JPH0248410A - Production of swelling synthetic hectolite-type clay mineral - Google Patents

Production of swelling synthetic hectolite-type clay mineral

Info

Publication number
JPH0248410A
JPH0248410A JP19449188A JP19449188A JPH0248410A JP H0248410 A JPH0248410 A JP H0248410A JP 19449188 A JP19449188 A JP 19449188A JP 19449188 A JP19449188 A JP 19449188A JP H0248410 A JPH0248410 A JP H0248410A
Authority
JP
Japan
Prior art keywords
clay mineral
hectorite
component
silica
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19449188A
Other languages
Japanese (ja)
Inventor
Masahide Ogawa
小川 政英
Teiji Sato
悌治 佐藤
Masanori Tanaka
正範 田中
Noriyuki Takahashi
範行 高橋
Hitoshi Nakada
中田 斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP19449188A priority Critical patent/JPH0248410A/en
Publication of JPH0248410A publication Critical patent/JPH0248410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject clay mineral having excellent transparency, water-swelling property and thickening speed by the hydrothermal treatment of a uniform suspension composition containing basic MgCO3, an SiO2-Na component and LiOH and/or Li2CO3 at specific ratios. CONSTITUTION:Hectolite containing metal components essentially consisting of Mg, SiO2, Na and Li, having the composition expressed by formula and belonging to a 3-octahedral smectite clay mineral is produced by the following process. A homogeneous suspension composition containing basic CaCO3, an SiO2-Na component (e.g., sodium silicate) and LiOH and/or Li2CO3 at compositional ratios shown in the formula is prepared beforehand. The composition is charged in an autoclave especially at pH8.5-10 generally in a state of aqueous slurry and subjected to hydrothermal treatment at 110-200 deg.C for 0.5-10hr under a pressure of 0.5-15.5kg/cm<2>-G. A swelling hectolite-type clay mineral free from F component can be produced in high yield at a low cost by this process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、合成ヘクトライトの製法に関するもので、よ
り詳細には、水性分散体としたときの透明性に優れた合
成ヘクトライトの製法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing synthetic hectorite, and more particularly, to a method for producing synthetic hectorite which has excellent transparency when made into an aqueous dispersion. .

(従来の技術及びその問題点) 合成ヘクトライトは、大きな水膨潤性ゲル形成性ならび
に有機及び無機化合物の包接機能等を有しており、増粘
剤、ゲル化剤、被覆剤としての多くの用途を有している
。従来、その製造法についても多くの提案がなされてい
る。
(Prior art and its problems) Synthetic hectorite has great water-swelling gel-forming properties and the ability to clathrate organic and inorganic compounds, and is widely used as a thickener, gelling agent, and coating agent. It has several uses. Conventionally, many proposals have been made regarding the manufacturing method.

例えば、米国特許第3.586,478号及び第3,6
71゜190号明細書には、水可溶性マグネシウム塩、
ケイ酸すl〜リウム、炭酸ナトリウム又は水酸化ナトリ
ウム及びフッ素イオンとリチウムイオンとの両者を放出
し得る化合物を、一定の比率で混合し、形成される水性
スラリーを水熱処理することにより、合成ヘクトライト
を製造する方法が開示されている。
For example, U.S. Pat. Nos. 3,586,478 and 3,6
No. 71゜190 discloses water-soluble magnesium salts,
Synthetic hectyl silicates, sodium carbonate or sodium hydroxide, and a compound capable of releasing both fluorine ions and lithium ions are mixed in a certain ratio and the aqueous slurry formed is hydrothermally treated. A method of manufacturing a light is disclosed.

また、特開昭52−130499号公報には、酸化マグ
ネシウム、水、フッ化水素酸及び水酸化リチウムを混合
し、これにシリカゾルを添加し、加熱混合してゲルを形
成させ、このゲルを水熱処理してヘクトライトを合成す
る方法が記載されている。
Furthermore, in JP-A-52-130499, magnesium oxide, water, hydrofluoric acid and lithium hydroxide are mixed, silica sol is added thereto, heated and mixed to form a gel, and this gel is mixed with water. A method for synthesizing hectorite by heat treatment is described.

更に、特開昭59−21517号公報にはケイ酸ナトリ
ウムとマグネシウム塩との混合により、両者の均質混合
溶液を形成させた後、両成分をアルカリで沈殿させ、副
生溶解質を水洗除去した後、−価或いは二価の陽イオン
及びフッ素イオンを添加し、これを水熱反応に付するこ
とによって、ヘクトライト型鉱物を合成することが記載
されている。
Furthermore, JP-A-59-21517 discloses that after mixing sodium silicate and magnesium salt to form a homogeneous mixed solution of the two, both components were precipitated with alkali, and by-product solutes were removed by washing with water. It is described that hectorite-type minerals are synthesized by subsequently adding -valent or divalent cations and fluorine ions and subjecting this to a hydrothermal reaction.

しかしながら、これらの合成方法は一般に多量のアルカ
リ剤を必要とするか或いは反応操作を複数段にわたって
行わなければならない等、製造コストの点で未だ十分満
足lノ得ないものであると共に、得られる合成ヘクトラ
イト自体、十分な増粘効果が得られる迄に著しく長い時
間を必要とし、増粘剤、ゲル化剤としての特性において
も未だ十分満足し得るものではなかった。
However, these synthetic methods generally require a large amount of alkaline agents or require reaction operations to be carried out in multiple stages, and are still not fully satisfactory in terms of production cost. Hectorite itself requires an extremely long time to obtain a sufficient thickening effect, and its properties as a thickening agent and gelling agent are still not fully satisfactory.

本発明者等は、特開昭61−275126号公報におい
て、酸性白土等の天然の粘土鉱物を一定の条件下で酸処
理して得られる活性アルミノケイ酸を、ヘクトライト合
成用のシリカ原料として使用すると、著しく温和な反応
条件でしかも簡単な操作で合成ヘクトライトが得られ、
しかも得られる合成ヘクトライトはシリカ分の一部がア
ルミナ分に置換された化学組成を有することにも関連し
て、特異なX−線回折特性を示すと共に、優れた水膨潤
性と増粘速度とを示すという事実を見出した。
In JP-A-61-275126, the present inventors used activated aluminosilicate obtained by acid-treating natural clay minerals such as acid clay under certain conditions as a silica raw material for hectorite synthesis. As a result, synthetic hectorite could be obtained under extremely mild reaction conditions and with simple operations.
Moreover, the resulting synthetic hectorite has a chemical composition in which a part of the silica content is replaced by alumina content, and as a result, it exhibits unique X-ray diffraction characteristics, as well as excellent water swelling properties and thickening speed. We have discovered the fact that

更に本発明者等は、特開昭62−59518号公報で先
の特開昭61−275126号公報で得られた合成ヘク
トライトの水性分散体の透明性を改良された製法を提案
している。
Furthermore, the present inventors have proposed in JP-A No. 62-59518 a manufacturing method that improves the transparency of the aqueous dispersion of synthetic hectorite obtained in the earlier JP-A No. 61-275126. .

しかしながら、これらの方法はいずれもヘクトライト合
成用のシリカ原料として酸性白土等の天然の粘土鉱物を
酸処理して得られる活性アルミノケイ酸を使用すること
、また従来法と同様にヘクトライト合成において必須成
分であるフッ素イオンを含有させること等から、原料コ
ストの点で未だ十分満足し得ないものであると共に、ア
ニオン成分としてフッ素イオンを含有しており、これら
の成分による人体或いは生物への影響からその用途が制
限されている。
However, all of these methods require the use of activated aluminosilicate, which is obtained by acid treatment of natural clay minerals such as acid clay, as the silica raw material for hectorite synthesis. Because it contains fluorine ions as an ingredient, it is still not fully satisfactory in terms of raw material cost, and it also contains fluorine ions as an anion ingredient, so it is difficult to prevent the effects of these ingredients on the human body or living organisms. Its use is limited.

(発明が解決しようとする問題点) 本発明者等は、出発原料のマグネシウム成分に塩基性炭
酸マグネシウムを用いることによって、従来法のヘクト
ライト合成において、必須成分であるフッ素イオンを含
有することなく、しかもシリカ成分及びリチウム成分に
それぞれケイ酸ナトリウム、水酸化リチウム又は炭酸リ
チウムの水溶性原料を用いて、三者の均質懸濁物を形成
させることにより、従来法のように多量のアルカリ剤を
必要とすることなく、実質上化学量論的量で、従来法よ
り著しく温和な水熱反応条件で、しかも−段の反応操作
によるヘクトライト鉱物を合成する方法を見出した。
(Problems to be Solved by the Invention) The present inventors have discovered that by using basic magnesium carbonate as the magnesium component of the starting material, the conventional method of hectorite synthesis can be performed without containing fluorine ions, which is an essential component. Moreover, by using water-soluble raw materials of sodium silicate, lithium hydroxide, or lithium carbonate as the silica component and the lithium component, respectively, and forming a homogeneous suspension of the three, it is not possible to use a large amount of alkali agent as in the conventional method. We have found a method for synthesizing hectorite minerals in substantially stoichiometric amounts without the need for hectorite minerals, under significantly milder hydrothermal reaction conditions than conventional methods, and by a one-step reaction operation.

またマグネシウム成分に塩基性炭酸マグネシウムを用い
る限りにおいて、シリカ成分に非晶質ゲル、アルミナ成
分に非晶質ヒドロゲルを含む均質懸濁物を出発原料に用
いることも見出した。
It has also been found that, as long as basic magnesium carbonate is used as the magnesium component, a homogeneous suspension containing an amorphous gel as the silica component and an amorphous hydrogel as the alumina component can be used as the starting material.

即ち、本発明の目的は、透明性ζ水膨潤性及び増粘速度
に優れた合成ヘクトライトをフッ素イオンや多量のアル
カリを用いることなしに容易に製造する方法を提供する
にある。
That is, an object of the present invention is to provide a method for easily producing synthetic hectorite having excellent transparency, ζ water swelling properties, and thickening speed without using fluorine ions or large amounts of alkali.

本発明の他の目的は、合成ヘクトライトの製造が、均斉
な粒度のものとし5、しかも優れた伊過性や水洗性等を
もって容易に行われる方法を提供するにある。
Another object of the present invention is to provide a method for easily producing synthetic hectorite with uniform particle size 5 and excellent washing and washing properties.

本発明の更に他の目的は、合成ヘクトライトの製造を安
価な原料コストで、簡単な反応操作で行い得る合成ヘク
トライトの製法を提供するにある。
Still another object of the present invention is to provide a method for producing synthetic hectorite which can be produced at low raw material costs and by simple reaction operations.

(問題点を解決するための手段) 本発明によれば、金属成分が実買上マグネシウム、シリ
カ、ナトリウム及びリチウムから成り、実質上下記式、 a Na20(bJOCL120) [8SlOdnL
O・・” (1)式中のa、b、c及びnは、式 0<a<2.4<b<6.0<c<1及びn≧2を満足
する数である、 で表わされる組成を有し且つ3−八面体型スメクタイト
粘土鉱物に属するヘクトライトを合成するにあたり、(
a)塩基性炭酸マグネシウムと、(b)(1)ケイ酸ナ
トリウム、 (ii)ケイ酸ナトリウム及び非晶質シリ
カの組合せ、 (iii)非晶質シリカ及び水酸化ナト
リウムの組合せから成る群より選ばれたシリカ−ナトリ
ウム成分と、(c)水酸化リチウム及び/又は炭酸リチ
ウムとを実質上上記式で表わされる組成比で含有する均
質懸濁組成物を製造し、該組成物を水熱処理することを
特徴とする合成膨潤性ヘクトライト型粘土鉱物の製造方
法が提供される。
(Means for Solving the Problems) According to the present invention, the metal component consists of commercially available magnesium, silica, sodium, and lithium, and substantially has the following formula: a Na20 (bJOCL120) [8SlOdnL
O...” (1) where a, b, c and n are numbers that satisfy the formula 0<a<2.4<b<6.0<c<1 and n≧2, expressed as In synthesizing hectorite, which has a composition of
a) basic magnesium carbonate; and (b) selected from the group consisting of (1) sodium silicate, (ii) a combination of sodium silicate and amorphous silica, (iii) a combination of amorphous silica and sodium hydroxide. producing a homogeneous suspension composition containing a silica-sodium component and (c) lithium hydroxide and/or lithium carbonate in a composition ratio substantially represented by the above formula, and hydrothermally treating the composition. A method for producing a synthetic swellable hectorite clay mineral is provided.

(作用) 本発明は、合成ヘクトライトのマグネシウム成分の出発
原料として、塩基性炭酸マグネシウム、特にハイドロマ
グネサイトを使用すると、フッ素イオンを存在させるこ
となしに、合成ヘクトライトが容易に合成されるという
知見に基づくものである。
(Function) The present invention claims that if basic magnesium carbonate, especially hydromagnesite, is used as a starting material for the magnesium component of synthetic hectorite, synthetic hectorite can be easily synthesized without the presence of fluorine ions. It is based on knowledge.

ヘクトライトは、基本的には下記式 で表わされる基本骨格を有して成る。従来のヘクトライ
トには、フッ素イオンを含まないものも知られているが
、実用上得られるものは殆んどフッ素イオンを含むもの
であり、しかも含まないものでは水熱合成に際してより
厳しい水熱条件が要求される。
Hectorite basically has a basic skeleton represented by the following formula. It is known that some conventional hectorites do not contain fluorine ions, but most of the ones that can be obtained in practical use contain fluorine ions, and those that do not contain fluorine ions require more severe hydrothermal synthesis during hydrothermal synthesis. conditions are required.

即ち、3−八面体型スメクタイト構造を形成するMgイ
オンは位置的にかなり制約があり、Mgイオンが小さめ
であること、及びMgイオンが成る程度自由にずれ易い
という自由度をもつことが必要と思われる。水酸イオン
とフッ素イオンとを比較した場合、フッ素イオンの電気
陰性度が大きいため、Mg−イオンの周囲をフッ素イオ
ンが取囲んでいると、Mgイオンの電子はフッ素の方に
引かれ、Mgイオンが小さくなり、3−八面体型構造が
とりやすくなると思われる。また、Jイオンは水和じや
すく、このため見掛上のイオン半径はかなり大きくなる
が、フッ素イオンが周囲にあると、当然水和も抑制され
、これも4A造を一つくりやすくする原因と考えられる
In other words, the Mg ions that form the 3-octahedral smectite structure are quite constrained in terms of position, and it is necessary that the Mg ions be small and have a degree of freedom that allows them to easily shift to the extent that they form. Seem. When comparing hydroxide ions and fluorine ions, the electronegativity of fluorine ions is large, so when fluorine ions surround Mg- ions, the electrons of Mg ions are attracted to fluorine, It is thought that the ions become smaller and a 3-octahedral structure is more likely to be formed. In addition, J ions are easily hydrated, so the apparent ionic radius becomes quite large, but when fluorine ions are around, hydration is naturally suppressed, which is also the reason why it is easier to create a 4A structure. Conceivable.

これに対して、未発明によりばフッ素イオンの存在なし
にヘクI・ライトが容易に合成されるのは、次のような
理由ど考えられる。即ち、例えばハイドロマグネサイト
(4MgC(h・Mg (OH) 2・4H20)のよ
うな塩基性炭酸マグネシウムは、従来のマグネシウム塩
、例λ、げMg (OH) 2に比して水和度の著しく
小さい形で存在する。またこの原料を用いると、反応時
に炭酸ガスが式 %式% のように発生すると共に、活性に富んだ発生期のM、g
O−Mg (0+() 2が生成し、有効に反応に関与
するものと思わわる。またMg (OH) 2等は巨大
分子化さねており、(StO4)の四面体層と規則性を
もって配列するのに時間を要するが、上記Mg0−Mg
 (Of+) 2は、小さく分断された形になっており
、Mgイオンの自由度も高く、配列もしやすいものと思
われる。これらにより、本発明によればフッ素イオンの
存在なしに合成ヘクトライトが容易に得られるものと認
められる。
On the other hand, the reason why heclite is easily synthesized without the presence of fluorine ions according to the invention may be as follows. That is, basic magnesium carbonate, such as hydromagnesite (4MgC(h・Mg(OH) 2 ・4H20), has a higher degree of hydration than conventional magnesium salts, e.g. Also, when this raw material is used, carbon dioxide gas is generated during the reaction as shown in the formula % formula %, and M, g
It seems that O-Mg (0+() 2) is generated and effectively participates in the reaction. Also, Mg (OH) 2 etc. have not yet become macromolecules, and have regularity with the tetrahedral layer of (StO4). Although it takes time to arrange, the above Mg0-Mg
(Of+) 2 is in the form of small fragments, and the degree of freedom of Mg ions is high, making it easy to arrange them. From these, it is recognized that according to the present invention, synthetic hectorite can be easily obtained without the presence of fluorine ions.

(発明の好適態様) 本発明によれば、上記合成ヘクトライトは塩基性炭酸マ
グネシウムとケイ酸ナトリウム等及び水酸化リチウムと
の組合せから成る均質懸濁組成物を水熱処理することに
よって得られる。
(Preferred Embodiment of the Invention) According to the present invention, the synthetic hectorite is obtained by hydrothermally treating a homogeneous suspension composition consisting of a combination of basic magnesium carbonate, sodium silicate, etc., and lithium hydroxide.

マグネシウム原料として塩基性炭酸マグネシウムを選択
することにより、従来法において必須成分であるフッ素
イオンを含有せずにヘクトライトの合成が可能となり、
更に高収率及び高純度での製造が可能となる。塩基性炭
酸マグネシウムとしては、任意のものを使用し得るが、
炭酸マグネシウムや、水酸化マグネシウム或いはこれら
の混合物を使用したのではヘクトライトの高収率及び高
純度での製造は期待できない、塩基性炭酸マグネシウム
としては、ハイドロマグネサイトを使用するのが特に望
ましく、このものは下記式%式%(4) で示される化学組成と、^STMNo25−513に帰
属されるX−線回折像とを有する。
By selecting basic magnesium carbonate as the magnesium raw material, it is possible to synthesize hectorite without containing fluorine ions, which is an essential component in conventional methods.
Furthermore, production with high yield and high purity becomes possible. Any basic magnesium carbonate can be used, but
High yield and high purity production of hectorite cannot be expected by using magnesium carbonate, magnesium hydroxide, or a mixture thereof.As the basic magnesium carbonate, it is particularly desirable to use hydromagnesite. This product has a chemical composition represented by the following formula % (4) and an X-ray diffraction image assigned to STM No. 25-513.

Si及びNa成分原料としては、ケイ酸ナトリウム水(
8液が有利に使用されるが、非晶質シリカと水酸化ナト
リウムとの組合せを使用することもできる。ケイ酸ナト
リウムとしては式 %式%(5) 式中、nは1乃至5の数、特に2.0乃至35の数であ
る、 のケイ酸ナトリウムが使用される。また、非晶質シリカ
としては、シリカのヒドロシル、ヒドロゲル、キセロゲ
ルや、湿式非晶質シリカ或いは気相法非晶質シリカ等が
使用される。
As raw materials for Si and Na components, sodium silicate water (
Part 8 is advantageously used, but a combination of amorphous silica and sodium hydroxide can also be used. As sodium silicate, sodium silicate of the formula % (5) is used, where n is a number from 1 to 5, in particular from 2.0 to 35. Further, as the amorphous silica, silica hydrosil, hydrogel, xerogel, wet amorphous silica, vapor phase amorphous silica, etc. are used.

リチウム原料としては、水酸化リチウムが有利に使用さ
れるが、炭酸リチウム及びその組合せを任意に使用し得
ることは当然である。
As the lithium source, lithium hydroxide is advantageously used, but it is of course possible to use lithium carbonate and combinations thereof as desired.

上記(a) 、 (b)及び(c)成分の使用比率はヘ
クトライトの化学組成となるように定める。本発明によ
れば、各原料を化学量論的量で用いて合成ヘクトライト
を容易に得られるのが顕著な特徴である。反応混合物の
pHは一般に8乃至11、特に85乃至10の範囲内に
あることが望ましい。pHの調節は、必要に応じアルカ
リ金属の水酸化物或いは炭酸塩を反応系に添加すること
により行われる。
The ratios of the above components (a), (b) and (c) are determined to give the chemical composition of hectorite. According to the present invention, a remarkable feature is that synthetic hectorite can be easily obtained using stoichiometric amounts of each raw material. The pH of the reaction mixture is generally preferably in the range 8-11, particularly 85-10. The pH is adjusted by adding an alkali metal hydroxide or carbonate to the reaction system, if necessary.

水熱反応は一般に水性スラリーの状態で行うが、固形分
濃度を1乃至30重量%、特に5乃至15重量%の範囲
とすることが操作性の点で有利である。水熱処理は、上
記原料をオートクレーブに仕込み、加熱することにより
行われる。反応条件は、一般に110乃至200℃の温
度で0.5乃至10時間の処理で十分である。この際、
反応系の圧力は0.5乃至15.5Kg/cm2ゲージ
に維持される。
Although the hydrothermal reaction is generally carried out in the form of an aqueous slurry, it is advantageous in terms of operability to set the solid content concentration in the range of 1 to 30% by weight, particularly 5 to 15% by weight. The hydrothermal treatment is performed by charging the above raw materials into an autoclave and heating them. As for reaction conditions, generally a treatment time of 0.5 to 10 hours at a temperature of 110 to 200°C is sufficient. On this occasion,
The pressure of the reaction system is maintained at 0.5 to 15.5 Kg/cm2 gauge.

水熱反応に先立って、用いる原料を可及的に均一に混合
させて、均質化した水性スラリーを形成させることが、
収率及び純度向上の見地から望ましい。この均質混合は
強剪断攪拌下に行うのがよく、この目的に、高速剪断ミ
キサー、ボールミル、サンドミル、コロイドミル、超音
波照射等を用いることができる。
Prior to the hydrothermal reaction, the raw materials used are mixed as uniformly as possible to form a homogenized aqueous slurry.
Desirable from the standpoint of improving yield and purity. This homogeneous mixing is preferably carried out under strong shear stirring, and for this purpose, a high-shear mixer, ball mill, sand mill, colloid mill, ultrasonic irradiation, etc. can be used.

また、少量のケイ酸ナトリウムは水溶液中で塩基性炭酸
マグネシウムを均一に分散させる効果があるので、原料
としてケイ酸ナトリウムで分散させた分散スラリーを調
合してから残りの原料を加えても、均一混合の目的を達
成できる。この場合に用いるケイ酸ナトリウムは水性ス
ラリーに対して0.01乃至10重量%の範囲で用いる
のが望ましい。
In addition, a small amount of sodium silicate has the effect of uniformly dispersing basic magnesium carbonate in an aqueous solution, so even if you prepare a dispersion slurry in which sodium silicate is dispersed as a raw material and then add the remaining raw materials, it will be uniform. Can achieve the purpose of mixing. The sodium silicate used in this case is preferably used in an amount of 0.01 to 10% by weight based on the aqueous slurry.

また、水性混合物中の固形分濃度は、一般に1乃至30
重量%、特に5乃至15重量%の範囲にあることが望ま
しい。
In addition, the solid content concentration in the aqueous mixture is generally 1 to 30
It is desirable that the amount is in the range of 5 to 15% by weight.

この混合物をオートクレーブに仕込み、水熱処理を行な
う。水熱処理条件は、従来法に比して比較的温和な条件
であってよく、例えば一般に100乃至300℃、特に
150乃至200’Cの温度で、0乃至100 Kg/
crn2(ゲージ)、特に6乃至40 Kg/cm”G
の圧力下に行なうのがよい。反応時間は一般に0.5乃
至20時間のオーダーで十分である。反応により得られ
る合成スチブンサイトは母液から固−液分離し、水洗し
、乾燥して製品とする。
This mixture is placed in an autoclave and subjected to hydrothermal treatment. Hydrothermal treatment conditions may be relatively mild compared to conventional methods, for example, generally at a temperature of 100 to 300°C, particularly 150 to 200'C, and at a temperature of 0 to 100 Kg/
crn2 (gauge), especially 6 to 40 Kg/cm”G
It is best to do this under pressure. A reaction time of the order of 0.5 to 20 hours is generally sufficient. The synthetic stevensite obtained by the reaction is separated into solid and liquid from the mother liquor, washed with water, and dried to obtain a product.

本発明によれば、−段の反応(水熱処理)で目的とする
ヘクトライトが収率よく容易に得られ、しかもその合成
条件は従来法に比し、比較的温和な条件でよいことも一
つの利点である。しかも得られるヘクトライトは、得ら
れたスラリー乃至はテ過ケーキの状態では勿論のこと、
水洗した状態でも実買上非膨潤状態であり、これを乾燥
することによって、膨潤性及び水性分散体としたときの
透明性に顕著に優れた特徴を有する合成ヘクトライトと
なる。しかも、この生成したばかりのヘクトライトは、
」適性に優れ、水洗等の精製操作も至って容易に行われ
るという利点がある。
According to the present invention, the desired hectorite can be easily obtained in a high yield in the second stage of the reaction (hydrothermal treatment), and the synthesis conditions may be relatively mild compared to conventional methods. This is one advantage. Moreover, the obtained hectorite is not only in the state of the obtained slurry or filtered cake,
Even after washing with water, it is actually in a non-swelling state, and by drying it, it becomes a synthetic hectorite that has remarkable characteristics of excellent swelling properties and transparency when made into an aqueous dispersion. Moreover, this newly generated hectorite is
It has the advantage that it has excellent suitability and that purification operations such as washing with water can be carried out very easily.

本発明による合成ヘクトライトは、一般に、JIS−に
0069化学品のフルイ残分試験方法(乾式方法)で1
00メツシュ通過残10%以下、55メツシュ通過残5
%以下の粒子として得られる。
The synthetic hectorite according to the present invention generally meets the JIS-0069 chemical sieve residue test method (dry method).
00 mesh passing remaining 10% or less, 55 mesh passing remaining 5
% or less of particles.

また、この粉末は、一般に0.8乃至2.0g/m+g
の嵩密度を有し、0,2ミリ当量/g以上の陽イオン交
換容量を有し、150m27g以上のBET比表面積を
有し、合成法で得られることに関連して、結晶粒子は微
細でb軸方向結晶サイズとして200Å以下であって、
しかも不純物の含有量は少なく、そのハンター白色度は
一般に80%以上、特に85%以上である。
In addition, this powder is generally 0.8 to 2.0 g/m+g
, a cation exchange capacity of 0.2 milliequivalents/g or more, a BET specific surface area of 150 m27 g or more, and the crystal grains are fine in relation to being obtained by the synthetic method. The crystal size in the b-axis direction is 200 Å or less,
Moreover, the content of impurities is small, and its Hunter whiteness is generally 80% or more, particularly 85% or more.

(発明の効果) 本発明によって、マグネシウム成分の出発原料に塩基性
炭酸マグネシウムを用いることによって、フッ素成分を
含まず、しかも安価で高収率で得られる水膨潤性スメク
タイト型の合成ヘクトライトの製造法を提供することが
出来た。
(Effects of the Invention) According to the present invention, by using basic magnesium carbonate as the starting material for the magnesium component, water-swellable smectite-type synthetic hectorite that does not contain a fluorine component and can be obtained at low cost and in high yield is produced. could provide the law.

実施例 1 マグネシウム、シリカ及びアルミニウム成分の原料にそ
れぞれ市販の塩基性炭酸マグネシウム、3号ケイ酸ナト
リウム、水酸化リチウムを用いて、下記の方法でヘクト
ライト型粘土鉱物を合成した。
Example 1 A hectorite clay mineral was synthesized by the following method using commercially available basic magnesium carbonate, No. 3 sodium silicate, and lithium hydroxide as raw materials for magnesium, silica, and aluminum components, respectively.

市販塩基性炭酸マグネシウム(徳山曹達製TT)103
3g (マグネシア分430g)を約62の水に入れ、
攪拌してスラリーを得た。3号珪酸ナトリウム4292
g (シリカ分:9sig)を秤取り、このうち約10
0gを加えて攪拌し、分散スラリーを調合した。一方、
水酸化リチウム1水和物58gを151の水に溶解し、
残りの3号珪酸ナトリウムを加えた。この溶ン夜にマグ
ネシウム分散スラリーを加えて充分攪拌して原料の3者
から成る均質懸濁物とした後、3等分し、それぞれ内容
積10jのオートクレーブに入れた。攪拌しながら15
0℃、170℃及び190℃で途中発生した気体を時々
排気しながら、それぞれ5時間の水熱処理を行なった。
Commercially available basic magnesium carbonate (Tokuyama Soda TT) 103
Put 3g (430g of magnesia) in about 62ml of water,
A slurry was obtained by stirring. No. 3 sodium silicate 4292
g (silica content: 9sig), about 10
0 g was added and stirred to prepare a dispersion slurry. on the other hand,
Dissolve 58 g of lithium hydroxide monohydrate in 151 parts of water,
The remaining No. 3 sodium silicate was added. A magnesium dispersion slurry was added to the solution and thoroughly stirred to form a homogeneous suspension consisting of the three raw materials, which was then divided into three parts and placed in an autoclave each having an internal volume of 10J. 15 while stirring
Hydrothermal treatment was carried out at 0°C, 170°C and 190°C for 5 hours each while occasionally exhausting the gas generated during the process.

反応終了後、更過、乾燥し、それぞれ1.80.1.8
8及び1.90Kgの生成物を得た。
After completion of the reaction, purification and drying were carried out to give 1.80.1.8 respectively.
8 and 1.90 Kg of product were obtained.

この生成物をサンプルミルでそれぞれ粉砕して得られた
粉末の白色度は、85〜92%であった。また陽イオン
交換容量は0.44乃至0.52ミリ当量/gで、BE
T比表面積は210乃至250m’/gであり、b軸方
向結晶子サイズは、125乃至145人であフた。
The whiteness of the powder obtained by pulverizing this product using a sample mill was 85 to 92%. In addition, the cation exchange capacity is 0.44 to 0.52 meq/g, and BE
The T specific surface area was 210 to 250 m'/g, and the crystallite size in the b-axis direction was 125 to 145.

なお本発明に用いた試験方法を下記に示した。The test method used in the present invention is shown below.

1、陽イオン交換容量(c,E、C,)日本鋳物協会、
東海支部、無機砂型研究部会発行の試験方法TIKS−
413に準拠した。
1. Cation exchange capacity (c, E, C,) Japan Foundry Association,
Test method TIKS- published by Tokai Branch, Inorganic Sand Mold Research Group
413.

2、 BET比表面積 自動BET比表面積測定装嘗(cARLOERBA社I
J Sorptomatic 5eries 1800
)を用いて測定した。
2. BET specific surface area Automatic BET specific surface area measuring device (cARLOERBA company I
J Sorptomatic 5eries 1800
).

3、 ハンター白色度 JIS K−8123に準じて測定した。3. Hunter whiteness Measured according to JIS K-8123.

4、結晶子サイズ 粉末試料の結晶子サイズは、°゛実験化学講座4′°第
238頁(1956年)丸首(株)発行に記載されてい
るX線回折法に拠って面指数[06]の回折ピークを測
定し、b軸方向での結晶子サイズを人単位で求めた。
4. Crystallite size The crystallite size of the powder sample is determined by the surface index [06] according to the X-ray diffraction method described in Experimental Chemistry Course 4'°, page 238 (1956) published by Marukubi Co., Ltd. The diffraction peak was measured, and the crystallite size in the b-axis direction was determined in units of individuals.

実施例 2 実施例1において原料の3号ケイ酸ナトリウムのシリカ
分半分を下記の方法によって得られた非晶質シリカを用
いた以外は実施例1と同様にしてヘクトライト型粘土鉱
物を合成した。
Example 2 A hectorite-type clay mineral was synthesized in the same manner as in Example 1, except that amorphous silica obtained by the following method was used for half of the silica content of No. 3 sodium silicate, the raw material. .

3号ケイ酸ナトリウム2146g(SiCh分として4
80g)溶液を60℃に加温した50%硫酸溶液中に攪
拌下に滴下し、十分に攪拌熟成した後、yA、水洗して
非晶質シリカヒドロゲルを得た。次いでこのゲルを家庭
用ミキサーで5in2濃度が5重量%の均質スラリーと
した。
2146g of No. 3 sodium silicate (4 as SiCh content)
80 g) The solution was added dropwise to a 50% sulfuric acid solution heated to 60° C. under stirring, and after sufficiently stirring and aging, the solution was washed with water to obtain an amorphous silica hydrogel. This gel was then made into a homogeneous slurry with a 5in2 concentration of 5% by weight in a household mixer.

この尾のスラリーに実施例1で用いた同量の塩基性炭酸
マグネシウムスラリーと残りの3号ケイ酸ナトリウム、
水酸化リチウムを加え更に少量の水酸化ナトリウムを加
えて均質懸濁組成物を作り、以下実施例1と同様にして
水熱処理をし、1.90にgの合成ヘクトライトの乾燥
品を得た。
To this tail slurry, the same amount of basic magnesium carbonate slurry used in Example 1 and the remaining No. 3 sodium silicate,
Lithium hydroxide was added and a small amount of sodium hydroxide was added to make a homogeneous suspension composition, which was then hydrothermally treated in the same manner as in Example 1 to obtain a dried product of 1.90 g of synthetic hectorite. .

なお、この生成物の白色度は89%、C,E、(:、は
0.46ミリ当量/g、BET比表面積は290 m2
7g、b軸方向結晶子サイズは170人であった。
The whiteness of this product is 89%, C, E, (:, is 0.46 milliequivalent/g, and the BET specific surface area is 290 m2.
7g, and the b-axis crystallite size was 170.

実施例 3 実施例2において、原料のリチウム成分の半分を市販の
炭酸リチウムに変えた以外は、実施例2と同様にしてヘ
クトライト型粘土鉱物を合成した。
Example 3 A hectorite clay mineral was synthesized in the same manner as in Example 2, except that half of the lithium component of the raw material was replaced with commercially available lithium carbonate.

なお、この生成物の白色度は90%、C,E、C,は0
45ミリ当量/g、BET比表面積は250 m27g
Note that the whiteness of this product is 90%, and C, E, and C are 0.
45 milliequivalent/g, BET specific surface area is 250 m27g
.

b軸方向結晶子サイズは160人であった。The b-axis crystallite size was 160.

実施例 4 実施例1において、原料のシリカ成分として実施例1で
用いた3号ケイ酸ナトリウム中のシリカ(S10□)分
と同量のシリカ分として、市販のシリカヒドロシルを用
い、ナトリウム成分(Na20) としてシリカ分と等
モル数の水酸化ナトリウムを用いた以外は実施例1と同
様にして、原料3者の均質懸濁を得、この尾を用いて1
70℃、5時間の水熱処理をし、1.86Kgの合成ヘ
クトライトの乾燥生成物を得た。
Example 4 In Example 1, commercially available silica hydrosil was used as the silica component of the raw material in the same amount as the silica (S10□) in No. 3 sodium silicate used in Example 1, and the sodium component was A homogeneous suspension of the three raw materials was obtained in the same manner as in Example 1, except that sodium hydroxide was used as (Na20) in an amount equal to the number of moles of silica.
Hydrothermal treatment was carried out at 70° C. for 5 hours to obtain 1.86 kg of a dried synthetic hectorite product.

なお、この生成物の白色度は87%、C,E、C,は0
.43ミリ当量/g、BET比表面積は230 m27
g。
The whiteness of this product is 87%, and C, E, and C are 0.
.. 43 milliequivalents/g, BET specific surface area 230 m27
g.

b軸方向結晶子サイズは165人であった。The b-axis crystallite size was 165.

Claims (3)

【特許請求の範囲】[Claims] (1)実質上下記式、 aNa_2O(bMgOcLi_2O)[8SiO_2
]nH_2O式中のa、b、c及びnは、式 0<a<2、4<b<6、0<c<1及 びn≧2を満足する数である、 で表わされる組成を有し且つ3−八面体型スメクタイト
粘土鉱物に属するヘクトライトを合成するにあたり、(
a)塩基性炭酸マグネシウムと、(b)(i)ケイ酸ナ
トリウム、(ii)ケイ酸ナトリウム及び非晶質シリカ
の組合せ、(iii)非晶質シリカ及び水酸化ナトリウ
ムの組合せから成る群より選ばれたシリカ−ナトリウム
成分と、(c)水酸化リチウム及び/又は炭酸リチウム
とを実質上上記式で表わされる組成比で含有する均質懸
濁組成物を製造し、該組成物を水熱処理することを特徴
とする膨潤性合成ヘクトライト型粘土鉱物の製造方法。
(1) Substantially the following formula, aNa_2O(bMgOcLi_2O)[8SiO_2
] a, b, c and n in the nH_2O formula are numbers satisfying the formulas 0<a<2, 4<b<6, 0<c<1 and n>=2, and have a composition represented by In addition, in synthesizing hectorite, which belongs to the 3-octahedral smectite clay mineral, (
a) basic magnesium carbonate; and (b) selected from the group consisting of (i) sodium silicate, (ii) a combination of sodium silicate and amorphous silica, and (iii) a combination of amorphous silica and sodium hydroxide. producing a homogeneous suspension composition containing a silica-sodium component and (c) lithium hydroxide and/or lithium carbonate in a composition ratio substantially represented by the above formula, and hydrothermally treating the composition. A method for producing a swellable synthetic hectorite clay mineral characterized by:
(2)塩基性炭酸マグネシウムがハイドロマグネサイト
である請求項(1)記載の製造方法。
(2) The manufacturing method according to claim (1), wherein the basic magnesium carbonate is hydromagnesite.
(3)均質懸濁組成物中のマグネシウム分、シリカ分、
ナトリウム分及びリチウム分とが実質上化学量論的量で
用いられている請求項(1)記載の製造方法。
(3) Magnesium content and silica content in the homogeneous suspension composition,
The method according to claim 1, wherein the sodium and lithium components are used in substantially stoichiometric amounts.
JP19449188A 1988-08-05 1988-08-05 Production of swelling synthetic hectolite-type clay mineral Pending JPH0248410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19449188A JPH0248410A (en) 1988-08-05 1988-08-05 Production of swelling synthetic hectolite-type clay mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19449188A JPH0248410A (en) 1988-08-05 1988-08-05 Production of swelling synthetic hectolite-type clay mineral

Publications (1)

Publication Number Publication Date
JPH0248410A true JPH0248410A (en) 1990-02-19

Family

ID=16325407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19449188A Pending JPH0248410A (en) 1988-08-05 1988-08-05 Production of swelling synthetic hectolite-type clay mineral

Country Status (1)

Country Link
JP (1) JPH0248410A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671637A (en) * 1992-08-26 1994-03-15 Daiichi Daiyamondo Koji Kk Wire saw engineering method
AU658695B2 (en) * 1991-11-30 1995-04-27 Laporte Industries Limited Synthesis of smectite clay minerals
KR100598160B1 (en) * 2004-09-09 2006-07-10 한국지질자원연구원 Synthesis of beidellite from agalatomitedickite
JP4580084B2 (en) * 2000-10-25 2010-11-10 水澤化学工業株式会社 Titanium-containing synthetic smectite and process for producing the same
JP2013086979A (en) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp Cathode active material for lithium ion battery and method for producing the same
JP2013124210A (en) * 2011-12-16 2013-06-24 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU658695B2 (en) * 1991-11-30 1995-04-27 Laporte Industries Limited Synthesis of smectite clay minerals
JPH0671637A (en) * 1992-08-26 1994-03-15 Daiichi Daiyamondo Koji Kk Wire saw engineering method
JP4580084B2 (en) * 2000-10-25 2010-11-10 水澤化学工業株式会社 Titanium-containing synthetic smectite and process for producing the same
KR100598160B1 (en) * 2004-09-09 2006-07-10 한국지질자원연구원 Synthesis of beidellite from agalatomitedickite
JP2013086979A (en) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp Cathode active material for lithium ion battery and method for producing the same
JP2013124210A (en) * 2011-12-16 2013-06-24 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery

Similar Documents

Publication Publication Date Title
CA1176029B (en) Method of synthesizing zincosilicate or stannosilicate or titanosilicate material
US4054537A (en) Process for synthesizing compositions containing smectite-type clays and gellants produced thereby
US4040974A (en) Synthesized gellants containing smectite-type clay and process for producing same
US5004716A (en) Synthetic stevensite and process for preparation thereof
Feng et al. Synthesis of kenyaite, magadiite and octosilicate using poly (ethylene glycol) as a template
US4749676A (en) Process for the preparation of a crystalline, swellable sheet silicate of the saponite type
JPH0248410A (en) Production of swelling synthetic hectolite-type clay mineral
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
JPS636486B2 (en)
JPH0248411A (en) Production of swelling synthetic saponite-type clay mineral
JPH02271910A (en) Novel magnesium potassium philo-silicate
JPS6112848B2 (en)
JPS636485B2 (en)
JP4688386B2 (en) Microporous acidic oxide ITQ-18 with catalytic properties
WO1994016996A1 (en) Synthetic clay minerals
JPH04202009A (en) Metal substituted body of crystalline laminar silicic acid and its production
US1756624A (en) Base exchange substance
JP2564581B2 (en) Manufacturing method of high silica content zeolite
US1930503A (en) Preparation of porous silicious material
US3514269A (en) Process for manufacture of dimagnesium aluminosilicate for medical uses
DE1567507A1 (en) Faujasite type synthetic zeolites
JPH0247394A (en) Additive for paper making
JPH0559843B2 (en)
GB1571004A (en) Manufacturing type a zeolite detergent builders
JP3308309B2 (en) Manufacturing method of amorphous aluminosilicate