrを主成分とした材料を用い、アーク
25が付くシールド18の中間部の厚さを固定側接点1
9や可動側接点20と略同じにすることで、固定側接点
19とシールド18間及びシールド18と可動側接点2
0間にアーク25を発生させ、2つのギャップで電流遮
断を行なうことができ、遮断性能の向上につながる。こ
のとき、固定側接点19や可動側接点20の接点材料を
CuCrとすれば、より効果的である。
Even in this case, for example, when the arc 25 protrudes from the fixed contact 19 and the movable contact 20 toward the shield 18, the arc 25 can be driven to rotate in the circumferential direction on the inner surface of the shield 18. The arc 25 includes the fixed contact 19 and the movable contact 20 and the shield 18.
Stagnation at a specific location. Therefore, the fixed side contact 19, the movable side contact 20, and the shield 18 are less damaged, so that a large current can be cut off.
On the other hand, in the configuration shown in FIGS.
Usually, Cu is often used as the material, but using a material mainly composed of CuCr suitable for breaking a large current is more advantageous in improving the breaking performance. More specifically, for example, when the arc 25 reaches the shield 18, the shield 18 becomes substantially an intermediate electrode, and the arc 25 passes from the fixed contact 19 through the shield 18 to the movable contact 2.
Since it is formed at 0, a cathode spot and an anode spot are formed on the shield 18, which is the same as the state where the fixed contact 19 and the movable contact 20 are exposed to the arc 25. For this reason, as a material of the shield 18, for example, a material mainly composed of CuCr for interrupting a large current is used, and the thickness of the intermediate portion of the shield 18 to which the arc 25 is attached is adjusted to the fixed contact 1.
9 and the movable contact 20, the distance between the fixed contact 19 and the shield 18 and between the shield 18 and the movable contact 2
An arc 25 can be generated between 0 and current can be interrupted at two gaps, leading to an improvement in interrupting performance. At this time, it is more effective if the contact material of the fixed contact 19 and the movable contact 20 is CuCr.

【0019】[0019]

【発明の効果】以上詳述したように、本発明によれば、
高電圧回路に適用する場合であっても、簡単な構造で、
通電時に開極した際に発生するアークを確実に周方向に
回転駆動させて特定箇所へのアークの停滞を防ぐことが
できるので、遮断性能を向上させることができる。
As described in detail above, according to the present invention,
Even when applied to high voltage circuits, it has a simple structure,
Since the arc generated when the electrode is opened at the time of energization is reliably driven to rotate in the circumferential direction and the stagnation of the arc at a specific location can be prevented, the breaking performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態を説明するための真空バ
ルブの断面図。
FIG. 1 is a cross-sectional view of a vacuum valve for describing an embodiment of the present invention.

【図2】 本発明の第1の実施の形態を示す図1の固定
側電極部と可動側電極部の拡大断面図。
FIG. 2 is an enlarged cross-sectional view of the fixed-side electrode unit and the movable-side electrode unit of FIG. 1 showing the first embodiment of the present invention.

【図3】 図2の変形例を示す拡大断面図。FIG. 3 is an enlarged sectional view showing a modification of FIG. 2;

【図4】 図2の他の変形例を示す拡大断面図。FIG. 4 is an enlarged sectional view showing another modification of FIG. 2;

【図5】 図2の更に他の変形例を示す拡大断面図。FIG. 5 is an enlarged sectional view showing still another modification of FIG. 2;

【図6】 本発明の第2の実施の形態を示す拡大断面
図。
FIG. 6 is an enlarged sectional view showing a second embodiment of the present invention.

【図7】 図6の変形例を示す拡大断面図。FIG. 7 is an enlarged sectional view showing a modification of FIG. 6;

【図8】 本発明の第3の実施の形態を示す拡大断面
図。
FIG. 8 is an enlarged sectional view showing a third embodiment of the present invention.

【図9】 本発明の第4の実施の形態を示す拡大断面
図。
FIG. 9 is an enlarged sectional view showing a fourth embodiment of the present invention.

【図10】 図9の変形例を示す拡大断面図。FIG. 10 is an enlarged sectional view showing a modification of FIG. 9;

【図11】 従来の真空バルブの電極構造におけるカッ
プ型電極を説明するための拡大断面図。
FIG. 11 is an enlarged cross-sectional view for explaining a cup-shaped electrode in a conventional vacuum valve electrode structure.

【符号の説明】[Explanation of symbols]

13…固定側電極部、14…可動側電極部、18、18
a、18b…シールド 19…固定側接点、20…可動側接点、21a、21
b、22a、22b、32a、32b、33a、33
b、36a、36b、39a、39b、39c、39
d、44a、44b、44c、44d…永久磁石
13: fixed-side electrode unit, 14: movable-side electrode unit, 18, 18
a, 18b: shield 19: fixed contact, 20: movable contact, 21a, 21
b, 22a, 22b, 32a, 32b, 33a, 33
b, 36a, 36b, 39a, 39b, 39c, 39
d, 44a, 44b, 44c, 44d ... permanent magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 芳充 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 捧 浩資 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 5G026 CB02 DA10 HB05 5G027 AA03 BA02 BB03  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yoshimitsu Niwa 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu Office (72) Inventor Hiroshi 1 Toshiba-cho, Fuchu-shi Tokyo F term (reference) 5G026 CB02 DA10 HB05 5G027 AA03 BA02 BB03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空容器と、この真空容器内に貫設され
る固定側通電軸及び可動側通電軸と、前記固定側通電軸
及び可動側通電軸の各々の一端に取付けられ、前記真空
容器内で接離可能な固定側接点及び可動側接点と、前記
固定側接点及び可動側接点の内の少なくとも一方の接点
に、この接点が取付けられた通電軸を挟むようにして設
けられ、遮断時に前記固定側接点と可動側接点の間に発
生するアークを前記接点の周方向に回転駆動させるべく
磁束を発生させる永久磁石とを有する真空バルブ。
A vacuum vessel, a fixed-side energized shaft and a movable-side energized shaft penetrating the vacuum vessel, and one end of each of the fixed-side energized shaft and the movable-side energized shaft; A fixed-side contact and a movable-side contact that can be separated and contacted within, and at least one of the fixed-side contact and the movable-side contact are provided so as to sandwich an energized shaft to which the contact is attached, and the fixed at the time of cutoff A vacuum valve having a permanent magnet for generating a magnetic flux for rotating an arc generated between the side contact and the movable side contact in a circumferential direction of the contact.
【請求項2】 前記永久磁石は、前記通電軸を挟むよう
に且つ磁極が前記接点の径方向に沿って位置するように
複数設けられ、この各永久磁石における前記接点の径方
向外周側の磁極と径方向中央部側の磁極がそれぞれ一致
するように配置されていることを特徴とする請求項1記
載の真空バルブ。
2. The permanent magnet according to claim 1, wherein a plurality of the permanent magnets are provided so as to sandwich the current-carrying shaft and the magnetic poles are located along a radial direction of the contact. 2. The vacuum valve according to claim 1, wherein the magnetic poles are arranged so as to coincide with the magnetic poles at the center in the radial direction.
【請求項3】 前記永久磁石は、前記通電軸を挟むよう
に且つ磁極が前記通電軸の軸方向に沿って位置するよう
に複数設けられ、この各永久磁石における前記接点側の
磁極と反接点側の磁極がそれぞれ一致するように配置さ
れていることを特徴とする請求項1記載の真空バルブ。
3. A plurality of permanent magnets are provided so as to sandwich the energized shaft and to have magnetic poles located along the axial direction of the energized shaft, and the magnetic poles on the contact side of each of the permanent magnets and the anti-contact are provided. 2. The vacuum valve according to claim 1, wherein the magnetic poles on the side are arranged so as to coincide with each other.
【請求項4】 前記固定側通電軸側及び前記可動側通電
軸側の少なくとも一方に、接点から通電軸へ至る穴が設
けられていることを特徴とする請求項1乃至3のいずれ
かに記載の真空バルブ。
4. The device according to claim 1, wherein at least one of the fixed-side energized shaft side and the movable-side energized shaft side is provided with a hole extending from a contact point to the energized shaft. Vacuum valve.
【請求項5】 前記接点の接点材料と同種の材料が前記
穴の内面に被覆されていることを特徴とする請求項4記
載の真空バルブ。
5. The vacuum valve according to claim 4, wherein a material similar to a contact material of the contact is coated on an inner surface of the hole.
【請求項6】 前記固定側接点及び可動側接点の周囲を
覆うように前記真空容器内に設けられたシールドと、前
記シールドの外周側に設けられ、遮断時に前記固定側接
点及び可動側接点の間から外側にはみ出すアークを前記
シールドの周方向に回転駆動させるべく磁束を発生させ
る永久磁石とを有する請求項1乃至5のいずれかに記載
の真空バルブ。
6. A shield provided in the vacuum vessel so as to cover the periphery of the fixed-side contact and the movable-side contact, and a shield provided on an outer peripheral side of the shield, wherein the shield is provided when the fixed-side contact and the movable-side contact are cut off. The vacuum valve according to any one of claims 1 to 5, further comprising: a permanent magnet that generates a magnetic flux so as to rotationally drive an arc that protrudes outward from the space in a circumferential direction of the shield.
JP2001106566A 2001-04-05 2001-04-05 Vacuum valve Pending JP2002304937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106566A JP2002304937A (en) 2001-04-05 2001-04-05 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106566A JP2002304937A (en) 2001-04-05 2001-04-05 Vacuum valve

Publications (1)

Publication Number Publication Date
JP2002304937A true JP2002304937A (en) 2002-10-18

Family

ID=18959040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106566A Pending JP2002304937A (en) 2001-04-05 2001-04-05 Vacuum valve

Country Status (1)

Country Link
JP (1) JP2002304937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164653A (en) * 2011-02-08 2012-08-30 Ls Industrial Systems Co Ltd Vacuum interrupter for vacuum circuit breaker
CN102683099A (en) * 2012-05-31 2012-09-19 武汉大学 High-voltage vacuum switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164653A (en) * 2011-02-08 2012-08-30 Ls Industrial Systems Co Ltd Vacuum interrupter for vacuum circuit breaker
US8519812B2 (en) 2011-02-08 2013-08-27 Lsis Co., Ltd. Vacuum interrupter for vacuum circuit breaker
CN102683099A (en) * 2012-05-31 2012-09-19 武汉大学 High-voltage vacuum switch

Similar Documents

Publication Publication Date Title
US3946179A (en) Vacuum interrupter
KR100295905B1 (en) Electrode structure for vacuum interrupter
TWI345254B (en) Gas insulated switchgear device
JP2002184273A (en) Vacuum interrupter for vacuum circuit-breaker
RU2507624C2 (en) Vacuum interrupter for vacuum circuit breaker
JP4522490B1 (en) Gas insulated switchgear
JP5368150B2 (en) Switch
JPH027318A (en) Vacuum interrupter
JP2015534247A (en) Vacuum interrupter device for medium voltage circuit breakers with cup-shaped TMF contacts
JPWO2013140619A1 (en) Current switch
JP4878331B2 (en) Electrical contact opening / closing part
JP2002304937A (en) Vacuum valve
JP2002334636A (en) Gas-insulated disconnecting switch
US5877464A (en) Electric current switching apparatus with dual magnet arc spinning extinguisher
WO2021152646A1 (en) Gas-insulated switchgear
JP2012129057A (en) Vacuum valve
US4855547A (en) Vacuum interrupter
JP6975111B2 (en) Gas insulation switchgear
JP2020042985A (en) Gas circuit breaker
JP2009187829A (en) Gas-insulated disconnector
JP7490152B2 (en) Switchgear
JP2003123600A (en) Vacuum valve
JPH06139907A (en) Switch
JPH05334945A (en) Electrode structure of switching device
JP3431487B2 (en) Vacuum valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606