JP2002293959A - Molded product and method for producing the same - Google Patents

Molded product and method for producing the same

Info

Publication number
JP2002293959A
JP2002293959A JP2001098847A JP2001098847A JP2002293959A JP 2002293959 A JP2002293959 A JP 2002293959A JP 2001098847 A JP2001098847 A JP 2001098847A JP 2001098847 A JP2001098847 A JP 2001098847A JP 2002293959 A JP2002293959 A JP 2002293959A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal polymer
molded article
film
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001098847A
Other languages
Japanese (ja)
Inventor
Atsuo Yoshikawa
淳夫 吉川
Kenichi Tsudaka
健一 津高
Hitoshi Takebayashi
仁 竹林
Jiro Hiraiwa
次郎 平岩
Tetsuro Tojo
哲朗 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Kuraray Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Kuraray Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2001098847A priority Critical patent/JP2002293959A/en
Publication of JP2002293959A publication Critical patent/JP2002293959A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molded product capable of exhibiting an affinity for a hydrophilic or a water-soluble coating material while maintaining characteristics essentially possessed by a liquid crystal polymer such as excellent gas barrier properties, heat and chemical resistances or high dimensional stability, and a method for producing the molded product. SOLUTION: This molded product is composed of a thermoplastic liquid crystal polymer and is characterized by having <=45 deg. contact angle with water at 25 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、本質的に疎水性で
あり撥水性である光学的に異方性の溶融相を形成し得る
熱可塑性ポリマー(以下、これを熱可塑性液晶ポリマー
または液晶ポリマーと略称することがある)からなる成
形体に親水性が付与された成形体と、その製造方法に関
する。本発明により提供される成形体は、液晶ポリマー
に由来する優れたガスバリアー性、耐熱性、耐薬品性、
高寸法安定性などの特長を保持したまま、親水性または
水溶性の塗工素材との親和性を発現することから、各種
の包装材料、被覆材料、電気・電子材料などとして有用
である。
The present invention relates to a thermoplastic polymer capable of forming an optically anisotropic molten phase which is essentially hydrophobic and water repellent (hereinafter referred to as thermoplastic liquid crystal polymer or liquid crystal polymer). (May be abbreviated as ".") And a method for producing the same. The molded article provided by the present invention has excellent gas barrier properties derived from a liquid crystal polymer, heat resistance, chemical resistance,
While exhibiting compatibility with hydrophilic or water-soluble coating materials while retaining features such as high dimensional stability, it is useful as various packaging materials, coating materials, electric / electronic materials, and the like.

【0002】[0002]

【従来の技術】ガスバリアー性、耐熱性、耐薬品性、高
寸法安定性などに優れた特長を有する液晶ポリマーの成
形体は、近年、各種技術分野において有用な材料として
注目されている。その具体例としては、各種ガス類の気
密封止材料、フレキシブルプリント配線基板などの電子
回路基板材料、コネクターやソケットなどの電気・電子
部品を挙げることができる。
2. Description of the Related Art In recent years, molded articles of liquid crystal polymers having excellent features such as gas barrier properties, heat resistance, chemical resistance, and high dimensional stability have attracted attention as useful materials in various technical fields. Specific examples thereof include hermetic sealing materials for various gases, electronic circuit board materials such as flexible printed wiring boards, and electric and electronic components such as connectors and sockets.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記の材料
や部品は、原料となる液晶ポリマーが熱可塑性であるこ
とを利用した成形法や非親水性または非水溶性の接着剤
を用いた積層により得られるものであり、液晶ポリマー
が本来有する可能性を制限し、その応用展開に限界を生
じさせていた。その一例として、従来の液晶ポリマー成
形体は本質的に疎水性であり撥水性であるために、親水
性または水溶性の接着剤、着色剤などによる表面加工が
実用的に実施できないことが挙げられる。
By the way, the above-mentioned materials and parts are formed by a molding method utilizing the fact that the liquid crystal polymer as a raw material is thermoplastic, or by lamination using a non-hydrophilic or water-insoluble adhesive. It limits the possibility that the liquid crystal polymer originally has, and limits its application. One example is that conventional liquid crystal polymer moldings are inherently hydrophobic and water repellent, so that surface processing with hydrophilic or water-soluble adhesives, coloring agents, etc. cannot be performed practically. .

【0004】而して、本発明の目的は、上記の問題点を
解消して,液晶ポリマーに由来する優れたガスバリアー
性、耐熱性、耐薬品性、高寸法安定性などの特長を保持
したまま、親水性または水溶性の塗工素材との親和性を
発現することができる熱可塑性液晶ポリマー成形体とそ
の製造方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to retain features such as excellent gas barrier properties, heat resistance, chemical resistance and high dimensional stability derived from liquid crystal polymers. It is an object of the present invention to provide a thermoplastic liquid crystal polymer molded article capable of expressing affinity with a hydrophilic or water-soluble coating material as it is, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、液晶ポリ
マーの有する数ある特長のなかでも、特にガスバリアー
性の低下を誘起しない親水化技術について鋭意検討した
結果、熱可塑性液晶ポリマー成形体のフッ化処理が有用
であることを見出し、本発明を完成するに至った。本発
明の熱可塑性液晶ポリマー成形体は、25℃における水
との接触角が45度以下である。また、本発明の製造方
法は、熱可塑性液晶ポリマー成形体を、フッ素ガスを酸
素で希釈した混合ガスによりフッ化処理して、成形体の
25℃における水との接触角が45度以下となるように
制御する。
Means for Solving the Problems The present inventors have conducted intensive studies on a hydrophilization technique which does not induce a decrease in gas barrier properties, among the many features of a liquid crystal polymer. Found that the fluorination treatment was useful, and completed the present invention. The thermoplastic liquid crystal polymer molded article of the present invention has a contact angle with water at 25 ° C. of 45 ° or less. In the production method of the present invention, the thermoplastic liquid crystal polymer molded article is fluorinated with a mixed gas obtained by diluting a fluorine gas with oxygen, and the contact angle of the molded article with water at 25 ° C. becomes 45 ° or less. Control.

【0006】以上のように、25℃における水との接触
角が45度以下の熱可塑性液晶ポリマー成形体は、液晶
ポリマーが本来有する優れたガスバリアー性、耐熱性、
耐薬品性、高寸法安定性などの特長を保持したまま、親
水性または水溶性の塗工素材との親和性を発現すること
ができる。
As described above, a thermoplastic liquid crystal polymer molded article having a contact angle with water at 25 ° C. of 45 ° or less has excellent gas barrier properties and heat resistance inherent to a liquid crystal polymer.
While maintaining features such as chemical resistance and high dimensional stability, it can exhibit affinity with hydrophilic or water-soluble coating materials.

【0007】前記成形体は、厚さ0.5mm以下のフィ
ルムまたはシート形状であることが好ましい。また、成
形体に用いられる液晶ポリマーの融点は280℃以上で
あることが好ましい。
It is preferable that the molded article is in the form of a film or sheet having a thickness of 0.5 mm or less. Further, the melting point of the liquid crystal polymer used for the molded body is preferably 280 ° C. or more.

【0008】[0008]

【発明の実施の形態】本発明に使用される液晶ポリマー
は特に限定されるものではないが、その具体例として、
以下に例示する(1)から(4)に分類される化合物お
よびその誘導体から導かれる公知のサーモトロピック液
晶ポリエステルおよびサーモトロピック液晶ポリエステ
ルアミドを挙げることができる。ただし、光学的に異方
性の溶融相を形成し得るポリマーを得るためには、繰り
返し単位の好適な組み合わせが必要とされることは言う
までもない。また、成形体には、滑剤、酸化防止剤など
の添加剤が適量配合されていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid crystal polymer used in the present invention is not particularly limited.
Known thermotropic liquid crystal polyesters and thermotropic liquid crystal polyester amides derived from compounds (1) to (4) and derivatives thereof exemplified below can be mentioned. However, it goes without saying that in order to obtain a polymer capable of forming an optically anisotropic molten phase, a suitable combination of repeating units is required. Further, additives such as a lubricant and an antioxidant may be added to the molded article in an appropriate amount.

【0009】(1)芳香族または脂肪族ジヒドロキシ化
合物(代表例は表1参照)
(1) Aromatic or aliphatic dihydroxy compounds (see Table 1 for typical examples)

【0010】[0010]

【表1】 [Table 1]

【0011】(2)芳香族または脂肪族ジカルボン酸
(代表例は表2参照)
(2) Aromatic or aliphatic dicarboxylic acids (see Table 2 for typical examples)

【0012】[0012]

【表2】 [Table 2]

【0013】(3)芳香族ヒドロキシカルボン酸(代表
例は表3参照)
(3) Aromatic hydroxycarboxylic acids (see Table 3 for typical examples)

【0014】[0014]

【表3】 [Table 3]

【0015】(4)芳香族ジアミン、芳香族ヒドロキシ
アミンまたは芳香族アミノカルボン酸(代表例は表4参
照)
(4) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)

【0016】[0016]

【表4】 [Table 4]

【0017】これらの原料化合物から得られる熱可塑性
液晶ポリマーの代表例として表5に示す構造単位を有す
る共重合体(a)〜(e)を挙げることができる。
Representative examples of thermoplastic liquid crystal polymers obtained from these starting compounds include copolymers (a) to (e) having the structural units shown in Table 5.

【0018】[0018]

【表5】 [Table 5]

【0019】熱可塑性液晶ポリマー成形体の形状および
成形法は特に限定されるものではないが、包装材料、被
覆材料、電気・電子材料などの用途においては、厚さ
0.5mm以下、より好ましくは厚さ0.1mm以下の
フィルムまたはシートが好適に用いられる。
The shape and molding method of the thermoplastic liquid crystal polymer molded article are not particularly limited. However, in applications such as packaging materials, coating materials and electric / electronic materials, the thickness is 0.5 mm or less, more preferably. A film or sheet having a thickness of 0.1 mm or less is preferably used.

【0020】これらのフィルムまたはシート形状の成形
体は、液晶ポリマーを押出成形して得られる。このとき
任意の押出成形法が採用されるが、周知のTダイ法、イ
ンフレーション法などが工業的に有利である。特にイン
フレーション法では、フィルムの機械軸方向(以下、M
D方向と略す)だけでなく、これと直交する方向(以
下、TD方向と略す)にも応力が加えられるため、MD
方向とTD方向における機械的性質および熱的性質のバ
ランスのとれたフィルムを得ることができる。
These film- or sheet-shaped molded articles are obtained by extruding a liquid crystal polymer. At this time, an arbitrary extrusion molding method is adopted, but a well-known T-die method, an inflation method and the like are industrially advantageous. In particular, in the inflation method, the mechanical axis direction (hereinafter, M
The stress is applied not only in the direction D) but also in the direction perpendicular to the direction (hereinafter abbreviated as the TD direction).
It is possible to obtain a film in which mechanical properties and thermal properties in the TD direction and the TD direction are balanced.

【0021】さらに詳しく述べると、液晶ポリマーは溶
融押出成形時における配向性が高いために、液晶ポリマ
ーから製造されたフィルムは、機械的性質および熱的性
質の異方性が高くなり易い傾向を有している。すなわ
ち、液晶ポリマーをTダイから溶融押出成形すれば、M
D方向にのみ剪断応力または応力が加えられるため、一
軸配向フィルムが得られる。この一軸配向フィルムは、
MD方向における引張弾性率および機械的強度が高いも
のの、TD方向におけるこれらの値が低く、MD方向に
切れ目が発生し易いという欠点がある。また、加熱時の
寸法変化率がMD方向とTD方向で異なるため、フィル
ムが反り返るという欠点をも有する。これに対し、液晶
ポリマーの溶融押出成形にインフレーション法を採用す
れば、フィルムのMD方向だけでなくTD方向にも応力
が加えられるため、MD方向の切れ目が発生しにくい二
軸配向フィルムが得られる。また、インフレーション法
によれば、MD方向とTD方向との間における機械的性
質および熱的性質のバランスのとれたフィルムを得るこ
ともできる。
More specifically, since a liquid crystal polymer has a high orientation during melt extrusion, a film produced from the liquid crystal polymer tends to have high anisotropy in mechanical properties and thermal properties. are doing. That is, if a liquid crystal polymer is melt-extruded from a T-die, M
Since a shear stress or stress is applied only in the D direction, a uniaxially oriented film is obtained. This uniaxially oriented film,
Although the tensile modulus and mechanical strength in the MD direction are high, these values are low in the TD direction, and there is a disadvantage that a cut is easily generated in the MD direction. Further, since the dimensional change rate during heating is different between the MD direction and the TD direction, there is a disadvantage that the film warps. On the other hand, if the inflation method is adopted for the melt extrusion molding of the liquid crystal polymer, since a stress is applied not only in the MD direction of the film but also in the TD direction, it is possible to obtain a biaxially oriented film in which cuts in the MD direction are less likely to occur. . Further, according to the inflation method, it is possible to obtain a film in which mechanical properties and thermal properties in the MD direction and the TD direction are balanced.

【0022】熱可塑性液晶ポリマー成形体のなかでも、
分子配向度SORが1.3以下のフィルムまたはシート
は、MD方向とTD方向との間における機械的性質およ
び熱的性質のバランスが良好であるので、より実用性が
高い。分子配向度SORは、マイクロ波分子配向度測定
機において、熱可塑性液晶ポリマー成形体を、マイクロ
波の進行方向にフィルム面が垂直になるように、マイク
ロ波共振導波管中に挿入し、該成形体を透過したマイク
ロ波の電場強度を検出することによって測定される、分
子配向の度合いを与える指標である。本発明の熱可塑性
液晶ポリマー成形体の適用分野によって、必要とされる
分子配向度SORは当然異なるが、SOR≧1.5の場
合は、液晶ポリマー分子の配向の偏りが著しいためにフ
ィルムまたはシートが硬くなり、かつMD方向に裂け易
くなり、一方、SOR≦0.7の場合は、TD方向に裂
け易くなり、いずれの場合も好ましくない。加熱時の反
りがないなどの形態安定性が必要とされる適用分野の場
合には、SOR≦1.3であることが望ましく、特に加
熱時の反りをほとんど無くす必要がある場合には、0.
97≦SOR≦1.03であることが望ましい。
Among the thermoplastic liquid crystal polymer moldings,
A film or sheet having a degree of molecular orientation SOR of 1.3 or less is more practical because it has a good balance of mechanical properties and thermal properties between the MD and TD directions. The molecular orientation degree SOR was measured by inserting a thermoplastic liquid crystal polymer molded body into a microwave resonant waveguide using a microwave molecular orientation degree measuring instrument such that the film surface was perpendicular to the direction of microwave propagation. It is an index that is measured by detecting the electric field intensity of the microwave transmitted through the molded body and gives the degree of molecular orientation. The required degree of molecular orientation SOR is naturally different depending on the application field of the thermoplastic liquid crystal polymer molded article of the present invention. Becomes hard and easily tears in the MD direction. On the other hand, in the case of SOR ≦ 0.7, it easily tears in the TD direction, and either case is not preferable. In an application field requiring morphological stability such as no warpage during heating, it is preferable that SOR ≦ 1.3. In particular, when it is necessary to almost eliminate warpage during heating, 0 is satisfied. .
It is desirable that 97 ≦ SOR ≦ 1.03.

【0023】本発明において使用される液晶ポリマーの
融点は、成形体の所望の耐熱性および加工性を得る目的
においては、約200〜約400℃の範囲内、とりわけ
約250〜約350℃の範囲であるものが好ましい。な
かでも、電気・電子分野などのより高い耐熱性を要求さ
れる分野において利用する場合には、約280℃以上の
融点を有する液晶ポリマーが好適に用いられる。
The melting point of the liquid crystal polymer used in the present invention is in the range of about 200 to about 400 ° C., particularly in the range of about 250 to about 350 ° C. for the purpose of obtaining the desired heat resistance and workability of the molded article. Is preferred. Above all, when used in a field requiring higher heat resistance such as the electric / electronic field, a liquid crystal polymer having a melting point of about 280 ° C. or more is preferably used.

【0024】また、本発明による熱可塑性液晶ポリマー
成形体のフッ化処理においては、熱可塑性液晶ポリマー
成形体と水との接触角が、25℃において45度以下で
あるように制御することが重要であり、かかる制御によ
り、得られる成形体は、親水性または水溶性の塗工素材
との親和性を十分に発現することができる。成形体と水
との接触角は35度以下であるのが好ましく、かかる成
形体はより大きな効果を発現できる。
In the fluorination treatment of the thermoplastic liquid crystal polymer molded article according to the present invention, it is important to control the contact angle between the thermoplastic liquid crystal polymer molded article and water to be 45 ° or less at 25 ° C. By such control, the obtained molded article can sufficiently exhibit affinity with a hydrophilic or water-soluble coating material. The contact angle between the molded body and water is preferably 35 degrees or less, and such a molded body can exhibit a greater effect.

【0025】本発明の熱可塑性液晶ポリマー成形体のフ
ッ化処理方法は、この成形体の表面に直接、フッ素ガス
を酸素で希釈したフッ素混合ガスを接触させることによ
り行う。
The method for fluorinating a thermoplastic liquid crystal polymer molded article of the present invention is carried out by directly contacting the surface of the molded article with a fluorine mixed gas obtained by diluting a fluorine gas with oxygen.

【0026】このとき、フッ素混合ガス中のフッ素ガス
の濃度は0.1〜10vol.(容量)%の範囲である
のが好ましく、希釈用の酸素ガスの濃度は90〜99.
9vol.%の範囲であるのが好ましい。このフッ素混
合ガスの熱可塑性液晶ポリマー成形体に対する接触温度
は、0〜100℃であるのが好ましく、室温〜50℃で
あるのがより好ましい。接触時間は1分〜1日であるの
が好ましく、1分〜数時間であるのがより好ましい。こ
こで、フッ素ガスが0.1vol.%未満である場合、
成形体表面にOH基、COOH基の親水基が生成され難
い。また、10vol.%を越える場合、成形体表面に
C−F基が生成され、親水性を阻害する傾向にあり、ま
た液晶ポリマーの劣化、焼失も起こし易くなる。
At this time, the concentration of the fluorine gas in the fluorine mixed gas is 0.1 to 10 vol. (Volume)%, and the concentration of oxygen gas for dilution is preferably 90-99.
9 vol. % Is preferred. The contact temperature of the fluorine mixed gas with the thermoplastic liquid crystal polymer molded body is preferably from 0 to 100C, more preferably from room temperature to 50C. The contact time is preferably 1 minute to 1 day, more preferably 1 minute to several hours. Here, 0.1 vol. %,
Hydrophilic groups such as OH groups and COOH groups are hardly generated on the surface of the molded body. In addition, 10 vol. %, A C-F group is generated on the surface of the molded body, which tends to inhibit the hydrophilicity, and also tends to cause deterioration and burning of the liquid crystal polymer.

【0027】フッ素混合ガスと熱可塑性液晶ポリマー成
形体とを反応させる手段としては、密閉された反応容器
内に成形体を入れ、反応容器内を排気した後にフッ素混
合ガスを導入するバッチ式処理方法、または予め反応容
器内をフッ素混合ガスで置換した後、成形体を通過させ
て接触させる連続式処理方法などが採用できる。例え
ば、反応容器内に、両面がニッケル製のメッシュを設
け、そのメッシュ上に成形体を設置して処理される。
As means for reacting the mixed gas of fluorine and the molded article of the thermoplastic liquid crystal polymer, a batch-type processing method of introducing the mixed gas into a sealed reaction vessel, exhausting the inside of the reaction vessel and then introducing the mixed gas of fluorine is used. Alternatively, a continuous treatment method in which the inside of the reaction vessel is replaced with a fluorine mixed gas in advance, and then the molded body is passed through and brought into contact with the molded body, or the like can be adopted. For example, in a reaction vessel, a mesh made of nickel on both sides is provided, and a molded body is placed on the mesh to be processed.

【0028】以上のような条件で成形体をフッ素混合ガ
スと接触させることにより、成形体の表面にOH基、C
OOH基が生成される。この表面に生成されるOH基、
COOH基によって成形体は親水性または水溶性の塗工
素材との親和性が発現できるようになる。
By bringing the molded body into contact with the fluorine-containing gas under the above conditions, the surface of the molded body has OH groups, C
OOH groups are generated. OH groups generated on this surface,
The COOH group allows the molded article to exhibit an affinity with a hydrophilic or water-soluble coating material.

【0029】[0029]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明は実施例により何ら限定されるものではな
い。なお、熱可塑性液晶ポリマー成形体と水との接触
角、酸素透過係数、水蒸気透過係数、および熱可塑性液
晶ポリマーの融点は以下の方法により測定した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the examples. The contact angle between the thermoplastic liquid crystal polymer molded product and water, the oxygen transmission coefficient, the water vapor transmission coefficient, and the melting point of the thermoplastic liquid crystal polymer were measured by the following methods.

【0030】(1)接触角 25℃、65RHの雰囲気下、エルマ社製装置(型式:
G−1)を用いて測定した。
(1) Under an atmosphere of a contact angle of 25 ° C. and 65 RH, a device manufactured by Elma (model:
G-1).

【0031】(2)酸素透過係数 20℃、65%RHの雰囲気下、モコン社製装置(型
式:OX−TRAN 2/20)を用いて測定した。
(2) Oxygen Permeability Coefficient Measured using an apparatus manufactured by Mocon (model: OX-TRAN 2/20) in an atmosphere of 20 ° C. and 65% RH.

【0032】(3)水蒸気透過係数 40℃、0〜90%RHの雰囲気下、カップ法により測
定した。
(3) Water vapor transmission coefficient Measured by a cup method in an atmosphere of 40 ° C. and 0 to 90% RH.

【0033】(4)融点 示差走査熱量計を用いて、熱可塑性液晶ポリマー成形体
を20℃/分の速度で上昇して完全に溶融させた後、溶
融物を50℃/分の速度で50℃まで急冷し、再び20
℃/分の速度で昇温した時に現れる吸熱ピーク温度を測
定した。
(4) Melting point Using a differential scanning calorimeter, the thermoplastic liquid crystal polymer molded body was raised at a rate of 20 ° C./min and completely melted, and then the melt was cooled at a rate of 50 ° C./min. Rapidly cooled to
The endothermic peak temperature that appeared when the temperature was raised at a rate of ° C./min was measured.

【0034】参考例1 p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフト
エ酸の共重合物で、融点が283℃である液晶ポリマー
を溶融押出し、インフレーション法により膜厚が50μ
m、接触角が73度、酸素透過係数が0.24cm3
2 ・day・atm、水蒸気透過係数が0.2g/m
2 ・day、分子配向度SORが1.02のフィルムを
得た。この液晶ポリマーフィルムをAとする。なお、水
性顔料を含有するペン先1mm幅の蛍光ペンを用いて、
該フィルムに連続した直線および曲線を描いたところ、
最大線幅が0.3mmの極めて不連続な描画状態であっ
た。
Reference Example 1 A liquid crystal polymer having a melting point of 283 ° C., which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, is melt-extruded and has a film thickness of 50 μm by an inflation method.
m, contact angle 73 degrees, oxygen permeability coefficient 0.24 cm 3 /
m 2 · day · atm, water vapor transmission coefficient 0.2 g / m
A film having 2 · day and a degree of molecular orientation SOR of 1.02 was obtained. This liquid crystal polymer film is designated as A. In addition, using a pen with a pen tip 1 mm width containing an aqueous pigment,
When drawing continuous straight lines and curves on the film,
The drawing state was extremely discontinuous with a maximum line width of 0.3 mm.

【0035】参考例2 p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフト
エ酸の共重合物で、融点が330℃である液晶ポリマー
を溶融押出し、インフレーション法により膜厚が25μ
m、接触角が71度、酸素透過係数が0.21cm3
2 ・day・atm、水蒸気透過係数が0.1g/m
2 ・day、分子配向度SORが1.01のフィルムを
得た。この液晶ポリマーフィルムをBとする。なお、水
性顔料を含有するペン先1mm幅の蛍光ペンを用いて、
該フィルムに連続した直線および曲線を描いたところ、
最大線幅が0.4mmの極めて不連続な描画状態であっ
た。
REFERENCE EXAMPLE 2 A liquid crystal polymer having a melting point of 330 ° C., which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, is melt-extruded and has a film thickness of 25 μm by an inflation method.
m, contact angle 71 °, oxygen permeability coefficient 0.21 cm 3 /
m 2 · day · atm, water vapor transmission coefficient is 0.1 g / m
A film having 2 · day and a degree of molecular orientation SOR of 1.01 was obtained. This liquid crystal polymer film is designated as B. In addition, using a pen with a pen tip 1 mm width containing an aqueous pigment,
When drawing continuous straight lines and curves on the film,
The drawing state was extremely discontinuous with a maximum line width of 0.4 mm.

【0036】実施例1 参考例1で得た液晶ポリマーフィルムAをステンレス製
反応容器内に入れ、真空排気後、5vol.%のフッ素
ガスと95vol.%の酸素ガスの混合ガスを導入し
て、101.3kPa(760Torr)とした。室温
で10分反応後、混合ガスを真空排気し、反応容器内を
窒素で置換した後、試料を取り出した。フッ化処理後の
フィルムは接触角が25度、酸素透過係数が0.27c
3 /m2 ・day・atm、水蒸気透過係数が0.2
g/m2 ・dayであった。次に、水性顔料を含有する
ペン先1mm幅の蛍光ペンを用いて、該フィルムに連続
した直線および曲線を描いたところ、最大線幅が0.9
mmの連続した描画が可能であった。
Example 1 The liquid crystal polymer film A obtained in Reference Example 1 was placed in a stainless steel reaction vessel, and after evacuation, 5 vol. % Fluorine gas and 95 vol. % Oxygen gas was introduced to adjust the pressure to 101.3 kPa (760 Torr). After reacting at room temperature for 10 minutes, the mixed gas was evacuated to a vacuum and the inside of the reaction vessel was replaced with nitrogen. The fluorinated film has a contact angle of 25 degrees and an oxygen transmission coefficient of 0.27c.
m 3 / m 2 · day · atm, water vapor permeability coefficient is 0.2
g / m 2 · day. Next, when a continuous straight line and a curve were drawn on the film using a pen having a width of 1 mm and containing a water-based pigment, the maximum line width was 0.9.
mm continuous drawing was possible.

【0037】実施例2 参考例2で得た液晶ポリマーフィルムBをステンレス製
反応容器内に入れ、真空排気後、10vol.%のフッ
素ガスと90vol.%の酸素ガスの混合ガスを導入し
て、101.3kPa(760Torr)とした。室温
で1分反応後、混合ガスを真空排気し、反応容器内を窒
素で置換した後、試料を取り出した。フッ化処理後のフ
ィルムは接触角が28度、酸素透過係数が0.25cm
3 /m2 ・day・atm、水蒸気透過係数が0.2g
/m2 ・dayであった。次に、水性顔料を含有するペ
ン先1mm幅の蛍光ペンを用いて、該フィルムに連続し
た直線および曲線を描いたところ、最大線幅が0.9m
mの連続した描画が可能であった。
Example 2 The liquid crystal polymer film B obtained in Reference Example 2 was placed in a stainless steel reaction vessel, and after evacuation, 10 vol. % Fluorine gas and 90 vol. % Oxygen gas was introduced to adjust the pressure to 101.3 kPa (760 Torr). After reacting at room temperature for 1 minute, the mixed gas was evacuated and the inside of the reaction vessel was replaced with nitrogen, and then a sample was taken out. The fluorinated film has a contact angle of 28 degrees and an oxygen permeability coefficient of 0.25 cm
3 / m 2 · day · atm, water vapor transmission coefficient 0.2g
/ M 2 · day. Next, when a continuous straight line and a curve were drawn on the film using a pen having a width of 1 mm containing a water-based pigment, the maximum line width was 0.9 m.
m continuous drawing was possible.

【0038】比較例1 参考例1で得た液晶ポリマーフィルムAを用いて、室温
で1分間反応させたこと以外は実施例1と同様にしてフ
ッ化処理を施したフィルムは、接触角が50度、酸素透
過係数が0.27cm3 /m2 ・day・atm、水蒸
気透過係数が0.2g/m2 ・dayであった。次に、
水性顔料を含有するペン先1mm幅の蛍光ペンを用い
て、該フィルムに連続した直線および曲線を描いたとこ
ろ、最大線幅が0.5mmの極めて不連続な描画状態で
あった。
Comparative Example 1 A film treated with fluorination in the same manner as in Example 1 except that the liquid crystal polymer film A obtained in Reference Example 1 was reacted at room temperature for 1 minute had a contact angle of 50. The oxygen permeability coefficient was 0.27 cm 3 / m 2 · day · atm, and the water vapor permeability coefficient was 0.2 g / m 2 · day. next,
When a continuous straight line and a curve were drawn on the film using a 1-mm-wide fluorescent pen containing an aqueous pigment, a maximum discontinuity of 0.5 mm was obtained.

【0039】[0039]

【発明の効果】本発明によれば、液晶ポリマーに由来す
る優れたガスバリアー性、耐熱性、耐薬品性、高寸法安
定性などの特長を保持したまま、親水性または水溶性の
塗工素材との親和性を発現できる熱可塑性液晶ポリマー
成形体が提供される。
According to the present invention, a hydrophilic or water-soluble coating material can be obtained while maintaining features such as excellent gas barrier properties, heat resistance, chemical resistance and high dimensional stability derived from a liquid crystal polymer. The present invention provides a thermoplastic liquid crystal polymer molded article that can exhibit an affinity for

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津高 健一 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 竹林 仁 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 (72)発明者 平岩 次郎 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 (72)発明者 東城 哲朗 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 Fターム(参考) 4F071 AA45 AA56 AF02 AF04Y AF07 AH04 AH12 BB06 BC01 BC12 4F073 AA01 BA23 BA29 BB01 DA01 DA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Tsutaka 1621 Sazu, Kurashiki City, Okayama Prefecture Inside Kuraray Co., Ltd. (72) Inventor Jin Takebayashi 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture Toyo Carbon Co., Ltd. (72) Inventor Jiro Hiraiwa 2181-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture Toyo Carbon Co., Ltd. (72) Inventor Tetsuro Tojo 211-2-2 Nakahime, Onohara-cho, Onohara-cho, Mitoyo-gun, Kagawa Prefecture F-term (reference) 4F071 AA45 AA56 AF02 AF04Y AF07 AH04 AH12 BB06 BC01 BC12 4F073 AA01 BA23 BA29 BB01 DA01 DA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光学的に異方性の溶融相を形成し得る熱
可塑性ポリマーからなる成形体であって、25℃におけ
る水との接触角が45度以下であることを特徴とする成
形体。
1. A molded article made of a thermoplastic polymer capable of forming an optically anisotropic molten phase, wherein the molded article has a contact angle with water at 25 ° C. of 45 ° or less. .
【請求項2】 成形体が厚さ0.5mm以下のフィルム
またはシート形状である請求項1に記載の成形体。
2. The molded article according to claim 1, wherein the molded article is a film or sheet having a thickness of 0.5 mm or less.
【請求項3】 光学的に異方性の溶融相を形成し得る熱
可塑性ポリマーの融点が280℃以上である請求項1ま
たは2に記載の成形体。
3. The molded article according to claim 1, wherein the melting point of the thermoplastic polymer capable of forming an optically anisotropic molten phase is 280 ° C. or higher.
【請求項4】 光学的に異方性の溶融相を形成し得る熱
可塑性ポリマーからなる成形体を、フッ素ガスを酸素で
希釈した混合ガスによりフッ化処理して成形体の25℃
における水との接触角を45度以下となるように制御す
ることを特徴とする成形体の製造方法。
4. A molded article made of a thermoplastic polymer capable of forming an optically anisotropic molten phase is fluorinated with a mixed gas obtained by diluting a fluorine gas with oxygen to obtain a molded article at 25 ° C.
Wherein the contact angle with water is controlled to be 45 degrees or less.
【請求項5】 成形体が厚さ0.5mm以下のフィルム
またはシート形状である請求項4に記載の成形体の製造
方法。
5. The method for producing a molded article according to claim 4, wherein the molded article has a film or sheet shape having a thickness of 0.5 mm or less.
【請求項6】 光学的に異方性の溶融相を形成し得る熱
可塑性ポリマーの融点が280℃以上である請求項4ま
たは5に記載の成形体の製造方法。
6. The method according to claim 4, wherein the thermoplastic polymer capable of forming an optically anisotropic molten phase has a melting point of 280 ° C. or higher.
JP2001098847A 2001-03-30 2001-03-30 Molded product and method for producing the same Pending JP2002293959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098847A JP2002293959A (en) 2001-03-30 2001-03-30 Molded product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098847A JP2002293959A (en) 2001-03-30 2001-03-30 Molded product and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002293959A true JP2002293959A (en) 2002-10-09

Family

ID=18952458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098847A Pending JP2002293959A (en) 2001-03-30 2001-03-30 Molded product and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002293959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293963A (en) * 2001-03-30 2002-10-09 Kuraray Co Ltd Molded product and method for producing the same
JP2012061463A (en) * 2010-09-15 2012-03-29 Kuraray Europe Gmbh Plastic container having barrier coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216824A (en) * 1988-02-26 1989-08-30 Agency Of Ind Science & Technol Surface treatment method of liquid crystal polyester molding and surface treatment apparatus thereof
JPH06192451A (en) * 1992-12-22 1994-07-12 Diafoil Co Ltd Fluoropolyester molding and its production
JPH09100359A (en) * 1995-10-05 1997-04-15 Polyplastics Co Treating method for surface of liquid-crystalline polyester resin molding
JP2001019857A (en) * 1999-07-08 2001-01-23 Toto Ltd Antisweating ceiling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216824A (en) * 1988-02-26 1989-08-30 Agency Of Ind Science & Technol Surface treatment method of liquid crystal polyester molding and surface treatment apparatus thereof
JPH06192451A (en) * 1992-12-22 1994-07-12 Diafoil Co Ltd Fluoropolyester molding and its production
JPH09100359A (en) * 1995-10-05 1997-04-15 Polyplastics Co Treating method for surface of liquid-crystalline polyester resin molding
JP2001019857A (en) * 1999-07-08 2001-01-23 Toto Ltd Antisweating ceiling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293963A (en) * 2001-03-30 2002-10-09 Kuraray Co Ltd Molded product and method for producing the same
JP4638995B2 (en) * 2001-03-30 2011-02-23 株式会社クラレ Molded body and method for producing the same
JP2012061463A (en) * 2010-09-15 2012-03-29 Kuraray Europe Gmbh Plastic container having barrier coating

Similar Documents

Publication Publication Date Title
JP3968068B2 (en) Method for producing liquid crystal polymer film
EP0072210B1 (en) Multiaxially oriented high performance laminates comprising uniaxially oriented sheets of thermotropic liquid crystal polymers
KR101838581B1 (en) Graphite film and process for producing graphite film
EP1160591A1 (en) Transparent film
JPS61130046A (en) Manufacture of laminated film
JPH04308737A (en) Treatment of film composed of liquid crystal polymer
JPH07207041A (en) Polylactic acid film
EP0346926B1 (en) Wholly aromatic polyester film and process for production thereof
JP5633793B2 (en) Method for producing stretched polytetrafluoroethylene film and stretched polytetrafluoroethylene film
JP2019147367A (en) Graphene composite film and manufacturing method thereof
JP2002293959A (en) Molded product and method for producing the same
JP5613512B2 (en) Method for producing thermoplastic liquid crystal polymer film fusion product
JP2003292638A (en) High heat-resistant film
JPH03174452A (en) Porous article of polytetrafluoroethylene and preparation thereof
US5672426A (en) high barrier transparent films
JP4679679B2 (en) Method for producing thermoplastic liquid crystal polymer film
WO2021060328A1 (en) Polytetrafluoroethylene porous film having high strength and small pore diameter
JP4638995B2 (en) Molded body and method for producing the same
EP0310352A2 (en) Method for processing of liquid crystal polymers
JP4860855B2 (en) Film-covered semiconductor element and method for manufacturing the same
JP5085823B2 (en) LAMINATE OF FILM AND METAL AND METHOD FOR PRODUCING THE SAME
JP3655464B2 (en) Polymer film, method for producing the same, and laminate
JPH10315319A (en) Biaxially oriented polyamide film
JP2006069218A (en) Polylactic acid based biodegradable gas barrier film
WO2023068121A1 (en) Polyamide film laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109