JP2002293531A - Method for manufacturing silicate suspension - Google Patents
Method for manufacturing silicate suspensionInfo
- Publication number
- JP2002293531A JP2002293531A JP2001102408A JP2001102408A JP2002293531A JP 2002293531 A JP2002293531 A JP 2002293531A JP 2001102408 A JP2001102408 A JP 2001102408A JP 2001102408 A JP2001102408 A JP 2001102408A JP 2002293531 A JP2002293531 A JP 2002293531A
- Authority
- JP
- Japan
- Prior art keywords
- water
- layered silicate
- swellable
- temperature
- swellable layered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はケイ酸塩懸濁液の製
造方法、特に膨潤性層状ケイ酸塩を用いた懸濁液の製造
方法の改良に関する。The present invention relates to a method for producing a silicate suspension, and more particularly to an improvement in a method for producing a suspension using a swellable layered silicate.
【0002】[0002]
【従来の技術】膨潤性層状ケイ酸塩は、塗料添加物、化
粧料基材、プラスチック添加剤、コーティング剤用添加
剤等として様々な製品に使用され、平滑易滑性、絶縁
性、ガスバリヤー性、耐湿性等の機能を付与できる材料
として注目されている。従来、膨潤性層状ケイ酸塩懸濁
液の製造方法としては鉱塊、粉体を水に投入し、攪拌し
ながら均一に懸濁させる方法が一般的であった。しか
し、膨潤性層状ケイ酸塩は、その形状から粒子同士の相
互作用が強く、粒子の凝集が生じやすいため、従来の方
法では、短時間で均一に分散・コロイド化させることが
難しかった。そこで、超音波分散機、高速攪拌機等を用
いたり、表面処理をすることにより分散性を改良する方
法が検討されている。2. Description of the Related Art Swellable phyllosilicates are used in various products as paint additives, cosmetic bases, plastic additives, coating additives, etc., and are used for smoothness, lubricity, insulation and gas barrier. It is attracting attention as a material that can impart functions such as water resistance and moisture resistance. Heretofore, as a method for producing a swellable layered silicate suspension, a method in which an ore lump or powder is put into water and uniformly suspended while stirring is common. However, since the swellable layered silicate has a strong interaction between particles due to its shape and tends to cause aggregation of particles, it has been difficult to uniformly disperse and colloid in a short time by the conventional method. Therefore, a method of improving dispersibility by using an ultrasonic disperser, a high-speed stirrer, or the like, or by performing a surface treatment has been studied.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記の
方法は規模拡大が困難な上、粒子を粉砕してしまう、本
来の機能が減じられる等の欠点があり、満足のいくもの
ではなかった。本発明は前記従来技術の課題に鑑みなさ
れたものであり、その目的は短時間で均一に分散・コロ
イド化することができ、且つ大量に生産し得て、工業的
に実施するのに有利な膨潤性層状ケイ酸塩懸濁液の製造
方法を提供することにある。However, the above-mentioned method is not satisfactory because it is difficult to enlarge the scale, and has the drawbacks of crushing particles and reducing its original function. The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to be able to uniformly disperse / colloidize in a short time, and to produce a large amount, which is advantageous for industrial implementation. It is to provide a method for producing a swellable layered silicate suspension.
【0004】[0004]
【課題を解決するための手段】前記目的を達成するため
に本発明者らが鋭意検討を行った結果、高温の膨潤性層
状ケイ酸塩鉱塊を水と作用させることで、鉱塊をより短
時間で効果的に分散・コロイド化させ得ること見出し、
本発明を完成するに至った。Means for Solving the Problems As a result of intensive studies conducted by the present inventors to achieve the above object, a high-temperature swellable layered silicate ore is allowed to react with water to make the ore more swellable. Finding that it can be effectively dispersed and colloided in a short time,
The present invention has been completed.
【0005】本発明の主題はすなわち、100〜900
℃である膨潤性層状ケイ酸塩を5〜100℃の水と作用
させることを特徴とする膨潤性層状ケイ酸塩懸濁液の製
造方法である。前記製造方法において、膨潤性層状ケイ
酸塩と水との温度差が100℃以上であることが好適で
ある。前記製造方法において、膨潤性層状ケイ酸塩を水
中に投入することが好適である。前記製造方法におい
て、さらに攪拌することが好適である。前記製造方法に
おいて、膨潤性層状ケイ酸塩が直径1〜200mmの塊
状であることが好適である。前記製造方法において、膨
潤性層状ケイ酸塩の体積が水の体積に対して、0.00
1〜0.2であることが好適である。[0005] The subject of the present invention is:
A method for producing a swellable layered silicate suspension, which comprises reacting a swellable layered silicate at a temperature of 5 ° C with water at a temperature of 5 to 100 ° C. In the above production method, it is preferable that the temperature difference between the swellable layered silicate and water is 100 ° C. or more. In the above production method, it is preferable that the swellable layered silicate is put into water. In the above production method, it is preferable to further stir. In the above production method, it is preferable that the swellable layered silicate is a lump having a diameter of 1 to 200 mm. In the above production method, the volume of the swellable layered silicate is 0.00
It is preferably from 1 to 0.2.
【0006】[0006]
【発明の実施の形態】以下、本発明の好適な実施形態を
説明する。本発明において用いられる膨潤性層状ケイ酸
塩は、陽イオン交換能、膨潤性を有するので、水中にお
いて分散する性質を示す。ここで、膨潤性とは層間に水
を配位して膨潤することを意味し、部分的に層間分離す
るものも含む。Preferred embodiments of the present invention will be described below. The swellable layered silicate used in the present invention has a cation exchange ability and a swelling property, and thus exhibits a property of being dispersed in water. Here, the swelling property means that water is coordinated between layers to swell, and also includes a substance that partially separates layers.
【0007】膨潤性層状ケイ酸塩は、構造的にはSiO
4四面体のSi:Oの比が理論上2:5のフィロケイ酸
塩で、結晶単位格子が厚み方向に繰り返された結晶構造
を有するものであり、その代表例を化学式で示すと、 W0.3〜1.1X1.0〜3.2(Si3.5〜4.5O10)Z1.8〜2.2 (W:層間イオンであり、一種以上のカチオン性イオン X:八面体位置のイオンであり、Mg2+、又はMg2+
の一部をLi+、Fe 2+、Ni2+、Mn2+、Al3+
及びFe3+からなる群から選ばれる少なくとも一種の
イオンで置換したイオン Z:F-またはOH-の中から選ばれた一種または二種の
イオン)である。なお、本発明では上記の四面体位置の
Si4+がGe4+またはこれらの一部がAl3+、Fe
3+、B3+などで置換されたものでもよい。[0007] The swellable layered silicate is structurally SiO 2
4Phyllosilicate having a tetrahedral Si: O ratio of 2: 5 in theory
Crystal structure in which the crystal unit cell is repeated in the thickness direction with salt
When a representative example is represented by a chemical formula, W0.3-1.1X1.0-3.2(Si3.5-4.5OTen) Z1.8-2.2 (W: interlayer ion, one or more cationic ions X: octahedral position ion, Mg2+Or Mg2+
Part of Li+, Fe 2+,Ni2+, Mn2+, Al3+
And Fe3+At least one member selected from the group consisting of
Ion substituted with ion Z: one or two selected from F- or OH-
Ion). In the present invention, the above tetrahedral position
Si4+Is Ge4+Or some of these are Al3+, Fe
3+, B3+It may be replaced by, for example.
【0008】本発明において好適に用いられる膨潤性層
状ケイ酸塩としては、スメクタイト型粘土や膨潤性雲母
を挙げることができる。スメクタイト型粘土としては、
モンモリロナイト、サポナイト、ヘクトライト、スチブ
ンサイト、バイデライト、ノントロナイト、又はベント
ナイト等の天然物又は合成物が例示される。また、膨潤
性雲母としては、Li型フッ素テニオライト、Na型フ
ッ素テニオライト、Na型四ケイ素雲母、又はLi型四
ケイ素雲母等の天然物又は合成物が例示され、バーミキ
ュライト、フッ素バーミキュライト等も用いることがで
きる。The swellable phyllosilicate preferably used in the present invention includes smectite type clay and swellable mica. As smectite type clay,
Examples include natural or synthetic products such as montmorillonite, saponite, hectorite, stevensite, beidellite, nontronite, and bentonite. Further, as the swellable mica, Li-type fluorine teniolite, Na-type fluorine teniolite, Na-type tetrasilicic mica, natural or synthetic products such as Li-type tetrasilicic mica are exemplified, and vermiculite, fluorine vermiculite and the like may be used. it can.
【0009】本発明において、膨潤性層状ケイ酸塩は天
然物又は合成物どちらの物も特に制限なく用いることが
できるが、合成物は、酸化ケイ素、酸化アルミニウム、
酸化マグネシウム、ケイフッ化物等を混合後、約150
0℃で加熱溶解し、さらに冷却・結晶化させる熔融合成
法により得ることができる。In the present invention, natural or synthetic swellable phyllosilicates can be used without any particular limitation, but the synthetic products include silicon oxide, aluminum oxide,
After mixing magnesium oxide, silicon fluoride, etc., about 150
It can be obtained by a fusion forming method of heating and dissolving at 0 ° C., and further cooling and crystallizing.
【0010】これらの膨潤性層状ケイ酸塩は、好ましく
は直径1〜200mm、特に好ましくは直径5〜200
mmの塊状のものが用いられる。直径1mmより小さい
と、本発明の効果が確認しにくくなり、直径200mm
を越えると、製造時に水及び膨潤性層状ケイ酸塩の飛散
を防ぐ必要があるうえ、使用する水量も増え工業的製法
として好ましくない。また、膨潤性層状ケイ酸塩は10
0〜900℃、好ましくは200〜600℃の状態で、
水と作用させることで分散させる。100℃未満である
と、本発明の効果が充分に現れず、900℃を越える
と、製造時に危険が伴い、工業的製法として好ましくな
い。These swellable layered silicates preferably have a diameter of 1 to 200 mm, particularly preferably a diameter of 5 to 200 mm.
A lump of mm is used. If the diameter is smaller than 1 mm, it is difficult to confirm the effects of the present invention, and the diameter is 200 mm.
If it exceeds, it is necessary to prevent water and swellable phyllosilicate from scattering at the time of production, and the amount of water used also increases, which is not preferable as an industrial production method. The swellable phyllosilicate is 10
0-900 ° C, preferably at 200-600 ° C,
Disperse by acting with water. If the temperature is lower than 100 ° C., the effect of the present invention is not sufficiently exhibited. If the temperature is higher than 900 ° C., danger is involved in the production, which is not preferable as an industrial production method.
【0011】使用する水の温度は、好ましくは5〜10
0℃のものが用いられる。5℃未満であると、膨潤性層
状ケイ酸塩が冷却されその表面が固まり、懸濁液が製造
しにくくなる。膨潤性層状ケイ酸塩と水の温度差は10
0℃以上、特に200℃以上が好適である。100℃以
下であると本発明の効果が充分に現れない。The temperature of the water used is preferably 5 to 10
The one at 0 ° C. is used. When the temperature is lower than 5 ° C., the swellable phyllosilicate is cooled and its surface is solidified, and it becomes difficult to produce a suspension. The temperature difference between the swellable layered silicate and water is 10
0 ° C. or higher, particularly 200 ° C. or higher, is suitable. If the temperature is lower than 100 ° C., the effect of the present invention is not sufficiently exhibited.
【0012】また、水に対する膨潤性層状ケイ酸塩の体
積比は0.001〜0.2であることが好適である。
0.001未満であると懸濁液の濃度が希薄になり、工
業的製法として好ましくない。0.2を越えると、製造
時に危険が伴い、工業的製法として好ましくない。水と
作用させる方法は、水中に投入する方法、水をかける方
法等のいずれでもよいが、好ましくは水中に投入する方
法が用いられる。The volume ratio of the swellable layered silicate to water is preferably 0.001 to 0.2.
If it is less than 0.001, the concentration of the suspension becomes thin, which is not preferable as an industrial production method. If it exceeds 0.2, danger is involved in production, which is not preferable as an industrial production method. The method of reacting with water may be any of a method of pouring into water, a method of pouring water, and the like, but a method of pouring into water is preferably used.
【0013】水と作用させた後、膨潤性層状ケイ酸塩は
自然に膨張し、分散・コロイド化していくが、この状態
で攪拌を行えばより膨潤・分散を促進することができ
る。分散までの時間は膨潤性層状ケイ酸塩の大きさによ
り左右されるが、通常0.5〜2時間で十分である。The swellable layered silicate spontaneously expands and disperses and becomes colloidal after it is made to act on water. However, stirring in this state can further promote swelling and dispersion. The time until dispersion depends on the size of the swellable phyllosilicate, but usually 0.5 to 2 hours is sufficient.
【0014】本発明において、膨潤性層状ケイ酸塩の水
分散性が大きく向上する理由については、未だ明確では
ないが、加熱された膨潤性層状ケイ酸塩と水との温度差
により、膨潤性層状ケイ酸塩の水接触領域と内部との間
に膨張率の差に基づく亀裂を生じ、内部にまで水が進入
しやすくなるためと考えられる。In the present invention, the reason why the water dispersibility of the swellable phyllosilicate is greatly improved is not clear yet, but the swelling phyllosilicate is heated by the temperature difference between the swellable phyllosilicate and water. It is considered that a crack is generated between the water contact region and the inside of the layered silicate based on the difference in expansion coefficient, and water easily enters the inside.
【0015】本発明において、分散後の懸濁液には界面
活性剤、増粘剤、水溶性高分子、防腐剤等の添加物を通
常の用途通り、必要に応じて用いることができる。In the present invention, additives such as a surfactant, a thickener, a water-soluble polymer, and a preservative can be used in the suspension after dispersion, as required, as usual.
【0016】[0016]
【実施例】以下、本発明の好適な実施例を詳述する。な
お、本発明はこれにより限定されるものではない。初め
に本発明に好適な膨潤性層状ケイ酸塩と水の温度を試験
した。Na型四ケイ素雲母の鉱塊(トピー工業(株)
製)を打錠機により、直径10mm、高さ10mmの円
柱状のペレットに90個加工し、電気炉でそれぞれ15
個ずつを20℃、100℃、200℃、300℃、60
0℃、900℃に加熱した。そのペレットを電気炉から
取り出した後、速やかに水温がそれぞれ5℃、20℃、
100℃であるステンレス製の容器に入れた0.5リッ
トルの水中に5個ずつ投じ、金へらを用いて攪拌し、そ
の後1時間静置して分散させた。この懸濁液を遠心力7
00G、2分の条件で遠心分級して、コロイド化した粒
子と沈澱物とに分離し、各々の乾燥重量を計量し、重量
%を算出した。また、乾燥した沈降物の陽イオン交換容
量(CEC)をCa吸着法により測定した。結果を表1
〜3に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. Note that the present invention is not limited to this. First, the temperature of the swellable phyllosilicate and water suitable for the present invention was tested. Na-type tetrasilicon mica ore (Topy Industries, Ltd.)
Was manufactured into 90 cylindrical pellets having a diameter of 10 mm and a height of 10 mm by a tableting machine, and each of the pellets was processed in an electric furnace into 15 pieces.
20 ° C, 100 ° C, 200 ° C, 300 ° C, 60
Heated to 0 ° C, 900 ° C. After removing the pellets from the electric furnace, the water temperature was immediately 5 ° C, 20 ° C, respectively.
Five pieces were poured into 0.5 liter of water placed in a stainless steel container at 100 ° C., stirred using a gold spatula, and allowed to stand for 1 hour to be dispersed. The suspension is centrifuged at 7
The mixture was centrifuged under the conditions of 00G and 2 minutes to separate into colloidal particles and a precipitate, and the dry weight of each was weighed, and the weight% was calculated. The cation exchange capacity (CEC) of the dried sediment was measured by the Ca adsorption method. Table 1 shows the results
3 are shown.
【0017】 [0017]
【表1】水の温度:5℃ 膨潤性層状 コロイド分 沈澱物ケイ酸塩の温度 乾燥重量% 乾燥重量% CEC(meq/100g) 20℃ 42 58 63 100℃ 57 43 31 200℃ 64 36 16 300℃ 68 32 5 600℃ 74 26 2>900℃ 77 23 2> [Table 1] Temperature of water: 5 ° C Swellable layered colloidal precipitateSilicate temperature Dry weight% Dry weight% CEC (meq / 100g) 20 ° C 42 58 63 100 ° C 57 4331 200 ° C 64 36 16 300 ° C 68 325 600 ° C 74 26 2>900 ° C 77 23 2>
【0018】 [0018]
【表2】水の温度:20℃ 膨潤性層状 コロイド分 沈澱物ケイ酸塩の温度 乾燥重量% 乾燥重量% CEC(meq/100g) 20℃ 41 59 63 100℃ 53 47 32 200℃ 65 35 13 300℃ 68 32 5 600℃ 73 27 2>900℃ 77 23 2> [Table 2] Water temperature: 20 ° C Swellable layered colloidal precipitateSilicate temperature Dry weight% Dry weight% CEC (meq / 100g) 20 ° C. 41 59 63 100 ° C. 53 47 32 200 ° C. 65 35 13 300 ° C. 68 32 5 600 ° C. 73 27 2>900 ° C 77 23 2>
【0019】 [0019]
【表3】水の温度:100℃ 膨潤性層状 コロイド分 沈澱物ケイ酸塩の温度 乾燥重量% 乾燥重量% CEC(meq/100g) 20℃ 54 46 42 100℃ 53 47 37 200℃ 58 42 37 300℃ 66 34 10 600℃ 73 27 2>900℃ 76 24 2> [Table 3] Temperature of water: 100 ° C Swellable layered colloidal precipitateSilicate temperature Dry weight% Dry weight% CEC (meq / 100g) 20 ° C. 54 46 42 100 ° C. 53 47 37 200 ° C. 58 42 37 300 ° C. 66 34 10 600 ° C. 73 27 2>900 ° C 76 24 2>
【0020】水の温度が5、20、100℃の条件いず
れにおいても、膨潤性層状ケイ酸塩の温度が100℃以
上になるとコロイド分乾燥重量%は50%を越える。ま
た、水の温度が5、20℃の条件においては膨潤性層状
ケイ酸塩の温度が200℃以上で、水の温度が100℃
の条件においては膨潤性層状ケイ酸塩の温度が300℃
以上で、コロイド分乾燥重量%が60%を越え、沈澱物
のCECも20meq/100g未満となる。また、水の温度が
5、20、100℃の条件いずれにおいても、膨潤性層
状ケイ酸塩の温度が600℃以上になるとコロイド分乾
燥重量%の増加は殆ど飽和する。これより、本発明に好
適な膨潤性層状ケイ酸塩の温度は100〜900℃、水
の温度は5〜100℃、膨潤性層状ケイ酸塩と水の温度
差は100℃以上であり、特に膨潤性層状ケイ酸塩の温
度が200〜600℃、膨潤性層状ケイ酸塩と水の温度
差は200℃以上であることが好適であることが示され
る。In any of the conditions where the temperature of water is 5, 20, and 100 ° C., when the temperature of the swellable layered silicate becomes 100 ° C. or more, the dry weight% of the colloid content exceeds 50%. When the temperature of water is 5, 20 ° C., the temperature of the swellable layered silicate is 200 ° C. or more, and the temperature of water is 100 ° C.
Temperature is 300 ° C under the condition of
As described above, the colloid content dry weight% exceeds 60%, and the CEC of the precipitate is also less than 20 meq / 100 g. Further, under any of the conditions of water temperature of 5, 20, and 100 ° C., when the temperature of the swellable layered silicate becomes 600 ° C. or more, the increase in the dry weight% of the colloid content is almost saturated. Accordingly, the temperature of the swellable layered silicate suitable for the present invention is 100 to 900 ° C., the temperature of water is 5 to 100 ° C., and the temperature difference between the swellable layered silicate and water is 100 ° C. or more. It is shown that the temperature of the swellable layered silicate is preferably 200 to 600 ° C, and the temperature difference between the swellable layered silicate and water is preferably 200 ° C or more.
【0021】実施例1 熔融合成法で合成したNa型四ケイ素雲母の鉱塊を熱い
うちに金槌を用いて直径50mmの塊状に粗砕した。そ
の鉱塊を表面温度500℃の時にステンレス製の容器に
入れた5リットルの水中に投じ、金へらを用いて攪拌
し、その後1時間静置して分散させた。実施例2 熔融合成法で合成したNa型ヘラクレイトの鉱塊を熱い
うちに金槌を用いて直径50mmの塊状に粗砕した。そ
の鉱塊を表面温度500℃の時にステンレス製の容器に
入れた5リットルの水中に投じ、金へらを用いて攪拌
し、その後1時間静置して分散させた。[0021]Example 1 Hot melt of ore mass of Na-type tetrasilicon mica synthesized by fusion fusion method
At this time, it was roughly crushed into a block having a diameter of 50 mm using a hammer. So
Ore lump in stainless steel container when surface temperature is 500 ℃
Throw into 5 liters of water and stir using a gold spatula
Then, the mixture was allowed to stand for 1 hour to be dispersed.Example 2 Hot melt of Na-type heraclitate ingot synthesized by fusion
At this time, it was roughly crushed into a block having a diameter of 50 mm using a hammer. So
Ore lump in stainless steel container when surface temperature is 500 ℃
Throw into 5 liters of water and stir using a gold spatula
Then, the mixture was allowed to stand for 1 hour to be dispersed.
【0022】実施例3 米国ワイオミング産の天然ベントナイトから直径10m
mの塊状の原鉱を5個選び電気炉で500℃に加熱し
た。その原鉱塊を電気炉から取り出した後速やかにステ
ンレス製の容器に入れた0.5リットルの水中に投じ、
金へらを用いて攪拌し、その後1時間静置して分散させ
た。実施例4 Na型四ケイ素雲母の鉱塊(トピー工業(株)製)を打
錠機により、直径10mm、高さ10mmの円柱状のペ
レットに5個加工し、電気炉で500℃に加熱した。そ
のペレットを電気炉から取り出した後速やかにステンレ
ス製の容器に入れた0.5リットルの水中に投じ、金へ
らを用いて攪拌し、その後1時間静置して分散させた。[0022]Example 3 10m diameter from natural bentonite from Wyoming, USA
5 masses of raw ore are selected and heated to 500 ° C in an electric furnace.
Was. After removing the raw ore block from the electric furnace,
Into 0.5 liters of water in a stainless steel container,
Stir with a gold spatula, then let stand for 1 hour to disperse
Was.Example 4 Na type tetrasilicic mica ore (made by Topy Industries, Ltd.)
Using a tablet machine, a cylindrical pen with a diameter of 10 mm and a height of 10 mm
Five lets were processed and heated to 500 ° C. in an electric furnace. So
After removing the pellets from the electric furnace,
Into 0.5 liters of water in a container made of
Then, the mixture was stirred and dispersed for 1 hour.
【0023】比較例1 熔融合成法で合成したNa型四ケイ素雲母の鉱塊を熱い
うちに金槌を用いて直径50mmの塊状に粗砕した。そ
の鉱塊を常温まで冷却後、ステンレス製の容器に入れた
5リットルの水中に投じ、プロペラ攪拌機を用いて60
0rpmで24時間攪拌し、分散させた。比較例2 熔融合成法で合成したNa型ヘラクレイトの鉱塊を熱い
うちに金槌を用いて直径50mmの塊状に粗砕した。そ
の鉱塊を常温まで冷却後、ステンレス製の容器に入れた
5リットルの水中に投じ、プロペラ攪拌機を用いて24
時間攪拌し、分散させた。[0023]Comparative Example 1 Hot melt of ore mass of Na-type tetrasilicon mica synthesized by fusion fusion method
At this time, it was roughly crushed into a block having a diameter of 50 mm using a hammer. So
After cooling the ore lump to room temperature, it was placed in a stainless steel container
Throw in 5 liters of water and use a propeller stirrer to
The mixture was stirred and dispersed at 0 rpm for 24 hours.Comparative Example 2 Hot melt of Na-type heraclitate ingot synthesized by fusion
At this time, it was roughly crushed into a block having a diameter of 50 mm using a hammer. So
After cooling the ore lump to room temperature, it was placed in a stainless steel container
Throw in 5 liters of water and use a propeller stirrer to
Stirred for hours and dispersed.
【0024】比較例3 米国ワイオミング産の天然ベントナイトから直径10m
mの塊状の原鉱を5個選び電気炉で500℃に加熱し
た。その原鉱塊を電気炉から取り出した後、蒸発皿に乗
せデシケーター内で吸湿しないようにしながら常温まで
冷却した。その後ステンレス製の容器に入れた0.5リ
ットルの水中に投じ、プロペラ攪拌機を用いて24時間
攪拌し、分散させた。比較例4 Na型四ケイ素雲母の鉱塊(トピー工業(株)製)を打
錠機により、直径10mm、高さ10mmの円柱状のペ
レットに5個加工し、電気炉で500℃に加熱した。そ
のペレットを電気炉から取り出した後、蒸発皿に乗せデ
シケーター内で吸湿しないようにしながら常温まで冷却
した。その後ステンレス製の容器に入れた0.5リット
ルの水中に投じ、プロペラ攪拌機を用いて24時間攪拌
し、分散させた。[0024]Comparative Example 3 10m diameter from natural bentonite from Wyoming, USA
5 masses of raw ore are selected and heated to 500 ° C in an electric furnace.
Was. After removing the raw ore lump from the electric furnace,
To room temperature while avoiding moisture absorption in the desiccator
Cool. Then, place 0.5 l in a stainless steel container.
Throw in the water of the turtle and use a propeller stirrer for 24 hours
Stir and disperse.Comparative Example 4 Na type tetrasilicic mica ore (made by Topy Industries, Ltd.)
Using a tablet machine, a cylindrical pen with a diameter of 10 mm and a height of 10 mm
Five lets were processed and heated to 500 ° C. in an electric furnace. So
After removing the pellet from the electric furnace, place it on an evaporating dish.
Cool to room temperature without absorbing moisture in the desiccator
did. Then 0.5 liter in a stainless steel container
And stirred for 24 hours using a propeller stirrer
And dispersed.
【0025】実施例1〜4、比較例1〜4の懸濁液を遠
心力700G、2分の条件で遠心分級して、コロイド化
した粒子と沈澱物とに分離し、各々の乾燥重量を計量
し、重量%を算出した。また、乾燥した沈降物の陽イオ
ン交換容量(CEC)をCa吸着法により測定した。結
果を表4に示す。The suspensions of Examples 1 to 4 and Comparative Examples 1 to 4 were centrifugally classified under the conditions of a centrifugal force of 700 G and 2 minutes to separate colloidal particles and precipitates. Weighed and calculated weight%. The cation exchange capacity (CEC) of the dried sediment was measured by the Ca adsorption method. Table 4 shows the results.
【0026】 [0026]
【表4】 分散時間 コロイド分 沈澱物 (h) 乾燥重量% 乾燥重量% CEC(meq/100g) 実施例1 1 74.3 25.7 2> 実施例2 1 76.1 23.9 2> 実施例3 1 63.8 36.2 2>実施例4 1 73.3 26.7 2> 比較例1 24 59.2 40.8 32 比較例2 24 63.5 36.5 24 比較例3 24 58.7 41.3 10比較例4 24 58.3 41.7 28 [Table 4] Dispersion time Colloid content Precipitate(H) Dry weight% Dry weight% CEC (meq / 100g) Example 1 1 74.3 25.7 2> Example 2 1 76.1 23.9 2> Example 3 1 63.8 36.2 2>Example 4 173.3 26.7 2> Comparative Example 1 24 59.2 40.8 32 Comparative Example 2 24 63.5 36.5 24 Comparative Example 3 24 58.7 41.3 10Comparative Example 4 24 58.3 41.7 28
【0027】前記表4より明らかなように、分散時間が
実施例1〜4では1時間、比較例1〜4では24時間で
あるにも関わらず、実施例1〜4に対して比較例1〜4
ではコロイド化した粒子の量が少ない。これは、比較例
1〜4では粒度の粗い膨潤性層状ケイ酸塩粒子が膨潤し
にくいためコロイド化できず、沈降していることを示し
ている。また沈降物の陽イオン交換容量について、実施
例1〜4では2meq/100g以下であるのに対して比較例1
〜4では10〜32meq/100gと大きい値を示しているこ
とからも、比較例1〜4では交換性陽イオン容量を持つ
膨潤性層状ケイ酸塩が沈降物に存在していることが確認
できる。As apparent from Table 4, the dispersion time was 1 hour in Examples 1 to 4 and 24 hours in Comparative Examples 1 to 4. ~ 4
The amount of colloidal particles is small. This indicates that in Comparative Examples 1 to 4, the swellable layered silicate particles having a coarse particle size were hard to swell and could not be formed into a colloid, but settled. The cation exchange capacity of the sediment was 2 meq / 100 g or less in Examples 1 to 4, whereas Comparative Example 1 was less than 2 meq / 100 g.
In Comparative Examples 1 to 4, it can be confirmed that swellable layered silicates having an exchangeable cation capacity are present in the precipitates, since the comparative examples 1 to 4 show large values of 10 to 32 meq / 100 g. .
【0028】[0028]
【発明の効果】以上説明したように本発明によれば、短
時間で均一に分散・コロイド化することができ、且つ大
量に生産し得て、工業的に実施するのに有利な膨潤性層
状ケイ酸塩懸濁液の製造方法を得ることができる。As described above, according to the present invention, it is possible to uniformly disperse / colloidize in a short time, to produce a large amount, and to obtain a swelling layer which is advantageous for industrial implementation. A method for producing a silicate suspension can be obtained.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G073 BA03 BA10 BA32 BA36 BA44 BA56 BA57 BA63 BA64 BD13 CA06 CM14 CM15 CM16 CM19 CM20 CM21 CM22 CM23 CP01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G073 BA03 BA10 BA32 BA36 BA44 BA56 BA57 BA63 BA64 BD13 CA06 CM14 CM15 CM16 CM19 CM20 CM21 CM22 CM23 CP01
Claims (6)
塩を5〜100℃の水と作用させることを特徴とする膨
潤性層状ケイ酸塩懸濁液の製造方法。1. A process for producing a swellable phyllosilicate suspension, which comprises reacting a swellable phyllosilicate at 100 to 900 ° C. with water at 5 to 100 ° C.
層状ケイ酸塩と水の温度差が100℃以上であることを
特徴とする膨潤性層状ケイ酸塩懸濁液の製造方法。2. The method for producing a swellable phyllosilicate suspension according to claim 1, wherein the temperature difference between the swellable phyllosilicate and water is 100 ° C. or more.
膨潤性層状ケイ酸塩を水中に投入することを特徴とする
膨潤性層状ケイ酸塩懸濁液の製造方法。3. The method according to claim 1, wherein
A method for producing a swellable layered silicate suspension, which comprises introducing the swellable layered silicate into water.
拌することを特徴とする膨潤性層状ケイ酸塩懸濁液の製
造方法。4. A method for producing a swellable layered silicate suspension according to claim 1, wherein the suspension is stirred.
潤性層状ケイ酸塩が直径1〜200mmの塊状であるこ
とを特徴とする膨潤性層状ケイ酸塩懸濁液の製造方法。5. A method for producing a swellable layered silicate suspension according to claim 1, wherein the swellable layered silicate is in the form of a lump having a diameter of 1 to 200 mm.
潤性層状ケイ酸塩の体積が水の体積に対して、0.00
1〜0.2であることを特徴とする膨潤性層状ケイ酸塩
懸濁液の製造方法。6. The method according to claim 1, wherein the volume of the swellable layered silicate is 0.00
A method for producing a swellable layered silicate suspension, which is 1 to 0.2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001102408A JP4643051B2 (en) | 2001-03-30 | 2001-03-30 | Method for producing a silicate suspension |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001102408A JP4643051B2 (en) | 2001-03-30 | 2001-03-30 | Method for producing a silicate suspension |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002293531A true JP2002293531A (en) | 2002-10-09 |
JP4643051B2 JP4643051B2 (en) | 2011-03-02 |
Family
ID=18955610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001102408A Expired - Fee Related JP4643051B2 (en) | 2001-03-30 | 2001-03-30 | Method for producing a silicate suspension |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4643051B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543754A (en) * | 2006-07-17 | 2009-12-10 | リュゼナック ヨーロップ エスアーエス | Method for preparing a talc composition comprising synthetic silicon / germanium-metal mineral particles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5124598A (en) * | 1974-08-23 | 1976-02-27 | Nobutoshi Daimon | Unmo oyobi sonokendakutaino seizohoho |
JP2000247630A (en) * | 1999-03-02 | 2000-09-12 | Topy Ind Ltd | Synthetic mica powder, its production and cosmetic containing this powder |
JP2000247629A (en) * | 1999-02-24 | 2000-09-12 | Topy Ind Ltd | Synthetic mica powder, its production and cosmetic containing this powder |
-
2001
- 2001-03-30 JP JP2001102408A patent/JP4643051B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5124598A (en) * | 1974-08-23 | 1976-02-27 | Nobutoshi Daimon | Unmo oyobi sonokendakutaino seizohoho |
JP2000247629A (en) * | 1999-02-24 | 2000-09-12 | Topy Ind Ltd | Synthetic mica powder, its production and cosmetic containing this powder |
JP2000247630A (en) * | 1999-03-02 | 2000-09-12 | Topy Ind Ltd | Synthetic mica powder, its production and cosmetic containing this powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543754A (en) * | 2006-07-17 | 2009-12-10 | リュゼナック ヨーロップ エスアーエス | Method for preparing a talc composition comprising synthetic silicon / germanium-metal mineral particles |
Also Published As
Publication number | Publication date |
---|---|
JP4643051B2 (en) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3671190A (en) | Synthetic clay-like minerals of the smectite type and method of preparation | |
EP0436835B2 (en) | Method for preparation of crystalline sodium silicates | |
KR20190039400A (en) | Method for producing a geopolymer or a geopolymer complex | |
JPH0116794B2 (en) | ||
US4715987A (en) | Method of treating phyllosilicates | |
RU2236374C2 (en) | Silicon-containing binder preparation method | |
JP2002293531A (en) | Method for manufacturing silicate suspension | |
JP2636178B2 (en) | Synthetic mixed-layer silicate and method for producing the same | |
JPS636486B2 (en) | ||
JPH1087315A (en) | Laminar silica, its production and laminar silicate | |
JP6410312B2 (en) | Particles containing layered silicate crystals and method for producing the same | |
JPH0248410A (en) | Production of swelling synthetic hectolite-type clay mineral | |
JP3012587B2 (en) | Method for producing crystalline sodium silicate | |
JPS636485B2 (en) | ||
KR100748211B1 (en) | Manufacturing method of hectorite from water glass | |
US1373854A (en) | Refractory brick | |
US4786620A (en) | Phyllosilicate treatment | |
JP2000247634A (en) | Production of alumina tabular grain | |
JPS63239104A (en) | Production of fine silicon nitride powder containing beta-phase | |
JP4584561B2 (en) | Organoclay complex | |
JPH01212212A (en) | Production of smectite interlayer composite material | |
CN115072729B (en) | Method for converting muscovite into montmorillonite and powder containing montmorillonite | |
JP2001048523A (en) | Organic mica | |
JP3884539B2 (en) | Method for producing swellable fluoromica powder | |
JPH09235116A (en) | New phyllosilicate and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |