JP2002299657A - Photovoltaic module - Google Patents

Photovoltaic module

Info

Publication number
JP2002299657A
JP2002299657A JP2001099363A JP2001099363A JP2002299657A JP 2002299657 A JP2002299657 A JP 2002299657A JP 2001099363 A JP2001099363 A JP 2001099363A JP 2001099363 A JP2001099363 A JP 2001099363A JP 2002299657 A JP2002299657 A JP 2002299657A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
photovoltaic module
photovoltaic
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001099363A
Other languages
Japanese (ja)
Inventor
Takahiro Haga
孝裕 羽賀
Takeshi Takahama
豪 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001099363A priority Critical patent/JP2002299657A/en
Publication of JP2002299657A publication Critical patent/JP2002299657A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To prevent Na from a translucent insulating board from entering a photovoltaic element and deteriorating characteristics since the amount of oxygen is large, and to reduce absorption at a long wavelength. SOLUTION: The photovoltaic module 30 has a plurality of photovoltaic elements 31 having the lamination structure of a transparent conductive film 6, an amorphous or a microcrystalline conductive type semiconductor layer 4, and a crystal-based semiconductor substrate 1 from the surface of a light reception surface side at least at the light reception surface side of nearly a plate-like photovoltaic module 31. In the transparent conductive film 6 of the photovoltaic element 31, carrier density is set to less than 6×10<20> /cm<3> . The amount of oxygen is large, thus preventing Na from a translucent insulating board from entering the photovoltaic element and deteriorating characteristics, and reducing the absorption at the long wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光起電力モジュー
ルに関する。
[0001] The present invention relates to a photovoltaic module.

【0002】[0002]

【従来の技術】従来の光起電力素子の構造が、例えば、
特開平9−129904号に開示されている。この構造
は、表面側より透明導電膜(ITO)/p型非晶質半導
体膜/i型非晶質半導体膜/n型結晶系半導体基板/i
型非晶質半導体膜/n型非晶質半導体膜/透明導電膜
(ITO)/裏面電極膜である。
2. Description of the Related Art The structure of a conventional photovoltaic element is, for example, as follows.
It is disclosed in JP-A-9-129904. This structure has a transparent conductive film (ITO) / p-type amorphous semiconductor film / i-type amorphous semiconductor film / n-type crystalline semiconductor substrate / i
Type amorphous semiconductor film / n-type amorphous semiconductor film / transparent conductive film (ITO) / backside electrode film.

【0003】[0003]

【発明が解決しようとする課題】上記従来の光起電力素
子を、既に公知のモジュール構造、即ち、複数の太陽電
池素子を、受光面側の透光性絶縁基板と、裏面側の耐候
性部材とを用いて、太陽電池素子をその間に挟み、内部
の隙間に封止樹脂を充てんした構造を採用すると以下の
問題が生じた。
The above-mentioned conventional photovoltaic element is constructed by combining a known module structure, that is, a plurality of solar cell elements, with a light-transmitting insulating substrate on a light-receiving surface side and a weather-resistant member on a rear surface side. When a structure in which a solar cell element is interposed therebetween and a sealing resin is filled in an internal gap is used, the following problem occurs.

【0004】信頼性テストである恒温恒湿(85℃90
%)1000Hにおいて、特性の低下するものが発生し
た。
A constant temperature and humidity (85 ° C. 90
%) At 1000H, some of the characteristics deteriorated.

【0005】原因を追求、解析した結果、受光面側の透
光性絶縁基板であるNa2O・CaO・5SiO2の組成
を有する強化ガラスより、Naが析出し、封止樹脂を通
過して、光起電力素子に到達して、特性を低下させてい
ることが解明できた。特に、恒温恒湿テストにおいて
は、水分が封止樹脂と強化ガラスの間より侵入して、強
化ガラスの内面にてその成分を分解して、Na(又はN
aイオン)を析出させているものと考えられる。
[0005] As a result of pursuing and analyzing the cause, Na precipitates from a tempered glass having a composition of Na 2 O · CaO · 5SiO 2 which is a light-transmitting insulating substrate on the light receiving surface side, and Na precipitates through the sealing resin. It was clarified that the photovoltaic element was reached and the characteristics were lowered. In particular, in the constant temperature / humidity test, moisture penetrates from between the sealing resin and the tempered glass, and decomposes its components on the inner surface of the tempered glass to form Na (or N
It is considered that (a ion) is precipitated.

【0006】本発明は、このような構造の問題点を解決
するために成されたものであり、恒温恒湿に強い信頼性
を有する光起電力モジュールを提供することを目的とす
る。
[0006] The present invention has been made to solve such a problem of the structure, and an object of the present invention is to provide a photovoltaic module having high reliability under constant temperature and humidity.

【0007】[0007]

【課題を解決するための手段】本発明の主要な構成は、
略板状の光起電力素子の少なくとも受光面側に、該面側
の表面より透明導電膜、非晶質又は微結晶の導電型半導
体層及び結晶系半導体基板の積層構造を有した複数の光
起電力素子を備え、受光面側の透光性絶縁基板と、裏面
側の耐候性部材とを用いて、前記太陽電池素子をその間
に挟み、内部の隙間に封止樹脂を充てんした光起電力モ
ジュールであって、前記光起電力素子の前記透明導電膜
は、キャリア密度が6×1020/cm3未満であること
を特徴とする。
The main constitution of the present invention is as follows.
A plurality of light beams having a laminated structure of a transparent conductive film, an amorphous or microcrystalline conductive semiconductor layer, and a crystalline semiconductor substrate on at least the light receiving surface side of the substantially plate-shaped photovoltaic element from the surface side. A photovoltaic device comprising a photovoltaic element, a light-transmitting insulating substrate on the light-receiving surface side, and a weather-resistant member on the back side, the photovoltaic element sandwiching the solar cell element therebetween, and filling an internal gap with a sealing resin. In the module, the transparent conductive film of the photovoltaic element has a carrier density of less than 6 × 10 20 / cm 3 .

【0008】[0008]

【発明の実施の形態】本発明の一実施例を、図面を用い
て、詳細に説明する。図1に示すように、本実施例の光
起電力素子は、100mm角程度の正方形で、厚さ約1
00〜500μmのn型の単結晶シリコン(抵抗率=約
0.5〜4Ω・cm)からなる結晶系半導体基板1を備
える。そして、結晶系半導体基板1の表面上に、プラズ
マCVD法を用いて形成された非晶質シリコンの真性半
導体層真性半導体層2(約50〜200Å)、結晶系半
導体基板1の裏面上に、プラズマCVD法を用いて形成
された非晶質シリコンの真性半導体層3(約50〜20
0Å)を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the photovoltaic element of this embodiment is a square having a size of about 100 mm square and a thickness of about 1 mm.
A crystalline semiconductor substrate 1 made of n-type single crystal silicon (resistivity = about 0.5 to 4 Ω · cm) having a thickness of 00 to 500 μm is provided. Then, on the front surface of the crystalline semiconductor substrate 1, an amorphous semiconductor intrinsic semiconductor layer 2 (about 50 to 200 °) formed by using a plasma CVD method, and on the back surface of the crystalline semiconductor substrate 1, Amorphous silicon intrinsic semiconductor layer 3 (about 50 to 20) formed by a plasma CVD method.
0Å).

【0009】真性半導体層2上には、プラズマCVD法
を用いて形成されたp型非晶質シリコンの導電型半導体
層4(約50〜200Å)、真性半導体層3裏面上にプ
ラズマCVD法を用いて形成されたn型非晶質シリコン
の導電型半導体層5(約100〜500Å)を備えてい
る。
On the intrinsic semiconductor layer 2, a p-type amorphous silicon conductive semiconductor layer 4 (about 50 to 200 °) formed by using a plasma CVD method, and on the back surface of the intrinsic semiconductor layer 3, a plasma CVD method is used. A conductive semiconductor layer 5 of n-type amorphous silicon (approximately 100 to 500 °) formed by using the same is provided.

【0010】なお、真性半導体層2、3、導電型半導体
層4、5には、非晶質シリコンを用いているが、微結晶
シリコンを用いても良い。
Although the intrinsic semiconductor layers 2 and 3 and the conductive semiconductor layers 4 and 5 are made of amorphous silicon, microcrystalline silicon may be used.

【0011】表面側において、導電型半導体層4上に形
成された酸化インジウム錫(=ITO)からなる透明導
電膜6、裏面側において、導電型半導体層5上に形成さ
れた酸化インジウム錫(=ITO)からなる透明導電膜
7を備えている。本実施例においては、透明導電膜6、
7の膜厚を1000Åとした。
On the front side, a transparent conductive film 6 made of indium tin oxide (= ITO) formed on the conductive type semiconductor layer 4, and on the back side, indium tin oxide (= ITO) formed on the conductive type semiconductor layer 5. A transparent conductive film 7 made of ITO is provided. In this embodiment, the transparent conductive film 6,
The thickness of No. 7 was set to 1000 °.

【0012】更に、図2に示すように、本実施例の光起
電力素子は、表面の透明導電膜6上に集電極10、裏面
側の透明導電膜7上に集電極20を有している。集電極
10、20は、図2において、光起電力素子の裏面側か
ら見た平面図は、表面側から見た平面図(=図2
(a))と同一につき、図示していない。
Further, as shown in FIG. 2, the photovoltaic element of this embodiment has a collector electrode 10 on the transparent conductive film 6 on the front surface and a collector electrode 20 on the transparent conductive film 7 on the rear surface side. I have. In FIG. 2, the plan view of the collector electrodes 10 and 20 viewed from the back side of the photovoltaic element is a plan view viewed from the front side (= FIG.
(A)), which is not shown.

【0013】図に示すように、集電極10、20は、銀
ペーストからなり、スクリーン印刷後加熱処理して形成
あれる。加熱処理による透明導電膜、非晶質半導体層へ
の悪影響を考慮して、加熱処理の温度が約200℃で形
成できる低温加熱処理タイプの銀ペーストを採用してい
る。
As shown in the figure, the collector electrodes 10 and 20 are made of silver paste, and are formed by screen printing followed by heat treatment. In consideration of the adverse effect of the heat treatment on the transparent conductive film and the amorphous semiconductor layer, a low-temperature heat treatment type silver paste that can be formed at a heat treatment temperature of about 200 ° C. is used.

【0014】詳細には、集電極10、20は、側辺と平
行に延びる2本のバス電極部11、21(幅約2mm)
と、このバス電極部11、21より直交して延びる複数
のフィンガー電極部12、22(幅約50μm、間隔約
2〜3mm)とからなる。
More specifically, the collecting electrodes 10 and 20 are composed of two bus electrode portions 11 and 21 (width about 2 mm) extending parallel to the side.
And a plurality of finger electrode portions 12 and 22 (width of about 50 μm, spacing of about 2 to 3 mm) extending orthogonally from the bus electrode portions 11 and 21.

【0015】このような構造の太陽電池素子の分光感度
スペクトルは、特許第2614561号の図2に開示が
あるように、400〜1100nmに渡り幅広い分光感
度特性を有している。それゆえ、透明導電膜について
は、可視光(約400〜650nm)の透過性のみなら
ず、約650〜1100nmの赤外線に対する透過性が
大きいことも重要である。
The spectral sensitivity spectrum of the solar cell element having such a structure has a wide spectral sensitivity characteristic in a range of 400 to 1100 nm as disclosed in FIG. 2 of Japanese Patent No. 2614561. Therefore, it is important that the transparent conductive film not only has high transmittance for visible light (about 400 to 650 nm) but also has high transmittance for infrared rays of about 650 to 1100 nm.

【0016】図3は、透明導電膜(ITO)の吸収率の
分光特性を示している。曲線Aが、従来であり、キャリ
ア密度6×1020/cm3、低抵抗な1000Åで30
Ω/□の透明導電膜を示している。600nm以上の波
長において、吸収が大きいことが理解できる。なお、こ
の従来の透明導電膜は、キャリア密度6×1020/cm
3、抵抗率が3.0×10-4Ω・cmであった。
FIG. 3 shows the spectral characteristics of the absorptance of the transparent conductive film (ITO). Curve A shows a conventional curve having a carrier density of 6 × 10 20 / cm 3 and a low resistance of 30 ° at 1000 °.
The transparent conductive film of Ω / □ is shown. It can be understood that absorption is large at a wavelength of 600 nm or more. This conventional transparent conductive film has a carrier density of 6 × 10 20 / cm.
3. The resistivity was 3.0 × 10 −4 Ω · cm.

【0017】本実施例においては、長波長の600nm
以上の波長において吸収が少ない透明導電膜を得ること
ができた。その分光感度特性を、曲線B(テスト1)に
示す。特に、800nm以上の波長において、吸収が小
さい。なお、曲線Bの透明導電膜は、キャリア密度4×
1020/cm3、抵抗率が3.5×10-4Ω・cm(1
000Åで35Ω/□)であった。
In this embodiment, a long wavelength of 600 nm
A transparent conductive film having little absorption at the above wavelengths was obtained. The spectral sensitivity characteristics are shown in a curve B (test 1). In particular, absorption is small at a wavelength of 800 nm or more. Note that the transparent conductive film of curve B has a carrier density of 4 ×
10 20 / cm 3 and resistivity of 3.5 × 10 −4 Ω · cm (1
35Ω / □ at 000 °).

【0018】また、同様に、本実施例である曲線C(テ
スト2)においても、長波長の600nm以上の波長に
おいて吸収が少ない透明導電膜を得ることができた。な
お、曲線Cの透明導電膜は、キャリア密度2×1020
cm3、抵抗率が4.0×10-4Ω・cm(1000Å
で40Ω/□)であった。
Similarly, in the curve C (test 2) of the present embodiment, a transparent conductive film having little absorption at a long wavelength of 600 nm or more was obtained. The transparent conductive film of the curve C has a carrier density of 2 × 10 20 /
cm 3 and a resistivity of 4.0 × 10 −4 Ω · cm (1000 °
40Ω / □).

【0019】このような図3における曲線B、Cの分光
感度特性を有する透明導電膜は、膜中の酸素量を増加さ
せることにより達成できることが確認できた。詳細に
は、本実施例の透明導電膜は、ITOターゲット(In
23とSnO2との混合)を用いて、Arガス及び酸素
ガスを導入してスパッタ成膜を行い、成膜中のO2ガス
の流量を増加させることにより、透明導電膜中の酸素量
を増加させることができた。具体的には、スパッタ成膜
中の酸素ガス流量を、2SCCM(従来、曲線A)、4
SCCM(テスト1、曲線B)、7SCCM(テスト
2、曲線C)とすることで、透明導電膜中の酸素量を増
加させた。酸素量が多いと、長波長での吸収を抑えるこ
とができるものの、透明導電膜中の酸素欠損がなくな
り、電気伝導が悪くなり、抵抗値が上昇する。このこと
は、上記の透明導電膜の物性の比較でも確認できる。透
明導電膜中の酸素量は、キャリア密度を指標とすること
ができ、酸素量が増加すると、キャリア密度が減少す
る。
It was confirmed that such a transparent conductive film having the spectral sensitivity characteristics of curves B and C in FIG. 3 can be achieved by increasing the amount of oxygen in the film. Specifically, the transparent conductive film of the present embodiment is made of an ITO target (In
(Mixture of 2 O 3 and SnO 2 ) by introducing Ar gas and oxygen gas to form a film by sputtering, and by increasing the flow rate of O 2 gas during the film formation, the oxygen in the transparent conductive film is increased. The amount could be increased. Specifically, the flow rate of oxygen gas during sputtering film formation is set to 2 SCCM (conventionally, curve A), 4
SCCM (test 1, curve B) and 7 SCCM (test 2, curve C) increased the amount of oxygen in the transparent conductive film. When the amount of oxygen is large, although absorption at a long wavelength can be suppressed, oxygen deficiency in the transparent conductive film is eliminated, electric conductivity is deteriorated, and resistance value is increased. This can be confirmed by comparing the physical properties of the transparent conductive film. The amount of oxygen in the transparent conductive film can be determined using the carrier density as an index. As the amount of oxygen increases, the carrier density decreases.

【0020】次に、上述の複数の光起電力素子31を用
いた光起電力モジュールの構造を説明する。図4におい
て、(a)は光起電力モジュールの平面図、(b)は、
(a)におけるA−A断面図、(c)は要部拡大断面図
である。図4において、光起電力モジュール30は、平
面視略矩形状であって、受光面側に強化ガラスの透光性
絶縁基板32と、裏面側にAl等の金属箔を樹脂フィル
ム(例えばPVF(ポリビニールフタレート))でサンド
イッチした3層構造の耐候性部材33とを有している。
強化ガラスである透光性絶縁基板32は、Na2O・C
aO・5SiO2の組成を有している。透光性絶縁基板
32と、耐候性部材33との間に、平面視矩形状の複数
の太陽電池素子31が、配置されている。
Next, the structure of a photovoltaic module using the plurality of photovoltaic elements 31 will be described. 4A is a plan view of the photovoltaic module, and FIG.
(A) is an AA cross-sectional view, and (c) is a main part enlarged cross-sectional view. In FIG. 4, the photovoltaic module 30 has a substantially rectangular shape in a plan view, and includes a translucent insulating substrate 32 made of tempered glass on a light receiving surface side and a metal foil such as Al on a back surface side formed of a resin film (for example, PVF ( And a three-layer weather-resistant member 33 sandwiched by polyvinyl phthalate)).
The translucent insulating substrate 32 made of tempered glass is made of Na 2 O.C
It has a composition of aO · 5SiO 2. A plurality of solar cell elements 31 having a rectangular shape in a plan view are arranged between the translucent insulating substrate 32 and the weather-resistant member 33.

【0021】そして、複数の太陽電池素子31は、以下
の構造で、封止されている。PVB又はEVA等の加圧真空加
熱前にシート状の表面封止樹脂34s及び裏面封止樹脂
34rの間に、複数の太陽電池素子31を挟んだ状態
で、太陽電池パネル30の表面及び裏面より、加圧しな
がら真空加熱することで、表面封止樹脂34s及び裏面
封止樹脂34rが軟化して、内部の隙間に封止樹脂34
s及び34rが充てんされ、図4の構造が完成される。
ここで、表面封止樹脂34s、裏面封止樹脂34rに
は、透明材料が採用されている。また、光起電力モジュ
ール30は、その外周に、アルミ等の金属材料からなる
外枠を、シリコーン樹脂等介して、取り付けることがで
きる。
The plurality of solar cell elements 31 are sealed with the following structure. Before heating under pressure and vacuum such as PVB or EVA, a plurality of solar cell elements 31 are sandwiched between the sheet-like front sealing resin 34s and the back sealing resin 34r. By performing vacuum heating while applying pressure, the surface sealing resin 34 s and the back surface sealing resin 34 r are softened, and the sealing resin 34
Filled with s and 34r, the structure of FIG. 4 is completed.
Here, a transparent material is employed for the surface sealing resin 34s and the back surface sealing resin 34r. Further, the photovoltaic module 30 can have an outer frame made of a metal material such as aluminum mounted on the outer periphery thereof through a silicone resin or the like.

【0022】次に、従来の問題点であるNaの侵入に対
して、透明導電膜中の酸素量を増加させることにより、
防止できることについて、テストを行った。上述のよう
に、Naの侵入による光起電力素子の特性低下について
は、光起電力モジュール状態で、恒温恒湿(85℃90
%)1000Hにおいて、発生しているが、Na侵入の
影響を加速して調査するため、以下のNa加速テストを
採用した。0.05%水溶液濃度のNaHCO3液を、
光起電力素子の受光面側に塗布して、恒温恒湿(85℃
90%)3H後の特性を評価する。上述の図3に示した
各透明導電膜を用いて、光起電力素子を作成し、初期特
性比較、Na加速テスト後のPmax劣化率比較を行っ
た。その結果を表1に示す。
Next, by increasing the amount of oxygen in the transparent conductive film against the invasion of Na, which is a conventional problem,
A test was conducted to determine what could be prevented. As described above, regarding the deterioration of the characteristics of the photovoltaic element due to the intrusion of Na, the temperature and humidity (85 ° C. 90
%) Although it occurred at 1000H, the following Na acceleration test was adopted to accelerate and investigate the influence of Na intrusion. 0.05% aqueous NaHCO 3 solution
Apply to the light receiving surface side of the photovoltaic element,
90%) The properties after 3H are evaluated. A photovoltaic element was prepared using each transparent conductive film shown in FIG. 3 described above, and the initial characteristics were compared, and the Pmax degradation rate after the Na acceleration test was compared. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】表1より、本実施例のテスト1、2におい
ては、従来と比較して、透明導電膜中の酸素量を増加さ
せたことにより(キャリア密度は低下する)、劣化率が
小さいことより、Naによる特性低下を、抑えることが
できる。よって、Naを含む強化ガラス等の透光性絶縁
基板32を用いて、光起電力モジュールを作成したと
き、光起電力素子の特性低下を防止することができる。
From Table 1, it can be seen that in Tests 1 and 2 of the present embodiment, the deterioration rate was small due to the increase in the amount of oxygen in the transparent conductive film (the carrier density was reduced) as compared with the conventional test. Thus, a decrease in characteristics due to Na can be suppressed. Therefore, when the photovoltaic module is manufactured using the translucent insulating substrate 32 such as tempered glass containing Na, it is possible to prevent the characteristics of the photovoltaic element from deteriorating.

【0025】また、初期特性においても、テスト1、2
は、従来と比較して、抵抗率が大きいものの(FFが低
下する)、透明導電膜における長波長での吸収を低下さ
せることができるので、Iscを増加し、トータルの出
力であるPmaxが向上している。
In the initial characteristics, tests 1 and 2
Can increase Isc and increase Pmax, which is the total output, because although the resistivity is higher than the conventional one (FF decreases), absorption at a long wavelength in the transparent conductive film can be reduced. are doing.

【0026】本実施例においては、改良された透明導電
膜を、光起電力素子の表面、裏面に用いたが、入射面で
ある表面に利用するだけでも、十分な特性向上がある。
In the present embodiment, the improved transparent conductive film is used on the front and back surfaces of the photovoltaic element. However, even if it is used only on the surface which is the incident surface, the characteristics are sufficiently improved.

【0027】[0027]

【発明の効果】本発明においては、略板状の光起電力素
子の少なくとも受光面側に、該面側の表面より透明導電
膜、非晶質又は微結晶の導電型半導体層及び結晶系半導
体基板の積層構造を有した複数の光起電力素子を備え、
受光面側の透光性絶縁基板と、裏面側の耐候性部材とを
用いて、太陽電池素子をその間に挟み、内部の隙間に封
止樹脂を充てんした光起電力モジュールであって、光起
電力素子の透明導電膜は、キャリア密度が6×1020
cm3未満であって、酸素量が多いことより、透光性絶
縁基板からのNaが光起電力素子に侵入し、特性低下す
ることを防止することができる。また、透明導電膜は、
キャリア密度が6×1020/cm3未満であって、酸素
量が多いことより、長波長での吸収を低下させることが
できる。
According to the present invention, a transparent conductive film, an amorphous or microcrystalline conductive semiconductor layer and a crystalline semiconductor are arranged on at least the light receiving surface side of a substantially plate-shaped photovoltaic element from the surface side. Comprising a plurality of photovoltaic elements having a laminated structure of substrates,
A photovoltaic module using a light-transmitting insulating substrate on the light-receiving surface side and a weather-resistant member on the back side, sandwiching a solar cell element therebetween, and filling an internal gap with a sealing resin. The transparent conductive film of the power element has a carrier density of 6 × 10 20 /
Since the oxygen content is less than cm 3 and the amount of oxygen is large, it is possible to prevent Na from the light-transmitting insulating substrate from entering the photovoltaic element and deteriorating the characteristics. Also, the transparent conductive film is
Since the carrier density is less than 6 × 10 20 / cm 3 and the amount of oxygen is large, absorption at a long wavelength can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造途中の光起電力素子を示す図であ
り、(a)は平面図、(b)は(a)におけるA−A断
面図である。
FIGS. 1A and 1B are diagrams showing a photovoltaic element in the process of manufacturing according to the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA in FIG.

【図2】本発明の光起電力素子を示す図であり、(a)
は平面図、(b)は(a)におけるA−A拡大断面図、
(c)は(a)におけるB−B拡大断面図である。
FIG. 2 is a diagram showing a photovoltaic device of the present invention, wherein (a)
Is a plan view, (b) is an AA enlarged sectional view in (a),
(C) is an BB enlarged sectional view in (a).

【図3】分光特性のグラフを示す。FIG. 3 shows a graph of spectral characteristics.

【図4】本発明の光起電力モジュールを示す図であり、
(a)は平面図、(b)は(a)におけるA−A断面図
である。
FIG. 4 is a diagram showing a photovoltaic module of the present invention;
(A) is a top view, (b) is an AA sectional view in (a).

【符号の説明】[Explanation of symbols]

1 結晶系半導体基板 2、3 真性非晶質半導体層 4、5 導電型非晶質半導体層 6、7 透明導電膜 10、20 集電極 11、21 バス電極部 12、22 フィンガー電極部 30 光起電力モジュール 31 光起電力素子 32 透光性絶縁基板 33 耐候性部材 14s、14r 封止樹脂 DESCRIPTION OF SYMBOLS 1 Crystalline semiconductor substrate 2, 3 Intrinsic amorphous semiconductor layer 4, 5 Conductivity type amorphous semiconductor layer 6, 7 Transparent conductive film 10, 20 Collector electrode 11, 21 Bus electrode part 12, 22, Finger electrode part 30 Photovoltaic Power module 31 Photovoltaic element 32 Translucent insulating substrate 33 Weatherproof member 14s, 14r Sealing resin

フロントページの続き Fターム(参考) 5F051 AA02 AA04 AA05 BA18 CA15 CB27 DA04 DA20 FA04 FA10 FA14 GA04 JA03 JA04 Continued on the front page F term (reference) 5F051 AA02 AA04 AA05 BA18 CA15 CB27 DA04 DA20 FA04 FA10 FA14 GA04 JA03 JA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 略板状の光起電力素子の少なくとも受光
面側に、該面側の表面より透明導電膜、非晶質又は微結
晶の導電型半導体層及び結晶系半導体基板の積層構造を
有した複数の光起電力素子を備え、 受光面側の透光性絶縁基板と、裏面側の耐候性部材とを
用いて、前記太陽電池素子をその間に挟み、内部の隙間
に封止樹脂を充てんした光起電力モジュールであって、 前記光起電力素子の前記透明導電膜は、キャリア密度が
6×1020/cm3未満であることを特徴とする光起電
力モジュール。
1. A laminated structure of a transparent conductive film, an amorphous or microcrystalline conductive semiconductor layer and a crystalline semiconductor substrate is formed on at least a light receiving surface side of a substantially plate-shaped photovoltaic element from the surface on the surface side. A plurality of photovoltaic elements having a light-transmitting insulating substrate on the light-receiving surface side, and a weather-resistant member on the back side, sandwiching the solar cell element therebetween, and sealing resin in an internal gap. A filled photovoltaic module, wherein the transparent conductive film of the photovoltaic element has a carrier density of less than 6 × 10 20 / cm 3 .
【請求項2】 結晶系半導体基板の表面上に、非晶質又
は微結晶の一導電型半導体層及び透明導電膜を積層し、
前記基板の裏面上に、非晶質又は微結晶の他導電型半導
体層を積層した複数の光起電力素子を備え、 受光面側の透光性絶縁基板と、裏面側の耐候性部材とを
用いて、前記太陽電池素子をその間に挟み、内部の隙間
に封止樹脂を充てんした光起電力モジュールであって、 前記光起電力素子の前記透明導電膜は、キャリア密度が
6×1020/cm3未満であることを特徴とする光起電
力モジュール。
2. An amorphous or microcrystalline one conductivity type semiconductor layer and a transparent conductive film are laminated on a surface of a crystalline semiconductor substrate,
On the back surface of the substrate, a plurality of photovoltaic elements in which an amorphous or microcrystalline other conductive semiconductor layer is laminated, a light-transmitting insulating substrate on the light receiving surface side and a weather-resistant member on the back surface side are provided. A photovoltaic module in which the solar cell element is interposed therebetween and a sealing resin is filled in an internal gap, wherein the transparent conductive film of the photovoltaic element has a carrier density of 6 × 10 20 / A photovoltaic module having a size of less than 3 cm 3 .
【請求項3】 前記透光性絶縁基板は、Naを含むこと
を特徴とする請求項1又は2の光起電力モジュール。
3. The photovoltaic module according to claim 1, wherein said translucent insulating substrate contains Na.
【請求項4】 前記半導体基板と、前記半導体層の間
に、非晶質又は微結晶からなる真性半導体層を介在した
ことを特徴とする請求項1又は2の光起電力モジュー
ル。
4. The photovoltaic module according to claim 1, wherein an intrinsic semiconductor layer made of amorphous or microcrystalline is interposed between said semiconductor substrate and said semiconductor layer.
【請求項5】 前記透明導電膜は、酸化インジウム錫で
あることを特徴とする請求項1又は2の光起電力モジュ
ール。
5. The photovoltaic module according to claim 1, wherein the transparent conductive film is made of indium tin oxide.
【請求項6】 前記透明導電膜は、キャリア密度が4×
1020/cm3以下であることを特徴とする請求項1又
は2の光起電力モジュール。
6. The transparent conductive film has a carrier density of 4 ×.
The photovoltaic module according to claim 1, wherein the photovoltaic module has a density of 10 20 / cm 3 or less.
【請求項7】 前記透明導電膜は、抵抗率が3.5×1
-4Ω・cm以上であることを特徴とする請求項1又は
2の光起電力モジュール。
7. The transparent conductive film has a resistivity of 3.5 × 1.
The photovoltaic module according to claim 1, wherein the photovoltaic module has a resistivity of 0 −4 Ω · cm or more.
JP2001099363A 2001-03-30 2001-03-30 Photovoltaic module Pending JP2002299657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001099363A JP2002299657A (en) 2001-03-30 2001-03-30 Photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099363A JP2002299657A (en) 2001-03-30 2001-03-30 Photovoltaic module

Publications (1)

Publication Number Publication Date
JP2002299657A true JP2002299657A (en) 2002-10-11

Family

ID=18952907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099363A Pending JP2002299657A (en) 2001-03-30 2001-03-30 Photovoltaic module

Country Status (1)

Country Link
JP (1) JP2002299657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351317A3 (en) * 2002-03-19 2010-12-15 Sanyo Electric Co., Ltd. Photovoltaic element and manufacturing method of the photovoltaic element
WO2012124463A1 (en) * 2011-03-17 2012-09-20 三洋電機株式会社 Solar cell and solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351317A3 (en) * 2002-03-19 2010-12-15 Sanyo Electric Co., Ltd. Photovoltaic element and manufacturing method of the photovoltaic element
WO2012124463A1 (en) * 2011-03-17 2012-09-20 三洋電機株式会社 Solar cell and solar cell module
CN103430318A (en) * 2011-03-17 2013-12-04 三洋电机株式会社 Solar cell and solar cell module
JPWO2012124463A1 (en) * 2011-03-17 2014-07-17 三洋電機株式会社 Solar cell and solar cell module

Similar Documents

Publication Publication Date Title
US6818819B2 (en) Solar cell module
US6667434B2 (en) Solar cell module
EP1246249B1 (en) Thin-film solar cell module of see-through type
JP4162447B2 (en) Photovoltaic element and photovoltaic device
JP3557148B2 (en) Solar cell module
US20080283117A1 (en) Solar Cell Module and Method of Manufacturing Solar Cell Module
JP5180307B2 (en) Daylighting type solar cell module
JPWO2008120498A1 (en) Photoelectric conversion device and manufacturing method thereof
JP4493514B2 (en) Photovoltaic module and manufacturing method thereof
JP2002373997A (en) Integrated hybrid thin-film photoelectric conversion module
JPS6262073B2 (en)
JP5001722B2 (en) Method for manufacturing thin film solar cell
JP2002043594A (en) Optical transmission type thin film solar cell module
JP2008305945A (en) Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
JP2001244486A (en) Solar battery module
US20070251573A1 (en) Photoelectric Converter
JP2002299657A (en) Photovoltaic module
JP4358549B2 (en) Translucent thin film solar cell module
KR20090105822A (en) Thin-film photovoltaic cells and method for manufacturing thereof, thin-film photovoltaic cells module
WO2014050193A1 (en) Photoelectric conversion module
JP4330241B2 (en) Solar cell module
JP2002299658A (en) Photovoltaic element
JP2002299663A (en) See-through-type thin-film solar cell module
JP4911878B2 (en) Semiconductor / electrode contact structure and semiconductor element, solar cell element, and solar cell module using the same
JPS59144178A (en) Photoelectric converter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731