JP2002294325A - Method for producing wear resistant and impact resistant low alloy steel - Google Patents

Method for producing wear resistant and impact resistant low alloy steel

Info

Publication number
JP2002294325A
JP2002294325A JP2001097660A JP2001097660A JP2002294325A JP 2002294325 A JP2002294325 A JP 2002294325A JP 2001097660 A JP2001097660 A JP 2001097660A JP 2001097660 A JP2001097660 A JP 2001097660A JP 2002294325 A JP2002294325 A JP 2002294325A
Authority
JP
Japan
Prior art keywords
hardness
hardenability
alloy steel
low alloy
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001097660A
Other languages
Japanese (ja)
Inventor
Tsuneo Takada
恒夫 高田
Hiroaki Maedono
前殿  裕章
Haruki Sumimoto
治喜 炭本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2001097660A priority Critical patent/JP2002294325A/en
Publication of JP2002294325A publication Critical patent/JP2002294325A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To further improve the hardenability of thick low alloy steel in particular. SOLUTION: In the method for producing low alloy steel containing alloy elements such as Ni, Cr and Mo individually or in combination, in the final stage of dissolution refining, 0.01 to 0.1% Al and 0.05 to 0.20% Zr are simultaneously added, and the steel is forcedly subjected to deoxidation and denitrification to improve its hardenability. Zr is not used for directly increasing its hardness by the formation of carbide, but, the componential ranges of the additional elements are limited so as to improve its hardenability by the cleaning and refining of the structure, and great importance has been attached to the action of Zr which is allowed to enter into solid solution in ferrite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低合金鋼、とくに焼
入性を向上した耐摩耗耐衝撃性低合金鋼材の製造に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of low-alloy steels, especially low-alloy steels having improved wear resistance and impact resistance.

【0002】[0002]

【従来の技術】低合金鋼は普通炭素鋼に少量のMn、N
i、Cr、Moなどを配合した材料で、主として機械構
造用鋼の主体として多用され、その組成はJISやAS
TMに規格化され、最も一般的な汎用材とされている。
たとえばJIS G5111SCrM、同G 4105
SCM材などは典型的なCr−Mo合金鋼である。し
かし、機械構造用鋼の規格品として、たとえばSCM4
35材(重量%にしてC:0.33〜0.38、Si:
0.15〜0.35、Mn:0.60〜0.85、C
r:0.90〜1.20、Mo:0.50〜0.35)
では、靭性は申し分ないとしても硬度がHB269〜3
31の範囲に留まり、通常の構造用鋼であれば充分であ
っても、たとえば鉱石処理用の機械、廃棄物処理、浚渫
用機械など土石や石炭、鉱石などや廃自動車の破砕など
直接自らも過酷な摩耗作用に直面する部材には到底その
役務に耐えることができず、早々に更新せざるを得な
い。
2. Description of the Related Art Low-alloy steel is produced by adding a small amount of Mn, N
It is a material containing i, Cr, Mo, etc., and is widely used mainly as a main component of steel for machine structural use. Its composition is JIS or AS.
It is standardized to TM and is the most common general-purpose material.
For example, JIS G5111SCrM and G4105
The SCM material or the like is a typical Cr-Mo alloy steel. However, as standard products of steel for machine structural use, for example, SCM4
35 materials (in terms of% by weight, C: 0.33 to 0.38, Si:
0.15 to 0.35, Mn: 0.60 to 0.85, C
r: 0.90 to 1.20, Mo: 0.50 to 0.35)
Then, even if the toughness is satisfactory, the hardness is HB269-3.
31 or more, even if ordinary structural steel is sufficient, for example, crushing of debris, coal, ore, and end-of-life vehicles such as ore processing machinery, waste treatment and dredging machinery Members that face severe abrasion effects cannot withstand their services at all and must be renewed quickly.

【0003】このような摩耗部材に対応するには、特殊
な耐摩耗材を採用する必要があるが、金属摩耗としては
すべり摩耗ところがり摩耗とに大別され、本発明が特に
対象としているすべり摩耗では、C、および炭化物形成
元素であるCr、Moを加え、フェライト強化のためS
i、Mnを高めて、全体として硬度を上げて対応するの
が一般的であり、従来技術もこの狙いに絞った提案が開
示されている。
In order to cope with such wear members, it is necessary to employ a special wear-resistant material. However, metal wear is roughly classified into sliding wear and partial wear, and the present invention is particularly concerned with sliding wear. In addition, C and carbide forming elements Cr and Mo are added, and S is added to strengthen ferrite.
It is common to increase the hardness by increasing i and Mn to increase the hardness as a whole, and the prior art discloses a proposal focusing on this aim.

【0004】特公昭48−34650号公報に係る従来
技術はC:0.30〜0.40、Si:1.30〜1.
70、Mn:0.80〜1.20、Ni:2.0〜3.
0、Cr:0.80〜1.20、Mo:0.40〜0.
60(重量%)の他、少量のV、Zr、Ce、Laを含
み、マクロ粒度の細粒化によってミクロ介在物やミクロ
収縮孔を減小し、窒素脆性を防止して靭性を高めるため
に上記の成分範囲を特定したとしている。この結果V、
Zr、Ce、Laを含む実施例と、ほぼ同じ成分である
がこれら微量成分を含まない比較例の機械的性質を比べ
てみると、引張力はほぼ同じレベルにあるが、伸び、絞
り、シャルピー衝撃値がほぼ2倍前後に向上し、明らか
な靭性の強化が認められると謳っている。なお、硬度H
Vは525、590の2例を挙げ、JISのSC46の
同125、JIS SCA3の215を大きく凌駕して
耐摩耗性の差を示唆しているが、La、Ceなど特殊な
希土類元素による差については触れていない。
The prior art according to Japanese Patent Publication No. 48-34650 discloses C: 0.30 to 0.40, Si: 1.30 to 1.
70, Mn: 0.80 to 1.20, Ni: 2.0 to 3.
0, Cr: 0.80 to 1.20, Mo: 0.40 to 0.
60 (% by weight) and a small amount of V, Zr, Ce, and La to reduce microinclusions and microshrinkage pores by refining the macro grain size, to prevent nitrogen embrittlement, and to increase toughness. It is said that the above-mentioned component range was specified. As a result, V,
Comparing the mechanical properties of the example containing Zr, Ce, and La and the comparative example having almost the same components but not containing these trace components, the tensile force is at substantially the same level, but the elongation, drawing, and Charpy It is stated that the impact value is improved by about twice, and that the toughness is clearly enhanced. The hardness H
V indicates 525 and 590, two examples, which greatly exceed the JIS SC46 of 125 and the JIS SCA3 of 215, suggesting a difference in wear resistance. However, the difference due to special rare earth elements such as La and Ce Did not touch.

【0005】[0005]

【発明が解決しようとする課題】構造用鋼の主体を占め
る低合金鋼、特にNi−Cr、Ni−Cr−Mo、また
はCr−Moの低合金鋼の靭性と硬度をバランスさせる
ことは長い開発の歴史が物語る息の長い挑戦であり、現
在に至るもオールマイティの材料はない。しかし、前記
の従来技術では、希土類元素、特にCe、Laのミッシ
ュメタルを添加して不純物元素の減小と微細化、不活性
化によって靭性を上げることを要旨とするが、このミッ
シュメタルはきわめて高価である上、その反応はきわめ
て激しく、かつ、溶湯添加の効果が時間と共に急激に失
われることはよく知られている。したがって多数の鋳型
に逐次注湯する時間が長引けば、最初と最後の鋳型の鋳
造品ではその作用、効果に著しい差が生じ、ミッシュメ
タルにのみ依存する品質の改善には個々の製品に大きな
バラツキが生じる可能性が高い。
It has been a long development to balance the toughness and hardness of low alloy steels that dominate structural steel, especially Ni-Cr, Ni-Cr-Mo or Cr-Mo low alloy steels. History is a long-lived challenge, and there is no almighty material to date. However, in the above-mentioned prior art, the gist is to increase the toughness by adding a rare earth element, in particular, a misch metal of Ce or La to reduce, refine, and inactivate the impurity element. It is well known that, besides being expensive, the reaction is very violent and the effect of the addition of the molten metal is rapidly lost over time. Therefore, if the time for pouring successively into a large number of molds is prolonged, there will be a significant difference in the operation and effect between the first and last mold castings. Is likely to occur.

【0006】また、この従来技術は耐摩耗性を決定的に
支配する硬度については、JISのSC46やSCA−
3と対比してその優越を謳っているが、前記のように現
在の需要者側からの要望は遥かに高いレベルの中での競
合にあり、最近の傾向として、とくに家庭用ゴミなどの
粗大化傾向、廃車処理の急増など破砕設備の大型化に伴
って耐摩耗部材、たとえばカーシュレッダーミルのハン
マーなども大型化する趨勢は避け難いから、厚肉鋳造品
の硬度の均一性が大きな課題として浮上してくる。如何
に試験片の硬度が使用上適正であっても、熱間、冷間加
工によって結晶粒や介在物、偏析の分布を強制的に改善
できない厚肉鋳造品の場合は、製品の内部へ進むにつれ
て急激に硬度が失われるようでは要望に応えられない。
いわゆる焼入性の問題を論議しなければ、厚肉鋳造品と
して対応できないという課題がある。
In the prior art, the hardness which crucially determines the wear resistance is determined by JIS SC46 or SCA-JIS.
However, as mentioned above, the demands of the current consumers are at a much higher level of competition, and as a recent trend, especially the As the size of crushing equipment increases due to the tendency to increase the size of crushing equipment, such as the increase in scrap car treatment, the tendency to increase the size of wear-resistant members, such as the hammer of car shredder mills, is unavoidable. Comes to the surface. Even if the hardness of the test piece is appropriate for use, in the case of a thick cast product in which the distribution of crystal grains, inclusions, and segregation cannot be forcibly improved by hot or cold working, proceed to the inside of the product As the hardness rapidly decreases, the demand cannot be met.
There is a problem that unless the problem of so-called hardenability is discussed, it cannot be handled as a thick cast product.

【0007】本発明は従来技術と同様、耐摩耗性と耐衝
撃のバランスを求めた技術に当るが、とくに従来技術よ
りも一段と高い硬度によってより効率的な耐摩耗材料と
しての使命を果たすと共に、焼入性の改善に着目し、黒
皮表面から内部へ入るに従って硬度が低下する割合をで
きるだけ抑止して、名実共に耐摩耗性が有効に持続する
耐摩耗耐衝撃の低合金鋼の製造方法を提供することを目
的とする。
[0007] The present invention, like the prior art, is a technique that seeks a balance between wear resistance and impact resistance. In particular, the present invention fulfills its mission as a more efficient wear-resistant material with a higher hardness than the conventional technique. Focusing on the improvement of hardenability, by suppressing the rate of decrease in hardness as it enters the surface from the surface of the black scale as much as possible, a method for producing a wear-resistant and impact-resistant low-alloy steel that effectively maintains wear resistance in both name and reality The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明に係る耐摩耗耐衝
撃低合金鋼の製造方法は、Ni、Cr、Mo等の合金元
素を単独で、または組合せて含む低合金鋼の製造方法に
おいて、溶解精練の最終段階で0.01〜0.1%のA
lと共に0.05〜0.20%のZrを同時に添加し強
制的に脱酸・脱窒して焼入性を向上したことによって前
記の課題を解決した。
According to the present invention, there is provided a method for producing a wear-resistant and impact-resistant low-alloy steel, which comprises alloying elements such as Ni, Cr and Mo, alone or in combination. 0.01-0.1% of A in the final stage of dissolving and scouring
The above problem was solved by simultaneously adding 0.05 to 0.20% of Zr together with 1 and forcibly deoxidizing and denitrifying to improve the hardenability.

【0009】本発明のベースとなる低合金鋼は公知のN
i,Cr,Mo配合材で、たとえばJIS SNC、S
NCM、SCr、SCMなどに相当する材料、または特
に耐摩耗性を強化するために炭化物形成のCr、Mo
に、フェライト強化のためにSi、Mnも高め、焼鈍、
油焼入、焼戻し、によって硬度を上げ摩耗に対抗するよ
うに合金設計をしたものが母材料となる。本発明の特徴
であるAlとZrの限定理由について説明する。 Al:0.01〜0.1% 脱酸効果として0.05%付近に極大値がある。0.0
1%以下では脱酸効果が不十分であるが、0.1%を越
えると靭性面に非常に有害な巨大なAl23の晶出量が
増えて好ましくない。 Zr:0.05〜0.2% 少量添加で焼入性向上効果が強烈である。フェライト中
へ固溶して実用材では最強の脱窒剤であり、脱酸、脱硫
作用も大きい。結晶粗大化温度を高め、オーステナイト
の微細化にも有効である。これによって著しい清浄作用
が発揮される。一方、炭化物形成傾向も最大であり、Z
rC、ZrNが粒子の移動を阻害して転位を妨げ組織を
微細化する。焼入性向上には0.05%は必要である
が、0.20%以上の添加ではZrの炭化物、窒化物の
晶出が過大となって却って靭性を低下させる。本発明の
Zrは炭化物の形成によって直接硬度を高めるよりは、
組織の清浄化と微細化によって焼入性を向上させること
を指向した成分範囲の限定に意義があり、フェライトに
固溶するZrの作用を重視した点に特徴がある。
The low alloy steel on which the present invention is based is made of a known N alloy.
i, Cr, Mo compounding materials such as JIS SNC, S
Materials corresponding to NCM, SCr, SCM, etc., or especially, Cr, Mo of carbide formation to enhance wear resistance
In order to strengthen ferrite, Si and Mn are also increased,
The base material is an alloy designed to increase the hardness by oil quenching and tempering to resist wear. The reason for limiting Al and Zr, which is a feature of the present invention, will be described. Al: 0.01 to 0.1% There is a maximum value near 0.05% as the deoxidizing effect. 0.0
If it is less than 1%, the deoxidizing effect is insufficient, but if it exceeds 0.1%, the amount of crystallization of giant Al 2 O 3 , which is extremely harmful to the toughness, increases, which is not preferable. Zr: 0.05-0.2% The effect of improving hardenability is strong when added in a small amount. It is a solid solution in ferrite and is the strongest denitrifying agent in practical materials, and has a large deoxidizing and desulfurizing action. It is effective for raising the crystal coarsening temperature and making austenite fine. This provides a significant cleaning action. On the other hand, the tendency of carbide formation is also maximum, and Z
rC and ZrN hinder the movement of the particles, hinder dislocations and refine the structure. 0.05% is necessary for improving the hardenability, but when added at 0.20% or more, the crystallization of carbides and nitrides of Zr becomes excessive and the toughness is rather lowered. Rather than directly increasing the hardness by forming carbides, the Zr of the present invention
It is significant to limit the component range aimed at improving the hardenability by cleaning and refining the structure, and it is characterized by emphasizing the action of Zr which forms a solid solution with ferrite.

【0010】本発明においてはZrの存在が重要なポイ
ントであるが、その効力を最高に発揮させるためには添
加手段が大きく左右する。通常の合金元素に添加する場
合と同じようにZr単体、またはFe−Zrの添加によ
るならば、Zrの溶融点はFeより遥かに高い1852
℃であるから、充分に溶湯に溶け込んで独自の作用を発
揮するか甚だ疑問である。本発明は溶湯の成分調整、精
練処理をほぼ終えて最終段階のAlによる強制脱酸時に
同時にZrを添加することによってZr−Al共存によ
る溶融点(例えばAl:20%とZr:80%を配合し
た合金の場合約1200℃)の低下を図り、Alの発熱
脱酸作用と併せて急速、かつ、完全に溶湯内へ溶融する
ことを要件とする。
[0010] In the present invention, the presence of Zr is an important point, but in order to exert its effect to the maximum, the addition means largely influences. When Zr alone or Fe-Zr is added as in the case of addition to a normal alloying element, the melting point of Zr is 1852, which is much higher than that of Fe.
Since it is ℃, it is extremely doubtful whether it will sufficiently dissolve in the molten metal and exert its own action. According to the present invention, Zr is added simultaneously with the final stage of forcible deoxidation by Al after almost adjusting the components of the molten metal and the scouring treatment to thereby add the melting points (for example, Al: 20% and Zr: 80%) It is required that the alloy be rapidly and completely melted into the molten metal together with the exothermic deoxidizing action of Al.

【0011】[0011]

【発明の実施の形態】Zrによる焼入性の改善効果を確
認するために次の試験を行なった。表1は焼入性の優劣
を判断するために採用した2種類の合金成分であり、表
2は従来技術による単なるAl脱酸と、AlとZrの相
乗的な脱酸・脱窒剤の焼入性に及ぼす差を知るために調
整した2種類の脱酸・脱窒方式を前記2種類の合金成分
にそれぞれ組合せると、表3のように合計4通りの試験
片が作成できる。
DETAILED DESCRIPTION OF THE INVENTION The following test was conducted to confirm the effect of improving the hardenability by Zr. Table 1 shows the two types of alloy components used to determine the superiority of hardenability. Table 2 shows the simple Al deoxidation according to the prior art and the synergistic deoxidizing and denitrifying agent of Al and Zr. When two types of deoxidizing and denitrifying systems adjusted to know the difference in penetration are combined with the two types of alloy components, a total of four types of test pieces can be prepared as shown in Table 3.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】試験片はカーシュレッダーミルを想定して
80mmTの厚肉試験片とし、溶解後、表1に示す目標
成分となるように調整し、1680℃まで昇温後、脱酸
・脱窒剤を底面に散布した取鍋へ受湯し、完全な脱酸・
脱窒反応を促進させる。鋳造後、1000℃×3Hr保
持、炉冷(昇温速度は50℃/Hr、途中650℃×1
hrの保持を挟み段階的に昇温)の焼鈍、950℃×1
Hr保持の油焼入(昇温速度80℃/Hr、油浴よりの
引上げは100℃以下)、および200℃×6Hr保
持、放冷の焼戻しを経て材質を調整する。
The test piece was a thick test piece of 80 mmT assuming a car shredder mill. After melting, the test piece was adjusted to the target components shown in Table 1, heated to 1680 ° C., and then deoxidized and denitrified. Into a ladle sprayed on the bottom,
Promotes denitrification reaction. After casting, holding at 1000 ° C. × 3 hours, furnace cooling (heating rate is 50 ° C./Hr, 650 ° C. × 1 on the way)
annealing at 950 ° C. × 1
The material is adjusted through oil quenching with holding of Hr (heating rate 80 ° C / Hr, pulling up from the oil bath is 100 ° C or less), tempering with holding at 200 ° C x 6 hours, and cooling.

【0016】80mmの試験片を水平方向の中央より垂
直方向に放電加工機で切断し、該方向の中央断面を水平
方向に硬度を測定し、黒皮表面から中央に至る距離と硬
度の関係をプロットしたのが図1である。
An 80 mm test piece is cut vertically from the center in the horizontal direction by an electric discharge machine, and the center cross section in this direction is measured for hardness in the horizontal direction, and the relationship between the distance from the surface of the black scale to the center and the hardness is measured. FIG. 1 is a plot.

【0017】図1(A)はCr:1.32,Mo:0.
40のCr−Mo鋼であるが、黒皮表面から20mm深
さまでは明らかに実施例のZrの焼入性改善効果が優越
しているが、それ以上の内部側についてはAl単独の比
較例の方が硬度は高い。
FIG. 1A shows Cr: 1.32, Mo: 0.
Although the Cr-Mo steel was No. 40, the effect of improving the hardenability of Zr of the example was clearly superior at a depth of 20 mm from the surface of the black scale, but the inner side more than that of the comparative example of Al alone was The hardness is higher.

【0018】同図(B)はCr:1.17、Mo:0.
79、Ni:1.14重量%のNCM系の低合金鋼であ
るが、この材料は前記成分Aに比べると、はるかに明瞭
にZrの添加効果を顕示している。Zr添加の実施例は
黒皮表面から内部中心に至る全ての断面で比較例より高
い硬度を示し、とくに表面近くのHRC54は中心でも
同52〜53と殆どその硬度を維持したままであるか
ら、耐摩耗材としては理想的な高度の均一性を具える。
FIG. 2B is a diagram showing Cr: 1.17, Mo: 0.
79, Ni: 1.14% by weight of an NCM low alloy steel. This material shows the effect of adding Zr much more clearly than the component A. In the example of Zr addition, the hardness was higher than that of the comparative example in all the cross sections from the surface of the black scale to the inner center, and in particular, the HRC 54 near the surface almost maintained its hardness of 52 to 53 at the center. It has a high degree of uniformity which is ideal for wear resistant materials.

【0019】[0019]

【発明の効果】以上述べた通り、本発明に係る耐摩耗耐
衝撃性低合金鋼は、その母成分によってバラツキはある
ものの、何れのタイプの合金材であってもAl単独の脱
酸に比べると、黒皮表面近くの硬度の絶対値が高くて初
期の摩耗抵抗において優越し、かつ内部に対する焼入深
度も大きい。場合によっては肉厚中心までほぼ同レベル
の高硬度をほとんど維持する例もあって、手軽で簡単に
焼入性をさらに向上できる効果がある。また、この硬度
向上が脆性の大きい硬質の炭化物晶出によってもたらさ
れるのではなく、Zrの具えた抜群の脱酸・脱窒作用に
よって溶湯の清浄化や凝固過程、熱処理中の結晶粒微細
化に基づくという程度の添加量に限定しているから、硬
度の増加に伴って比例的に脆性が増加するわけではな
く、耐摩耗性と耐衝撃性が程よくバランスして両立する
理想的な材料を構成する上で大きく貢献する。
As described above, the wear-resistant and impact-resistant low-alloy steel according to the present invention is different from the deoxidation of Al alone, regardless of the type of alloy material, although there is variation depending on the base component. In addition, the absolute value of the hardness near the surface of the black scale is high, and superior in initial wear resistance, and the quenching depth to the inside is large. In some cases, there is an example in which almost the same level of high hardness is almost maintained up to the center of the wall thickness, and there is an effect that the hardenability can be easily and easily improved. In addition, the hardness improvement is not brought about by hard carbide crystallization with high brittleness, but by the outstanding deoxidation and denitrification action of Zr, it is used for cleaning of molten metal, solidification process, grain refinement during heat treatment. Based on the amount added, the brittleness does not increase proportionately with the increase in hardness, making it an ideal material that balances abrasion resistance and impact resistance moderately. Greatly contributes to

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)および(B)は本発明の実施例と比較例
の差を示す硬度−表面からの距離の関係図である。
1 (A) and 1 (B) are hardness-distance relation diagrams showing a difference between an example of the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 炭本 治喜 京都府相楽郡加茂町大字例幣小字板谷垣内 25番地 Fターム(参考) 4K013 BA08 BA11 EA18 EA19  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Haruki Sumimoto, Kamo-cho, Soraku-gun, Kyoto Prefecture 25-figure Itaya-Kakiuchi F-term (reference) 4K013 BA08 BA11 EA18 EA19

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni、Cr、Mo等の合金元素を単独
で、または組合せて含む低合金鋼の製造方法において、
溶解精練の最終段階で0.01〜0.1%のAlと共に
0.05〜0.20%のZrを同時に添加し強制的に脱
酸・脱窒して焼入性を向上したことを特徴とする耐摩耗
耐衝撃性低合金鋼の製造方法。
1. A method for producing a low-alloy steel containing alloy elements such as Ni, Cr and Mo, alone or in combination,
In the final stage of melting and refining, 0.05 to 0.20% Zr is added simultaneously with 0.01 to 0.1% Al, and the hardenability is improved by forcibly deoxidizing and denitrifying. A method for producing a low-impact, high-impact, low-alloy steel.
JP2001097660A 2001-03-29 2001-03-29 Method for producing wear resistant and impact resistant low alloy steel Pending JP2002294325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097660A JP2002294325A (en) 2001-03-29 2001-03-29 Method for producing wear resistant and impact resistant low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097660A JP2002294325A (en) 2001-03-29 2001-03-29 Method for producing wear resistant and impact resistant low alloy steel

Publications (1)

Publication Number Publication Date
JP2002294325A true JP2002294325A (en) 2002-10-09

Family

ID=18951411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097660A Pending JP2002294325A (en) 2001-03-29 2001-03-29 Method for producing wear resistant and impact resistant low alloy steel

Country Status (1)

Country Link
JP (1) JP2002294325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091700A1 (en) * 2006-02-09 2007-08-16 Jfe Steel Corporation Method of denitrifying molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091700A1 (en) * 2006-02-09 2007-08-16 Jfe Steel Corporation Method of denitrifying molten steel
US7901482B2 (en) 2006-02-09 2011-03-08 Jfe Steel Corporation Removal method of nitrogen in molten steel

Similar Documents

Publication Publication Date Title
JP6721077B2 (en) Abrasion resistant steel plate and method for producing abrasion resistant steel plate
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
AU2013302197B2 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
KR100619841B1 (en) High elasticity and high strength steel in the composition of high silicon with low alloy for the purpose of impact resistance and abrasion resistance and manufacturing method of the same steel
TW201726942A (en) Hot work tool steel
CN104775081A (en) High-carbon non-tempered steel for breaking connecting rod and manufacturing method thereof
JP3089882B2 (en) Abrasion-resistant steel having excellent surface properties and method for producing the same
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP2834654B2 (en) High toughness hot work tool steel
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
JP6493645B1 (en) Steel sheet and method of manufacturing the same
JP6795083B2 (en) Steel plate and its manufacturing method
KR100415626B1 (en) High Strength Wear Resistance Steel with Excellent Hardenability
CN110055475A (en) A kind of roll low-phosphorous sulphur rare-earth alloy material and preparation method thereof
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JPH02247357A (en) Steel for form rolling die
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JPH09310147A (en) Steel sheet excellent in heat affected zone toughness
JP2002294325A (en) Method for producing wear resistant and impact resistant low alloy steel
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
KR20030060320A (en) A wear resisting steel and a method thereof
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP7063420B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet