JP2002286661A - Oblique emission x-ray analysis method - Google Patents

Oblique emission x-ray analysis method

Info

Publication number
JP2002286661A
JP2002286661A JP2001091277A JP2001091277A JP2002286661A JP 2002286661 A JP2002286661 A JP 2002286661A JP 2001091277 A JP2001091277 A JP 2001091277A JP 2001091277 A JP2001091277 A JP 2001091277A JP 2002286661 A JP2002286661 A JP 2002286661A
Authority
JP
Japan
Prior art keywords
ray
characteristic
sample
angle
analysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001091277A
Other languages
Japanese (ja)
Other versions
JP3673825B2 (en
Inventor
Toru Awane
徹 粟根
Takashi Kimura
隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001091277A priority Critical patent/JP3673825B2/en
Publication of JP2002286661A publication Critical patent/JP2002286661A/en
Application granted granted Critical
Publication of JP3673825B2 publication Critical patent/JP3673825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new oblique X-ray analysis method for adjusting the angle for taking out characteristic X rays regardless of the symmetrical position relationship between the mounting direction of an X-ray detector and the inclination axis of a sample stage, and restraining the variation in observation view when adjusting the take-out angle. SOLUTION: In an oblique emission electron beam probe micro X-ray analysis method, the take-out angle of the characteristic waves (2) is set to an angle or less where the characteristic X rays (2) from the inside of a sample (3) is not detected by the total reflection phenomenon when the characteristic X rays (2) are to be detected by an X-ray detector (5). In the analysis method, the position of the sample (3) on a Z axis is adjusted to set the take-out angle of the characteristic X rays (2) to the angle or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、斜出射X
線分析方法に関するものである。さらに詳しくは、この
出願の発明は、試料表面上の微粒子や試料研磨面におい
て観察される微小介在物などの分析を行う斜出射電子線
プローブマイクロX線分析方法などとして有用な、新し
い斜出射X線分析方法に関するものである。
The present invention relates to an oblique emission X
The present invention relates to a line analysis method. More specifically, the invention of this application relates to a new oblique emission X-ray probe which is useful as an oblique emission electron probe micro X-ray analysis method for analyzing fine particles on the sample surface and minute inclusions observed on the polished surface of the sample. The present invention relates to a line analysis method.

【0002】[0002]

【従来の技術】従来、試料の微小領域分析を行う技術と
して、たとえば図1(a)に例示したように、電子線
(1)を試料(3)に照射し、照射された微小領域から
放出する特性X線(2)をX線検出器(5)により検出
する電子線プローブマイクロX線分析装置(EPMA)
が知られている。
2. Description of the Related Art Conventionally, as a technique for analyzing a minute area of a sample, for example, as shown in FIG. 1A, an electron beam (1) is irradiated on a sample (3) and emitted from the irradiated minute area. Probe X-ray analyzer (EPMA) for detecting characteristic X-rays (2) to be detected by an X-ray detector (5)
It has been known.

【0003】しかしながら、この従来のEPMAでは、
たとえば試料(3)表面上に微小物体(4)が存在する
場合にあっては、試料(3)内部および微小物体(4)
の両方からの特性X線(2)を検出することになり(図
1では試料(3)内部からの特性X線(2)の発生領域
を洋ナシ形に示している)、微小物体(4)のみを分析
することは困難であった。
However, in this conventional EPMA,
For example, when the minute object (4) exists on the surface of the sample (3), the inside of the sample (3) and the minute object (4)
The characteristic X-rays (2) from both of them are detected (in FIG. 1, the generation region of the characteristic X-rays (2) from the inside of the sample (3) is shown in a pear shape), and the minute object (4 ) Alone was difficult to analyze.

【0004】そこで、この問題を解決するものとして、
斜出射X線測定による新しいEPMA(以下、斜出射E
PMAと呼ぶ)が既に提案されている。
[0004] To solve this problem,
New EPMA by oblique emission X-ray measurement (hereinafter, oblique emission E
PMA) has already been proposed.

【0005】この斜出射EPMAは、X線の全反射現象
を利用したものであり、たとえば図1(b)に例示した
ように、電子線励起の特性X線(2)をX線検出器
(5)により検出する際に、試料内部(3)からの特性
X線(2)が全反射現象により検出されない角度以下に
特性X線(2)の取出し角度を設定することで、試料
(3)表面上の微小物体(4)からの特性X線(2)の
みを検出可能としている。
The oblique emission EPMA utilizes the total reflection phenomenon of X-rays. For example, as shown in FIG. 1B, a characteristic X-ray (2) of electron beam excitation is detected by an X-ray detector ( When the characteristic X-ray (2) from the inside of the sample (3) is not detected due to the total reflection phenomenon when the characteristic X-ray (2) is detected by the method (5), the sample (3) Only the characteristic X-ray (2) from the minute object (4) on the surface can be detected.

【0006】より具体的には、たとえば図2に例示した
ように、微小物体(4)から発生した特性X線(2)
は、通常、真空中の全方位に放出される。これに対し、
試料(3)内部で発生した特性X線(2)は、試料
(3)表面と真空との境界面に対して特性X線(2)の
なす角が臨界角以上ならば試料(3)表面から真空中へ
放出され、臨界角以下ならば境界面で反射される。これ
がX線の全反射現象である。この全反射現象に着目し、
スリット(6)で特性X線(2)の検出範囲を制限した
X線検出器(5)を、試料(3)内部で発生した特性X
線(2)の臨界角以下に調整することで、微小物体
(4)の特性X線(2)のみを検出することができる。
これにより、試料表面上の微粒子や試料研磨面において
観察される微小介在物などの優れた分析が実現できるよ
うになる。
More specifically, as shown in FIG. 2, for example, a characteristic X-ray (2) generated from a minute object (4)
Is normally emitted in all directions in a vacuum. In contrast,
The characteristic X-ray (2) generated inside the sample (3) is the surface of the sample (3) if the angle formed by the characteristic X-ray (2) with respect to the interface between the surface of the sample (3) and vacuum is equal to or larger than the critical angle. Is emitted into the vacuum and is reflected at the interface if the angle is less than the critical angle. This is the X-ray total reflection phenomenon. Focusing on this total reflection phenomenon,
The X-ray detector (5), in which the detection range of the characteristic X-ray (2) is limited by the slit (6), is changed to a characteristic X-ray generated inside the sample (3).
By adjusting the angle to be equal to or less than the critical angle of the line (2), only the characteristic X-ray (2) of the minute object (4) can be detected.
Thereby, excellent analysis of fine particles on the sample surface and minute inclusions observed on the polished surface of the sample can be realized.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
とおりの優れた分析能力を持つ斜出射EPMAにあって
も、実用上さらに改良すべき課題が残されていた。
However, even with the oblique emission EPMA having the excellent analytical ability as described above, there remains a problem to be further improved in practical use.

【0008】それと言うのも、上記斜出射EPMAで
は、たとえば図3(a)(b)に例示したように、特性
X線(2)の取出し角度(図3では試料面に対する取出
し角度θとして表示)の調整に、試料ステージ(7)の
傾斜を利用しており(図3では試料(3)は傾斜面をも
つ傾斜試料台(8)を介して試料ステージ(7)上に設
置されている)、そのためにX線検出器(5)の取付け
方向と試料ステージ(7)の傾斜軸が直交している必要
があったのである。これでは、両者が直交していないタ
イプのEPMAや走査型電子顕微鏡等、たとえばエネル
ギー分散型特性X線分析装置付きの走査型電子顕微鏡な
どには適用することができない。またさらに、試料ステ
ージ(7)を傾斜させると観察視野が大きく動いてしま
うといった懸念もあった。
In the oblique emission EPMA, for example, as shown in FIGS. 3A and 3B, the extraction angle of the characteristic X-ray (2) (in FIG. 3, it is indicated as the extraction angle θ with respect to the sample surface). (3) utilizes the inclination of the sample stage (7) (in FIG. 3, the sample (3) is set on the sample stage (7) via an inclined sample stage (8) having an inclined surface. Therefore, the mounting direction of the X-ray detector (5) had to be orthogonal to the tilt axis of the sample stage (7). This cannot be applied to an EPMA or a scanning electron microscope in which both are not orthogonal to each other, such as a scanning electron microscope with an energy dispersive characteristic X-ray analyzer. Furthermore, there is a concern that the observation field of view will move significantly if the sample stage (7) is tilted.

【0009】この出願の発明は、以上のとおりの事情に
鑑みてなされたものであり、従来技術を改良し、X線検
出器の取付け方向と試料ステージの傾斜軸の幾何学的な
位置関係に関わらずに特性X線の取出し角度の調整を可
能とし、且つ、取出し角度調整時の観察視野の変動も抑
えた、新しい斜出射X線分析方法を提供することを課題
としている。
The invention of this application has been made in view of the circumstances described above, and is an improvement over the prior art, which provides a geometrical positional relationship between the mounting direction of the X-ray detector and the tilt axis of the sample stage. It is an object of the present invention to provide a new oblique emission X-ray analysis method that enables the adjustment of the characteristic X-ray extraction angle regardless of the change of the observation field of view during the adjustment of the extraction angle.

【0010】[0010]

【課題を解決する手段】この出願の発明は、上記の課題
を解決するものとして、特性X線をX線検出器により検
出する際に、試料内部からの特性X線がその全反射現象
により検出されない角度以下に特性X線の取出し角度を
設定する斜出射電子線プローブマイクロX線分析方法に
おいて、試料のZ軸上の位置を調整することにより特性
X線の取出し角度を前記角度以下に設定することを特徴
とする斜出射X線分析方法(請求項1)を提供する。
Means for Solving the Problems According to the invention of the present application, when the characteristic X-ray is detected by an X-ray detector, the characteristic X-ray from inside the sample is detected by the total reflection phenomenon. In the oblique emission electron probe micro X-ray analysis method in which the characteristic X-ray extraction angle is set to an angle not larger than the angle not set, the characteristic X-ray extraction angle is set to the angle or less by adjusting the position of the sample on the Z axis. An oblique emission X-ray analysis method (Claim 1) is provided.

【0011】[0011]

【発明の実施の形態】図4は、この出願の発明の斜出射
X線分析方法を説明する図である。この図4に示したよ
うに、この出願の発明では、特性X線(2)をX線検出
器(5)により検出する際に、試料(3)のZ軸上の位
置を調整することにより、試料(3)内部からの特性X
線(2)がその全反射現象により検出されない角度以下
に特性X線(2)の取出し角度を設定する。
FIG. 4 is a view for explaining an oblique emission X-ray analysis method according to the invention of this application. As shown in FIG. 4, in the invention of this application, when the characteristic X-ray (2) is detected by the X-ray detector (5), the position of the sample (3) on the Z axis is adjusted. , Sample X from inside
The extraction angle of the characteristic X-ray (2) is set to be equal to or smaller than the angle at which the line (2) is not detected due to the total reflection phenomenon.

【0012】さらに説明すると、図4では、前述の図3
と同様に、試料(3)は試料ステージ(7)上の傾斜試
料台(8)に設置されている。この場合、試料(3)の
Z軸上の位置、つまり鉛直方向上の位置を変えていく
と、試料(3)上の分析点のX線検出器(5)に対する
角度が変わり、また、傾斜試料台(8)の傾斜面とX線
検出器(5)の前方に位置するスリット(6)とにより
特性X線(2)が遮蔽されることによって、次第に特性
X線(2)の取出し角度の範囲が制限されていく。した
がって、試料(3)のZ軸上の位置を調整することで、
特性X線(2)の取出し角度を上記角度以下に設定可能
なのである。なお位置調整は、試料ステージ(7)の作
動距離を調整するためのZ軸つまみ(Z動つまみとも呼
ばれる)にて操作することができる。
To further explain, FIG. 4 shows the aforementioned FIG.
Similarly to the above, the sample (3) is set on the inclined sample stage (8) on the sample stage (7). In this case, as the position of the sample (3) on the Z axis, that is, the position in the vertical direction is changed, the angle of the analysis point on the sample (3) with respect to the X-ray detector (5) changes, and The characteristic X-ray (2) is gradually shielded by the inclined surface of the sample stage (8) and the slit (6) positioned in front of the X-ray detector (5), so that the characteristic X-ray (2) is gradually extracted. Range is being restricted. Therefore, by adjusting the position of the sample (3) on the Z axis,
The extraction angle of the characteristic X-ray (2) can be set to be equal to or less than the above angle. The position adjustment can be performed with a Z-axis knob (also referred to as a Z movement knob) for adjusting the working distance of the sample stage (7).

【0013】このように試料(3)のZ軸上の位置調整
を行う場合、X線検出器(5)は、前述した従来の斜出
射EPMAとは異なる配置となる。具体的には、図5に
示したように、従来の斜出射EPMAでは、平面上の位
置関係において、X線検出器(5)の取付け方向と試料
ステージ(7)の傾斜軸とが直交する(A)のに対し、
この出願の発明を行う場合では、X線検出器(5)はA
以外の位置に置かれ、Aの位置には二次電子検出器があ
り、試料ステージ(7)は二次電子検出器に対して傾斜
するようになる。
When the position of the sample (3) on the Z axis is adjusted as described above, the X-ray detector (5) is arranged differently from the above-described conventional oblique emission EPMA. Specifically, as shown in FIG. 5, in the conventional oblique emission EPMA, the mounting direction of the X-ray detector (5) and the tilt axis of the sample stage (7) are orthogonal to each other in a positional relationship on a plane. (A),
In carrying out the invention of this application, the X-ray detector (5)
The secondary electron detector is located at the position A, and the sample stage (7) is inclined with respect to the secondary electron detector.

【0014】なお、特性X線(2)は電子線のみなら
ず、X線や荷電粒子によっても励起される。したがっ
て、この出願の発明の斜出射X線分析方法は、その検出
対象を電子線励起の特性X線(2)のみに限定するもの
ではなく、その他の励起源により励起された特性X線
(2)をも対象とする。いずれの場合にも、上述したよ
うに特性X線(2)の取出し角度を試料(3)のZ軸上
の位置調整により設定可能であることは言うまでもな
い。
The characteristic X-rays (2) are excited not only by electron beams but also by X-rays and charged particles. Therefore, the oblique emission X-ray analysis method of the invention of this application does not limit the detection target to only the characteristic X-ray (2) of electron beam excitation, but the characteristic X-ray (2) excited by another excitation source. ). In any case, it is needless to say that the extraction angle of the characteristic X-ray (2) can be set by adjusting the position of the sample (3) on the Z axis as described above.

【0015】[0015]

【実施例】図6は、シリコン(Si)基板上の酸化亜鉛
(ZnO)粒子に電子線を照射したときの、Siからの
特性X線SiKαおよびZnOからの特性X線ZnLα
それぞれの検出強度[cps]とSi基板が乗る試料ス
テージのZ方向の変位量ΔZ[mm]との関係を例示し
た図である。但し、ここではΔZの増加に伴って、作動
距離は小さくなるものとする。
FIG. 6 shows a characteristic X-ray SiKα from Si and a characteristic X-ray ZnLα from ZnO when an electron beam is irradiated on zinc oxide (ZnO) particles on a silicon (Si) substrate.
FIG. 7 is a diagram illustrating a relationship between each detection intensity [cps] and a displacement amount ΔZ [mm] in a Z direction of a sample stage on which a Si substrate is mounted. However, it is assumed here that the working distance decreases as ΔZ increases.

【0016】この図6から明らかなように、変位量ΔZ
に従って各特性X線の強度も変化しており、ΔZを適切
に設定することで、ZnO粒子からの特性X線ZnLα
のみを検出できることがわかる。
As is apparent from FIG. 6, the displacement ΔZ
, The intensity of each characteristic X-ray also changes, and by appropriately setting ΔZ, the characteristic X-ray ZnLα
It can be seen that only one can be detected.

【0017】図7(a)および図7(b)は、各々、上
記試料に対して、変位量ΔZ=0mmおよび2.0mm
としたときのエネルギー分散型特性X線分析結果を示し
たものである。
FIGS. 7A and 7B show displacement amounts ΔZ = 0 mm and 2.0 mm with respect to the sample, respectively.
7 shows the results of the energy dispersive X-ray analysis when.

【0018】これら図7(a)および図7(b)に示し
たように、変位量ΔZ=2.0mmにて試料を位置調整
した場合に、ZnO粒子からの特性X線ZnLαのみを
強く検出できることがわかる。なお、各々の場合のSi
KαおよびZnLαのピーク強度は図中に示したとおり
である。
As shown in FIGS. 7A and 7B, when the position of the sample is adjusted with a displacement ΔZ = 2.0 mm, only the characteristic X-ray ZnLα from ZnO particles is strongly detected. We can see that we can do it. In each case, Si
The peak intensities of Kα and ZnLα are as shown in the figure.

【0019】また、図8は、エネルギー分散型特性X線
分析装置付きの走査型電子顕微鏡によるSi基板上のZ
nO粒子の二次電子像である。
FIG. 8 is a graph showing the results of a scanning electron microscope equipped with an energy dispersive X-ray analyzer.
It is a secondary electron image of nO particle.

【0020】この出願の発明では、試料のZ軸上での位
置調整により取出し角度の設定を行うことで、たとえば
上述のようにSi基板上のZnO粒子からの特性X線の
みを検出可能としているので、X線検出器の取付け方向
と試料ステージの傾斜軸とを直交させる必要はなく、図
8からも明らかなように、エネルギー分散型特性X線分
析装置付きの走査型電子顕微鏡によってもZnO粒子を
的確にとらえることができる。また、試料ステージのZ
軸高さを変えても視野の移動は少なく、同一視野内での
観察が可能であった。
In the invention of this application, by setting the take-out angle by adjusting the position of the sample on the Z-axis, for example, only the characteristic X-rays from the ZnO particles on the Si substrate can be detected as described above. Therefore, it is not necessary to make the mounting direction of the X-ray detector orthogonal to the tilt axis of the sample stage. As is clear from FIG. 8, the ZnO particles can be obtained by a scanning electron microscope equipped with an energy dispersive X-ray analyzer. Can be accurately captured. In addition, Z of the sample stage
Even if the axial height was changed, the movement of the visual field was small, and observation within the same visual field was possible.

【0021】もちろん、この出願の発明は以上の例に限
定されるものではなく、細部については様々な態様が可
能である。
Of course, the invention of this application is not limited to the above examples, and various embodiments are possible in detail.

【0022】[0022]

【発明の効果】以上詳しく説明した通り、この出願の発
明によって、X線検出器の取付け方向と試料ステージの
傾斜軸の幾何学的な位置関係に関わらずに特性X線の取
出し角度の調整を可能とし、且つ、取出し角度調整時の
観察視野の変動も抑えた、新しい斜出射X線分析方法が
提供される。これにより、斜出射EPMAを、あらゆる
タイプの特性X線分析装置付き走査型電子顕微鏡に適用
可能なより汎用性のあるものとして、普及を進めること
ができ、材料の設計や解析に大きく貢献することができ
る。
As described in detail above, according to the invention of this application, it is possible to adjust the extraction angle of the characteristic X-ray regardless of the mounting direction of the X-ray detector and the geometrical positional relationship between the tilt axis of the sample stage. A new oblique emission X-ray analysis method is provided, which enables the observation and suppresses the fluctuation of the observation field of view when adjusting the extraction angle. As a result, the oblique emission EPMA can be promoted as a more versatile one applicable to all types of scanning electron microscopes with characteristic X-ray analyzers, greatly contributing to material design and analysis. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)は、各々、従来のEPMAおよび
従来の斜出射EPMAを説明する図である。
FIGS. 1 (a) and 1 (b) are diagrams illustrating a conventional EPMA and a conventional oblique emission EPMA, respectively.

【図2】従来の斜出射EPMAにおける電子線励起特性
X線の検出を説明する図である。
FIG. 2 is a diagram illustrating detection of electron beam excitation characteristic X-rays in a conventional oblique emission EPMA.

【図3】(a)(b)は、各々、従来の斜出射EPMA
における取出し角度設定を説明する図である。
FIGS. 3 (a) and 3 (b) each show a conventional oblique emission EPMA.
FIG. 7 is a diagram for explaining a takeout angle setting in FIG.

【図4】この出願の発明の斜出射X線分析方法を説明す
る図である。
FIG. 4 is a diagram illustrating an oblique emission X-ray analysis method according to the invention of this application.

【図5】この出願の発明の斜出射X線分析方法における
試料ステージの傾斜方向とX線検出器の配置を説明する
図である。
FIG. 5 is a diagram for explaining an inclination direction of a sample stage and an arrangement of an X-ray detector in the oblique emission X-ray analysis method of the present invention.

【図6】Si基板上のZnO粒子に電子線を照射したと
きの、Siからの特性X線SiKαおよびZnOからの
特性X線ZnLαの検出強度とZ方向変位量ΔZとの関
係を例示した図である。
FIG. 6 is a diagram illustrating the relationship between the detected intensity of characteristic X-ray SiKα from Si and the characteristic X-ray ZnLα from ZnO and the amount of displacement ΔZ in the Z direction when the ZnO particles on the Si substrate are irradiated with an electron beam. It is.

【図7】(a)(b)は、各々、変位量ΔZ=0mmお
よび2.0mmとしたときのエネルギー分散型特性X線
分析の結果を示した図である。
FIGS. 7A and 7B are diagrams showing the results of energy dispersive X-ray analysis when the displacement amount ΔZ is 0 mm and 2.0 mm, respectively.

【図8】エネルギー分散型特性X線分析装置付きの走査
型電子顕微鏡によるSi基板上のZnO粒子の二次電子
像を示した図である。
FIG. 8 is a view showing a secondary electron image of ZnO particles on a Si substrate by a scanning electron microscope equipped with an energy dispersive characteristic X-ray analyzer.

【符号の説明】[Explanation of symbols]

1 電子線 2 特性X線 3 試料 4 微小物体 5 X線検出器 6 スリット 7 試料ステージ 8 傾斜試料台 Reference Signs List 1 electron beam 2 characteristic X-ray 3 sample 4 minute object 5 X-ray detector 6 slit 7 sample stage 8 tilted sample stage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 特性X線をX線検出器により検出する際
に、試料内部からの特性X線がその全反射現象により検
出されない角度以下に特性X線の取出し角度を設定する
斜出射X線分析方法において、試料のZ軸上の位置を調
整することにより特性X線の取出し角度を前記角度以下
に設定することを特徴とする斜出射X線分析方法。
1. An oblique emission X-ray for setting a characteristic X-ray extraction angle below an angle at which characteristic X-rays from the inside of a sample are not detected due to its total reflection phenomenon when characteristic X-rays are detected by an X-ray detector. An oblique-emission X-ray analysis method, wherein an extraction angle of characteristic X-rays is set to be equal to or less than the angle by adjusting a position of a sample on a Z-axis.
JP2001091277A 2001-03-27 2001-03-27 Oblique X-ray analysis method Expired - Lifetime JP3673825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091277A JP3673825B2 (en) 2001-03-27 2001-03-27 Oblique X-ray analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091277A JP3673825B2 (en) 2001-03-27 2001-03-27 Oblique X-ray analysis method

Publications (2)

Publication Number Publication Date
JP2002286661A true JP2002286661A (en) 2002-10-03
JP3673825B2 JP3673825B2 (en) 2005-07-20

Family

ID=18945923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091277A Expired - Lifetime JP3673825B2 (en) 2001-03-27 2001-03-27 Oblique X-ray analysis method

Country Status (1)

Country Link
JP (1) JP3673825B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192741A (en) * 2006-01-20 2007-08-02 Sharp Corp Element analysis method and element analyzer
JP2008026129A (en) * 2006-07-20 2008-02-07 Sharp Corp Method of obliquely emitted electron beam probe micro-x-ray, program used therein and obliquely emitted electron beam probe micro-x-ray analyzer
JP2009042174A (en) * 2007-08-10 2009-02-26 Sharp Corp Oblique ejection electron beam probe micro x-ray analysis method, program used therein, and oblique ejection electron beam probe micro x-ray analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192741A (en) * 2006-01-20 2007-08-02 Sharp Corp Element analysis method and element analyzer
JP2008026129A (en) * 2006-07-20 2008-02-07 Sharp Corp Method of obliquely emitted electron beam probe micro-x-ray, program used therein and obliquely emitted electron beam probe micro-x-ray analyzer
JP4728186B2 (en) * 2006-07-20 2011-07-20 シャープ株式会社 Obliquely emitted electron probe micro X-ray analysis method, program used therefor, and obliquely emitted electron probe micro X-ray analyzer
JP2009042174A (en) * 2007-08-10 2009-02-26 Sharp Corp Oblique ejection electron beam probe micro x-ray analysis method, program used therein, and oblique ejection electron beam probe micro x-ray analyzer

Also Published As

Publication number Publication date
JP3673825B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US6627889B2 (en) Apparatus and method for observing sample using electron beam
EP1202320B1 (en) Method and apparatus for charged particle beam microscopy
JP6091573B2 (en) Sample observation method and apparatus
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
US6531697B1 (en) Method and apparatus for scanning transmission electron microscopy
JP4664041B2 (en) Charged particle beam apparatus and sample preparation method
CN104241066B (en) Method for imaging a sample in a charged particle apparatus
US8766219B2 (en) Particle beam microscope for generating material data
EP0377446A2 (en) Surface analysis method and apparatus
KR20160119840A (en) Method of Performing Electron Diffraction Pattern Analysis Upon a Sample
EP2899744A1 (en) Method for preparing and analyzing an object as well as particle beam device for performing the method
KR102590634B1 (en) Charged particle beam apparatus and sample processing method
EP1916695B1 (en) Charged particle beam apparatus and method for operating it
US10991543B2 (en) Charged particle beam device
JP4469572B2 (en) Undercut measurement method using SEM
JP2002286661A (en) Oblique emission x-ray analysis method
EP1058943B1 (en) Sem for transmission operation with a location-sensitive detector
US7767962B2 (en) Method for SEM measurement of features using magnetically filtered low loss electron microscopy
US6677595B1 (en) Specimen holder and spacer used in the same
JP2716997B2 (en) Cross-sectional shape measurement method, cross-sectional shape comparison inspection method and their devices
JP3266814B2 (en) Micro part analyzer
WO2015145706A1 (en) Sample holder for charged particle beam device, and charged particle beam device
JP2653084B2 (en) Surface analyzer
JP2002365248A (en) Method for analyzing sample
JP2006194907A (en) Sample observation device and method using electron beam

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3673825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term