JP2006194907A - Sample observation device and method using electron beam - Google Patents

Sample observation device and method using electron beam Download PDF

Info

Publication number
JP2006194907A
JP2006194907A JP2006096411A JP2006096411A JP2006194907A JP 2006194907 A JP2006194907 A JP 2006194907A JP 2006096411 A JP2006096411 A JP 2006096411A JP 2006096411 A JP2006096411 A JP 2006096411A JP 2006194907 A JP2006194907 A JP 2006194907A
Authority
JP
Japan
Prior art keywords
sample
electron beam
observation
stage
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006096411A
Other languages
Japanese (ja)
Inventor
Isao Ochiai
勲 落合
Hidemi Koike
秀巳 小池
Satoshi Tomimatsu
聡 富松
Muneyuki Fukuda
宗行 福田
Mitsugi Sato
佐藤  貢
Susumu Ishitani
享 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006096411A priority Critical patent/JP2006194907A/en
Publication of JP2006194907A publication Critical patent/JP2006194907A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample observation device and a sample observation method capable of irradiating a thinned film sample with an electron beam to be observed, in particular, capable of analyzing an element by X-ray detection, with high precision and high resolution, while reducing background noise. <P>SOLUTION: A member 56 comprising a light element material with a hole part is arranged just behind the thin film sample, and a specific part of the sample 22 is observed with the electron beam 8. In the present invention, an X-ray generated from a portion other than the sample, and the electron beam scattered by the portion other than the sample to get incident again into the sample can be reduced, when irradiating the thin film sample with the electron beam for observation, so as to allow secondary electron image observation and the element analysis of high accuracy and high sensitivity, and the sample observation device and the sample observation method capable of carrying out internal observation of an LSI device or the like getting finer, with the high precision and high resolution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に薄膜試料、粉体の観察・分析・評価手段や、被観察対象物の表面のみならず表面に近い内部の断面をも観察分析することを必要とする、半導体デバイス、液晶デバイス、磁気ヘッド、等の電子デバイスやマイクロデバイス等の研究開発や製造における観察・分析・評価手段として利用される装置システムに関する。   The present invention particularly relates to a thin film sample, powder observation / analysis / evaluation means, and a semiconductor device and a liquid crystal device that need to observe and analyze not only the surface of the object to be observed but also the internal cross section close to the surface. The present invention relates to an apparatus system used as an observation / analysis / evaluation means in research and development and manufacturing of electronic devices such as magnetic heads and micro devices.

試料の元素組成情報を得る手段として電子線を照射して発生するX線を検出する手法が知られている。X線は試料を構成する元素に特有なエネルギーを持つ特性X線と制動輻射による入射電子線のエネルギー以下の連続X線からなり、X線のエネルギースペクトルを解析することにより試料の元素組成を知ることができる。特開昭55−68060号公報に試料からのX線を取り入れるためのX線検出器より小さい開口部を有するコリメータが開示されている。(公知例1)更に検討を加えた構成が知られその装置の概略構成を図21に示す。
この構成では電子線を試料に照射し、試料の斜め上方に設けられたX線検出素子と、X線検出素子と試料の間にX線検出素子に入るX線の光路を制限するコリーメータを有するX線検出器により、試料から発生するX線を検出する構成を取っていた。
図23は図22に示したインレンズ型の電子顕微鏡におけるおける試料周りの様子を表す概略拡大図である。対物レンズを構成する上側磁極707と下側磁極708に挟まれた空間に微小試料22が挿入される。微小試料22はメッシュ26で保持され、これを介して試料ホルダー706に取り付けられている。電子線8が試料22に照射されると、X線401、2次電子301、反射電子205が発生する。X線を検出して微小試料の元素分析を実施する場合、測定されるX線がこのX線401のみであれば理想的である。しかしながら、現実には以下に述べるようにさまざまな原因によるX線が発生する。
反射電子205の一部は上側磁極の表面に衝突して試料とは関係のないエネルギーを持つX線402を発生する。X線403,406は試料を透過した電子線201、202が試料ホルダー706、下側磁極708に衝突して発生したものである。X線407は透過電子線202が下側磁極708で弾性散乱された反射電子207が試料ホルダー706に衝突して発生したものである。X線405は下側磁極に透過電子202が衝突して発生したX線が試料ホルダーに入射して発生したものである。図示していないが、反射電子、透過電子が試料の別の部分やメッシュに衝突して発生するX線もある。これらのX線は背景X線と呼ばれ、試料に起因するものではないので、元素分析の精度を劣化させる要因となる。
図21に示すコリメータは上記の背景X線がX線検出素子に入るのをなるべく低減するために設けたものである。
背景X線を低減する別の手法の例は、「プリンシプルズ オブ アナリティカル エレクトロン マイクロスコピー」デビッド シー ジョイ他編 131ページから135ページ 1986年 プレナムプレス ニューヨーク(”Principles of Analytical Electron Microscopy”, Edited by David C Joy et al., p.p. 131-135, 1986, Plenum Press, New York)(公知例2)に開示されている。
この例では、図24に示したように上下の磁極の表面に軽元素材料からなる電子線を透過させるための孔を有する板501,502を設置することにより、試料からの反射電子、透過電子が直接Feを主成分とする磁極に衝突していたのを、軽元素板に衝突するようにしている。これにより磁極での反射電子数、特性X線のエネルギー、連続X線量が低減できるので、結果として背景X線を低減できる。
試料上の観測点以外の箇所に反射電子および透過電子が衝突して発生する背景X線を低減する方法が特開平8−261894(公知例3)に開示されている。これは、試料のうち薄膜化した観測面を作成する際に、薄膜化しない試料の側面に対し傾斜するように観測面を形成し、観測面以外の試料部の表面をカーボン膜で覆うように形成するものである。
さらに、カーボンで覆った試料台を用いる方法も知られている。
A method for detecting X-rays generated by irradiating an electron beam is known as means for obtaining elemental composition information of a sample. X-rays consist of characteristic X-rays with energy specific to the elements that make up the sample and continuous X-rays below the energy of the incident electron beam due to bremsstrahlung. Knowing the elemental composition of the sample by analyzing the X-ray energy spectrum be able to. JP-A-55-68060 discloses a collimator having an opening smaller than an X-ray detector for taking in X-rays from a sample. (Prior art example 1) A structure which has been further studied is known, and the schematic structure of the apparatus is shown in FIG.
In this configuration, the sample is irradiated with an electron beam, an X-ray detection element provided obliquely above the sample, and a collimator that limits the optical path of the X-ray entering the X-ray detection element between the X-ray detection element and the sample. The X-ray detector has a configuration for detecting X-rays generated from the sample.
FIG. 23 is a schematic enlarged view showing the state around the sample in the in-lens electron microscope shown in FIG. The micro sample 22 is inserted into a space between the upper magnetic pole 707 and the lower magnetic pole 708 constituting the objective lens. The micro sample 22 is held by a mesh 26 and attached to the sample holder 706 via the mesh 26. When the sample 22 is irradiated with the electron beam 8, X-rays 401, secondary electrons 301, and reflected electrons 205 are generated. When X-rays are detected and elemental analysis of a minute sample is performed, it is ideal if only the X-ray 401 is measured. However, in reality, X-rays are generated for various reasons as described below.
A part of the reflected electrons 205 collides with the surface of the upper magnetic pole, and generates X-rays 402 having energy unrelated to the sample. X-rays 403 and 406 are generated when the electron beams 201 and 202 transmitted through the sample collide with the sample holder 706 and the lower magnetic pole 708. X-rays 407 are generated when the reflected electrons 207 obtained by elastically scattering the transmission electron beam 202 by the lower magnetic pole 708 collide with the sample holder 706. X-rays 405 are generated when X-rays generated by transmission electrons 202 colliding with the lower magnetic pole enter the sample holder. Although not shown, there are X-rays generated when reflected electrons and transmitted electrons collide with another part of the sample or mesh. These X-rays are called background X-rays and are not attributed to the sample, and cause deterioration in the accuracy of elemental analysis.
The collimator shown in FIG. 21 is provided to reduce the background X-ray from entering the X-ray detection element as much as possible.
An example of another technique to reduce background x-rays is “Principles of Analytical Electron Microscopy”, David Sea Joy et al., Pages 131-135 1986 Plenciples of New York (“Principles of Analytical Electron Microscopy”, Edited by David C Joy et al., Pp 131-135, 1986, Plenum Press, New York) (Known Example 2).
In this example, as shown in FIG. 24, by installing plates 501 and 502 having holes for transmitting an electron beam made of a light element material on the surfaces of upper and lower magnetic poles, reflected electrons and transmitted electrons from a sample are provided. Has collided directly with a magnetic pole mainly composed of Fe, but collides with a light element plate. As a result, the number of reflected electrons at the magnetic pole, the energy of characteristic X-rays, and the continuous X-ray dose can be reduced. As a result, background X-rays can be reduced.
Japanese Patent Laid-Open No. 8-261894 (Known Example 3) discloses a method for reducing background X-rays generated by reflection electrons and transmission electrons colliding with a portion other than an observation point on a sample. This is because when creating a thin observation surface of the sample, the observation surface is formed so as to be inclined with respect to the side surface of the non-thinned sample, and the surface of the sample portion other than the observation surface is covered with a carbon film. To form.
Furthermore, a method using a sample stage covered with carbon is also known.

特開平8−261894公報JP-A-8-261894

以上述べた従来法には次のような問題がある。
公知例1の方法は、X線検出素子と試料の間にコリメータを設置して試料以外から発生するX線が検出素子に入らないようにする方法であるが、薄膜試料を用いた場合に試料を透過した透過電子線が試料直下の試料台の部分に衝突して発生するX線に対して有効ではないという問題があった。また、試料上の電子線照射点のみからのX線に限定するために細長いコリメータを設置する方法では検出素子と試料の間の距離を長くせざるを得なく、従って、検出立体角を大きく取れないので検出効率が低下するという問題があった。また、X線検出器を試料に対して正確に設置する必要があり、試料の位置がずれたりすると検出感度が低下するという問題があった。
公知例2に示した対物レンズの上下磁極の表面を軽元素材料で覆う方法は透過型電子顕微鏡のように電子線の加速電圧が高くまた100nm以下という非常に薄い試料を用いた場合には試料を透過する電子線の散乱が少ない場合には有効であるが、一般の走査型電子顕微鏡や100nm以上の厚い試料では試料を透過した電子線の散乱角が大きいので、試料台や磁極を覆った軽元素材料以外の部分電子線が衝突して発生する背景X線が大きくなる。このため、検出精度が低下するという問題があった。
The conventional methods described above have the following problems.
The method of known example 1 is a method in which a collimator is placed between the X-ray detection element and the sample so that X-rays generated from other than the sample do not enter the detection element. There is a problem that the transmission electron beam that has passed through is not effective for the X-rays generated by colliding with the portion of the sample stage directly under the sample. In addition, in order to limit the X-ray only from the electron beam irradiation point on the sample, the method of installing a long and narrow collimator has to increase the distance between the detection element and the sample, so that a large detection solid angle can be obtained. As a result, there was a problem that the detection efficiency was lowered. In addition, the X-ray detector needs to be installed accurately with respect to the sample, and there is a problem in that the detection sensitivity decreases when the position of the sample is shifted.
The method of covering the surface of the upper and lower magnetic poles of the objective lens shown in the known example 2 with a light element material is a sample when the acceleration voltage of the electron beam is high and a very thin sample of 100 nm or less is used like a transmission electron microscope. It is effective when there is little scattering of the electron beam that passes through the sample, but with a general scanning electron microscope or a thick sample of 100 nm or more, the scattering angle of the electron beam that has passed through the sample is large. Background X-rays generated by collision of partial electron beams other than light element materials become large. For this reason, there existed a problem that detection accuracy fell.

公知例3に示した微小試料の加工方法によっても上記したように散乱された電子が試料台や試料室以外の部分に衝突して発生する背景X線について考慮されておらず、信号と背景雑音の比が悪く、また、試料の測定対象部以外からのX線が検出されてしまい測定精度が低下してしまうという問題について十分考慮がなされていなかった。試料に蒸着したカーボン膜を形成して、該膜に散乱電子が衝突した場合に発生するX線はカーボン膜がない場合に比べて、低減するが、その程度は十分ではなかった。また、微小試料の一部にカーボン膜を形成する方法は蒸着装置を必要とし、試料作成のたびに、蒸着する必要があり、試料作成が複雑になる、また時間を要するという問題があった。   The background X-rays generated by the scattered electrons colliding with parts other than the sample stage and the sample chamber as described above also by the processing method of the micro sample shown in the known example 3 are not taken into consideration. However, the problem that the X-ray from other than the measurement target portion of the sample is detected and the measurement accuracy is lowered has not been sufficiently considered. X-rays generated when a carbon film deposited on a sample is formed and scattered electrons collide with the film are reduced as compared with the case where there is no carbon film, but the degree is not sufficient. In addition, the method of forming a carbon film on a part of a micro sample requires a vapor deposition apparatus, and it is necessary to perform vapor deposition every time a sample is prepared. This causes a problem that sample preparation becomes complicated and time is required.

試料台をカーボンで覆う方法では試料台を構成する元素からの信号を低減できるが、塗布したカーボン膜からの特性X線、連続X線が検出され、信号雑音比が大きく改善されないという問題があった。   Although the method of covering the sample stage with carbon can reduce the signal from the elements that make up the sample stage, there is a problem that characteristic X-rays and continuous X-rays from the coated carbon film are detected and the signal-to-noise ratio is not greatly improved. It was.

以上、X線検出による元素分析についての問題について述べてきたが、試料を透過して散乱した電子が他の部分に衝突して発生した反射電子が再び試料の測定箇所以外の部分に入射し2次電子を発生し、本来の2次電子像とは異なるものにしてしまうという問題があった。   As described above, the problems related to elemental analysis by X-ray detection have been described. However, the reflected electrons generated by the electrons scattered through the sample colliding with other parts are incident again on the part other than the measurement part of the sample. There is a problem in that secondary electrons are generated and are different from the original secondary electron image.

上述の問題点に鑑み、本願の目的は、対象試料の内部断面を垂直断面観察できて、高分解能、高精度、高スループットで観察・分析できる試料観察装置および試料観察方法を提供すること、さらに大気暴露による劣化無し、失敗無しで観察・分析できる試料観察装置および試料観察方法提供することにある。   In view of the above problems, an object of the present application is to provide a sample observation apparatus and a sample observation method that can observe an internal cross section of a target sample in a vertical cross section, and can observe and analyze with high resolution, high accuracy, and high throughput. The object is to provide a sample observation apparatus and a sample observation method that can be observed and analyzed without degradation and failure due to atmospheric exposure.

以上に述べたような目的は、以下により達成される。   The object as described above is achieved by the following.

(1)電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台と、該電子ビームを該試料に照射して該試料から発生する電子を検出する電子線検出器とX線を検出するX線検出器のいずれか、または両方を備える試料観察装置において、試料の背後に軽元素材料を含み、かつ、孔を有する部材(吸収部材)を、試料台に設置して、該電子ビームを照射して該試料を観察する機能を有することを特徴とする試料観察装置。
これにより、電子ビームが薄膜の試料を透過して試料以外の部材に入射していたのを、軽元素材料からなる部材に入射するようになるので、発生する連続X線と後方散乱電子数が低減できる。このため、試料に含まれている元素に対応する特性X線スペクトルピークをバックグラウンドの連続X線スペクトルに対し高い信号雑音比で検知でき、また、電子ビームが試料を透過して他の部分に衝突して発生する反射電子や、微小試料に再入射して、発生する2次電子及び透過電子の影響を低減できるので、高精度の2次電子及び反射電子の測定、高空間分解能観察が可能となる。しかも試料を装置の外部に取り出すことが無いため短時間で観察・分析できる試料観察装置を提供できる。
(1) An electron source, a lens for focusing an electron beam, an electron beam optical system including an electron beam scanning deflector, a sample stage on which a sample is placed, and the sample is irradiated with the electron beam and generated from the sample. In a sample observation apparatus equipped with either or both of an electron beam detector for detecting electrons and an X-ray detector for detecting X-rays, a member (absorbing member) containing a light element material behind the sample and having a hole ) Is placed on a sample stage and has a function of irradiating the electron beam to observe the sample.
As a result, the electron beam transmitted through the thin film sample and incident on the member other than the sample enters the member made of the light element material, so that the generated continuous X-rays and the number of backscattered electrons are reduced. Can be reduced. For this reason, characteristic X-ray spectral peaks corresponding to elements contained in the sample can be detected with a high signal-to-noise ratio relative to the background continuous X-ray spectrum, and the electron beam is transmitted through the sample to other parts. The impact of reflected electrons generated by collisions and secondary electrons and transmitted electrons generated by re-entering a minute sample can be reduced, enabling highly accurate measurement of secondary and reflected electrons and high spatial resolution observation. It becomes. Moreover, since the sample is not taken out of the apparatus, a sample observation apparatus that can observe and analyze in a short time can be provided.

また、荷電粒子線照射時の原子特性X線検出による元素分析において、微小試料を薄膜化することで、荷電粒子線の試料への侵入によるX線発生領域拡大を回避でき、また、軽元素材料からなる部材を挿入し、対象試料を透過した電子線が該微小試料以外の個所で入射して発生するX線や該個所から後方に散乱された電子が対象試料に再入射して発生するX線の影響を低減できるので高空間分解能元素分析が可能となる。   In elemental analysis based on atomic characteristic X-ray detection at the time of charged particle beam irradiation, it is possible to avoid the expansion of the X-ray generation area due to penetration of the charged particle beam into the sample by thinning the sample. An X-ray generated when an electron beam transmitted through the target sample is incident at a location other than the micro-sample and an electron scattered backward from the location is re-incident on the target sample Since the influence of the line can be reduced, high spatial resolution elemental analysis becomes possible.

これにより、対象試料の内部断面を高分解能かつ高精度かつ短時間で観察・分析できる試料観察装置を提供できる。
(2)イオン源、イオンビームを集束するレンズ、イオンビーム走査偏向器を備える集束イオンビーム光学系と、電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台を備える試料観察装置において、該集束イオンビームを用いて該試料から第2の試料を分離する機能と、該第2の試料を摘出するためのマニピュレータと電子ビームを該微小試料に照射して該試料から発生する電子を検出する電子線検出器とX線を検出するX線検出器のいずれか、または両方を具備し、摘出された該第2の試料の背後に軽元素材料を含み、かつ、孔を有する部材(吸収部材)を、該試料台または該試料台と該第2の試料の間に設置して、該第2の試料を電子ビームで観察する機能を有することを特徴とする試料観察装置とする。
Accordingly, it is possible to provide a sample observation apparatus that can observe and analyze the internal cross section of the target sample with high resolution, high accuracy and in a short time.
(2) an ion source, a lens for focusing an ion beam, a focused ion beam optical system including an ion beam scanning deflector, an electron source, a lens for focusing an electron beam, and an electron beam optical system including an electron beam scanning deflector; In a sample observation apparatus including a sample stage on which a sample is placed, a function of separating a second sample from the sample using the focused ion beam, a manipulator for extracting the second sample, and an electron beam are provided. An electron beam detector for irradiating a minute sample to detect electrons generated from the sample, an X-ray detector for detecting X-rays, or both, and behind the extracted second sample A function of observing the second sample with an electron beam by installing a member (absorbing member) containing a light element material and having a hole between the sample stage or the sample stage and the second sample Special features And sample observation apparatus according to.

これにより、上記したように、高空間分解能で、高精度な観察が可能になるばかりでなく、試料を装置の外部に取り出すことが無いため短時間で観察・分析できる試料観察装置を提供できる。
(3)導入試料から分離した第2の試料を摘出するためのマニピュレータは、該マニピュレータを該試料台と独立に駆動させるマニピュレータ制御装置とを具備し、該第2の試料を前記マニピュレータで支持した状態で、観察用荷電粒子ビームの該第2の試料への照射角度可変機能を有することを特徴とする試料観察装置とする。
Thereby, as described above, not only high-resolution observation with high spatial resolution is possible, but also a sample observation apparatus that can observe and analyze in a short time can be provided because the sample is not taken out of the apparatus.
(3) A manipulator for extracting the second sample separated from the introduced sample includes a manipulator control device that drives the manipulator independently of the sample stage, and the second sample is supported by the manipulator. In this state, the sample observation apparatus has a function of changing an irradiation angle of the charged particle beam for observation onto the second sample.

これにより、観察したい箇所を含む試料をマニピュレータに接着したままで、該試料を走査電子顕微光学系もしくは集束イオンビーム光学系に対し位置を移動できるため、観察分解能がより高くなる位置に微小試料を配置することができる。また対象試料の内部断面観察方向を自由に選択することができる。このため断面を垂直に観察すれば、エッチングや平坦化の形状寸法や埋め込み状況、膜厚等を高分解能で観察でき、高精度な計測・評価ができる試料観察装置を提供できる。しかも試料を装置の外部に取り出すことが無いため短時間で観察・分析できる試料観察装置を提供できる。
(4)軽元素部材を先端に有する第2のマニピュレータにより、第1のマニピュレータに摘出された該観察試料の背後空間、すなわち、該観測用荷電粒子ビームを発生する装置に対して反対の空間に該軽元素部材を挿入する方法であることを特徴とする試料観測装置とする。
As a result, the position of the sample can be moved with respect to the scanning electron microscope optical system or the focused ion beam optical system while the sample including the portion to be observed is adhered to the manipulator, so that the micro sample can be placed at a position where the observation resolution becomes higher. Can be arranged. Moreover, the internal cross-section observation direction of the target sample can be freely selected. For this reason, if the cross section is observed vertically, it is possible to provide a sample observation apparatus capable of observing with high resolution the shape dimension, embedding condition, film thickness, etc. of etching or flattening, with high accuracy. Moreover, since the sample is not taken out of the apparatus, a sample observation apparatus that can observe and analyze in a short time can be provided.
(4) A space behind the observation sample extracted by the first manipulator by the second manipulator having a light element member at the tip, that is, a space opposite to the device that generates the observation charged particle beam The sample observation apparatus is characterized by being a method of inserting the light element member.

これにより、該試料を透過した電子ビームが該試料以外の個所で入射して発生する後方散乱電子の影響を低減できるため高分解能観察ができ、しかも試料を装置の外部に取り出すことが無いため短時間で観察・分析できる試料観察装置を提供できる。また、荷電粒子線照射時の原子特性X線検出による元素分析において、微小試料を薄膜化することで、荷電粒子線の試料への侵入によるX線発生領域拡大を回避でき、また、軽元素材料からなる部材を挿入し、対象試料を透過した電子線が該微小試料以外の個所で入射して発生するX線や該個所から後方に散乱された電子が対象試料に再入射して発生するX線の影響を低減できるので高分解能元素分析が可能となる。
(5)導入試料から摘出した観察試料を載置して、請求項1記載の試料台に請求項1記載の軽元素部材を有する第2の試料台を具備することを特徴とする請求項2記載の試料観察装置とする。
As a result, the influence of backscattered electrons generated when the electron beam that has passed through the sample is incident on a portion other than the sample can be reduced, so that high-resolution observation can be performed, and the sample is not taken out of the apparatus, so that it is short. It is possible to provide a sample observation apparatus that can observe and analyze in time. In elemental analysis based on atomic characteristic X-ray detection at the time of charged particle beam irradiation, it is possible to avoid the expansion of the X-ray generation area due to penetration of the charged particle beam into the sample by thinning the sample. An X-ray generated when an electron beam transmitted through the target sample is incident at a location other than the micro-sample and an electron scattered backward from the location is re-incident on the target sample Since the influence of the line can be reduced, high-resolution elemental analysis is possible.
(5) The observation sample extracted from the introduced sample is placed, and the second sample stage having the light element member according to claim 1 is provided on the sample stage according to claim 1. The sample observation apparatus described is used.

これによっても、上記した理由により高分解能観察ができ、短時間で観察・分析できる試料観察装置を提供できる。また、摘出した試料を第2の試料台の一部に接触させて固定することにより、試料観察における振動の問題を回避できる。
(6)試料から摘出した観察対象箇所を含む試料を載置して、請求項1記載の試料台とは独立に駆動し、観測用荷電ビームの該試料への照射位置、角度を可変できる機能と、請求項1記載の軽元素部材を有する第3の試料台を具備することを特徴とする請求項2記載の試料観察装置とする。
This also makes it possible to provide a sample observation apparatus that can perform high-resolution observation for the reasons described above, and can observe and analyze in a short time. Moreover, the problem of vibration in sample observation can be avoided by fixing the extracted sample in contact with a part of the second sample stage.
(6) A function of placing a sample including an observation target portion extracted from the sample and driving the sample independently from the sample stage according to claim 1 to change the irradiation position and angle of the observation charged beam to the sample. And a third sample stage having the light element member according to claim 1. The sample observation apparatus according to claim 2.

これにより、試料の対象内部断面を高分解能かつ短時間で観察、分析できる試料観察装置を提供できる。また、摘出した試料をマニピュレータから切り離して、ひとつのマニピュレータで複数の試料を第2の試料台に固定することが可能となることで、断面観察と元素分析の時間を短縮することができる。また、マニピュレータから切り離して試料を第2の試料台に固定するので、試料観察における振動の問題を回避できる。
(7)請求項1および請求項2記載の吸収部材が孔を有し、試料の直後に設置され、試料と孔の上面までの距離と孔の直径の比が1/5以下であることを特徴とする試料観察装置。
これにより、該試料を透過した電子線が該軽元素部材の孔に入射し、入射した電子は孔の側面及び底面に衝突する。側面に衝突して電子の大部分が孔底の方向に散乱されるので、再び表面に戻ってくる電子を大幅に低減できる。また、試料を透過して孔に入射し、孔の内面で衝突することによって発生するX線は該軽元素部材を通過してX線検出器に到着し、通過する際に減衰するために、孔内で発生するX線の影響を低減できる。このため、高精度高分解能で観察できる試料観察装置を提供できる。
(8)上記の孔を有する吸収部材が重元素材料で覆われていることを特徴とする試料観察装置とする。
これにより、試料を透過して孔の内面に衝突して発生するX線が軽元素材料からなる吸収部材で減衰を受け、さらに吸収部材の外側を覆っているより減衰能力の大きい重元素材料により減衰されるため、X線検出器で検出される孔内で発生したX線を大幅に低減できる。このため、高精度高分解能で観察できる試料観察装置を提供できる。
(9)該軽元素部材が炭素、または、ベリリウム、または、炭素とベリリウムの複合物からなることを特徴とする試料観察装置とする。
一般にある元素からなる物質に電子が衝突すると、物質の元素に特有な特性X線呼ばれるX線および制動輻射による連続X線が発生する。このうち特性X線はスペクトルピークとして観測され、このピークの存在によりその元素が試料内に含まれているという情報が得られるのであるから、このようなピークとなるX線はなるべく試料の観察対象部以外からは発生しないことが望ましい。前記したように本発明では薄膜試料を透過した電子線は薄膜試料の直後に配置した軽元素材料からなる部材の孔に入射して孔の内部でX線を発生するようになっている。X線のエネルギーが小さいほどX線は物質により吸収されて減衰を受けやすい。このため、特にベリリウムまたは炭素で構成すると著しく背景X線を低減できる。また、ベリリウムのK線のエネルギーは110eVで、通常の半導体検出器では検出されないX線であるので都合がよい。
さらに、シリコンを主成分とするウエハや、試料保持部を構成する金属材料からなる部分に衝突した場合と比較して、試料を透過した電子線の衝突によりベリリウムまたは炭素からなる物質から発生する連続X線は5分の1以下にでき、また、反射電子の数も低減できる。
これにより、高分解能かつ高精度で観察できる試料観察装置を提供できる。
(10)該軽元素部材の厚さが電子ビームの進入深さより厚いことを特徴とする試料観察装置とする。これにより、該試料を透過してきた電子線が該軽元素部材を透過することなく該軽元素部材で吸収されるので、高分解能かつ高精度で観察できる試料観察装置を提供できる。
(11)該軽元素部材が接地されていることを特徴とする試料観察装置とする。
これにより、該軽元素部材が帯電することがないので、高分解能かつ高精度で観察できる試料観察装置を提供できる。
(12)電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台と、該電子ビームを該試料に照射して該試料から発生する電子およびX線を検出する検出器を備える試料観察装置において、試料の背後に少なくとも軽元素材料を含む部材(吸収部材)を設置して、該電子ビームを照射して該試料を観察する機能を有することを特徴とする試料観察方法とする。これにより、該試料を透過した電子ビームが該試料以外の個所で入射して発生する後方散乱電子およびX線の影響を低減できるため、高精度かつ高感度で観察・分析できる試料観察方法を提供できる。
(12)イオン源、イオンビームを集束するレンズ、イオンビーム走査偏向器を備える集束イオンビーム光学系と、電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台を備える試料観察装置において、該集束イオンビームを用いて該試料から第2の試料を分離する機能と、該第2の試料を摘出するためのマニピュレータと電子ビームを該微小試料に照射して該第2試料から発生する電子およびX線を検出する検出器を具備し、摘出された該第2の試料の背後に少なくとも軽元素材料を含む部材(吸収部材)を設置して、該第2の試料を電子ビームで観察する機能を有することを特徴とする試料観察方法とする。これにより、摘出した試料を大気に取り出すことがなく、また、摘出した試料の観察対象面を観察するためのビームに対して自由に設定でき、試料を透過した電子が試料以外の部材に衝突して発生する後方散乱電子およびX線の影響を低減できる。このため、試料の内部断面を高分解能かつ短時間で観察・分析できる試料観察方法を提供できる。特に、半導体ウェーハに適用することにより、半導体製造プロセス検査に活用でき、デバイス不良の早期発見および短時間品質管理により製造歩留まりの向上に貢献する。
Thereby, the sample observation apparatus which can observe and analyze the object internal cross section of a sample in high resolution and for a short time can be provided. In addition, by separating the extracted sample from the manipulator and fixing a plurality of samples to the second sample stage with one manipulator, the time for cross-sectional observation and elemental analysis can be shortened. Moreover, since the sample is separated from the manipulator and fixed to the second sample stage, the problem of vibration in sample observation can be avoided.
(7) The absorbing member according to claim 1 and claim 2 has a hole, and is installed immediately after the sample, and the ratio of the distance between the sample and the upper surface of the hole and the diameter of the hole is 1/5 or less. A sample observation device.
Thereby, the electron beam which permeate | transmitted this sample injects into the hole of this light element member, and the incident electron collides with the side surface and bottom face of a hole. Since most of the electrons collide with the side surface and are scattered in the direction of the hole bottom, the electrons returning to the surface can be greatly reduced. In addition, the X-rays generated by passing through the sample and entering the hole and colliding with the inner surface of the hole pass through the light element member, arrive at the X-ray detector, and are attenuated when passing through. The influence of X-rays generated in the hole can be reduced. For this reason, the sample observation apparatus which can observe with high precision and high resolution can be provided.
(8) The sample observation apparatus is characterized in that the absorbing member having the hole is covered with a heavy element material.
As a result, X-rays generated by passing through the sample and colliding with the inner surface of the hole are attenuated by the absorbing member made of the light element material, and further, by the heavy element material having a larger attenuation capability covering the outside of the absorbing member. Since it is attenuated, X-rays generated in the hole detected by the X-ray detector can be greatly reduced. For this reason, the sample observation apparatus which can observe with high precision and high resolution can be provided.
(9) A sample observation apparatus in which the light element member is made of carbon, beryllium, or a composite of carbon and beryllium.
In general, when an electron collides with a substance made of an element, X-rays called characteristic X-rays peculiar to the element of the substance and continuous X-rays by bremsstrahlung are generated. Of these, characteristic X-rays are observed as spectral peaks, and the presence of this peak provides information that the element is contained in the sample. It is desirable not to generate from other than the part. As described above, in the present invention, an electron beam transmitted through a thin film sample is incident on a hole of a member made of a light element material disposed immediately after the thin film sample, and X-rays are generated inside the hole. The smaller the X-ray energy, the more X-rays are absorbed by the material and are more susceptible to attenuation. For this reason, the background X-rays can be remarkably reduced especially when it is composed of beryllium or carbon. Also, beryllium has an X-ray energy of 110 eV, which is convenient because it is an X-ray that is not detected by a normal semiconductor detector.
Furthermore, as compared with the case where it collides with a silicon-based wafer or a part made of a metal material that constitutes the sample holding part, it is continuously generated from a substance made of beryllium or carbon due to the collision of an electron beam transmitted through the sample. X-rays can be reduced to one fifth or less, and the number of reflected electrons can be reduced.
Thereby, the sample observation apparatus which can observe with high resolution and high precision can be provided.
(10) The sample observation apparatus is characterized in that the light element member is thicker than the penetration depth of the electron beam. Thereby, since the electron beam which permeate | transmitted this sample is absorbed by this light element member, without permeate | transmitting this light element member, the sample observation apparatus which can observe with high resolution and high precision can be provided.
(11) The sample observation apparatus is characterized in that the light element member is grounded.
Thereby, since the light element member is not charged, a sample observation apparatus capable of observing with high resolution and high accuracy can be provided.
(12) An electron beam optical system including an electron source, a lens for focusing an electron beam, an electron beam scanning deflector, a sample stage on which a sample is placed, and the electron beam is emitted from the sample to be generated from the sample. In a sample observation apparatus equipped with a detector for detecting electrons and X-rays, a member (absorbing member) containing at least a light element material is installed behind the sample, and the electron beam is irradiated to observe the sample. It is set as the sample observation method characterized by having. As a result, it is possible to reduce the influence of backscattered electrons and X-rays that are generated when the electron beam that has passed through the sample is incident at a location other than the sample, and thus provides a sample observation method that enables observation and analysis with high accuracy and high sensitivity. it can.
(12) an ion source, a lens for focusing an ion beam, a focused ion beam optical system including an ion beam scanning deflector, an electron source, a lens for focusing an electron beam, and an electron beam optical system including an electron beam scanning deflector; In a sample observation apparatus including a sample stage on which a sample is placed, a function of separating a second sample from the sample using the focused ion beam, a manipulator for extracting the second sample, and an electron beam are provided. A detector that detects electrons and X-rays generated from the second sample by irradiating a minute sample is provided, and a member (absorbing member) containing at least a light element material is placed behind the extracted second sample Thus, a sample observation method is provided which has a function of observing the second sample with an electron beam. As a result, the extracted sample is not taken out to the atmosphere, and can be freely set with respect to the beam for observing the observation target surface of the extracted sample. Electrons transmitted through the sample collide with members other than the sample. Can reduce the effects of backscattered electrons and X-rays. For this reason, the sample observation method which can observe and analyze the internal cross section of a sample in high resolution and a short time can be provided. In particular, by applying it to semiconductor wafers, it can be used for semiconductor manufacturing process inspection, and contributes to the improvement of manufacturing yield by early detection of device defects and short-time quality control.

本発明により、益々微細化が進むLSIデバイス等の内部観察を高分解能で高品質かつ短時間で実施できる試料観察装置および微小試料加工観察方法が実現できる。さらに薄膜成形加工した微小試料をEDX分析して高精度な元素分析することにより、総合的に断面の観察や分析の効率の良い試料観察装置を提供できる。   According to the present invention, it is possible to realize a sample observation apparatus and a micro sample processing observation method capable of performing internal observation of LSI devices and the like that are increasingly miniaturized with high resolution and high quality in a short time. Further, by performing EDX analysis on a thin sample formed by thin film processing and performing high-precision elemental analysis, it is possible to provide a sample observation device with a comprehensive cross-section observation and analysis efficiency.

本発明の実施形態である試料観察装置の構成及びその動作を説明する。
<実施の形態1>
第1の実施例の装置構成と動作を図1、図2、図3、図4、図5および図6を用いて説明する。図1、図2は装置全体構成を、図3は集束イオビーム光学系、走査電子顕微鏡光学系および試料台周辺の構成を詳細に示す。なお、本実施の形態では、本発明の試料観察装置のうちウェーハ対応装置を示す。また、図3は、図1の概略俯瞰断面を表しているが、説明の都合上、機器の向きや詳細には幾分の相違があるが本質的差ではない。図1において、装置システムの中心部には集束イオンビーム光学系31と電子ビーム光学系41が真空試料室60の上部に適宜設置されている。真空試料室60の内部には試料となるウェーハ21を載置する試料台24が設置されている。2鏡筒の光学系31及び41は各々の中心軸がウェーハ21表面付近で一点に交わるように調整されている。試料台24にはウェーハ21を前後左右に高精度で移動する機構を内蔵しており、ウェーハ21上の指定箇所が集束イオンビーム光学系31の真下に来るように制御される。試料台24は、さらに、回転、上下、あるいは傾斜する機能を有する。真空試料室60には図示を省略した排気装置が接続され適切な圧力に制御されている。尚、光学系31、41にも図示を省略した排気系を個別に備え適切な圧力に維持している。真空試料室60内にはウェーハ導入手段61、ウェーハ搬送手段62を有する。真空試料室60に隣接してウェーハ移載ロボット82、カセット導入手段81が配置されている。真空試料室60の左隣には試料加工観察評価を含む装置全体の一連の処理を制御管理する操作制御部100を配備している。
The configuration and operation of the sample observation apparatus according to the embodiment of the present invention will be described.
<Embodiment 1>
The apparatus configuration and operation of the first embodiment will be described with reference to FIGS. 1, 2, 3, 4, 5, and 6. FIG. 1 and 2 show the overall configuration of the apparatus, and FIG. 3 shows in detail the configuration around the focused ion beam optical system, scanning electron microscope optical system, and sample stage. In the present embodiment, a wafer handling apparatus is shown in the sample observation apparatus of the present invention. FIG. 3 shows a schematic overhead cross-section of FIG. 1, but there are some differences in the orientation and details of the device for convenience of explanation, but this is not an essential difference. In FIG. 1, a focused ion beam optical system 31 and an electron beam optical system 41 are appropriately installed above the vacuum sample chamber 60 at the center of the apparatus system. Inside the vacuum sample chamber 60, a sample stage 24 on which a wafer 21 to be a sample is placed is installed. The optical systems 31 and 41 of the two lens barrels are adjusted so that their central axes intersect at one point near the wafer 21 surface. The sample stage 24 incorporates a mechanism for moving the wafer 21 from front to back and from side to side with high accuracy, and is controlled so that a specified position on the wafer 21 is directly below the focused ion beam optical system 31. The sample stage 24 further has a function of rotating, up and down, or tilting. An exhaust device (not shown) is connected to the vacuum sample chamber 60 and is controlled to an appropriate pressure. The optical systems 31 and 41 are each provided with an exhaust system (not shown) and maintained at an appropriate pressure. The vacuum sample chamber 60 includes a wafer introduction unit 61 and a wafer transfer unit 62. A wafer transfer robot 82 and a cassette introducing means 81 are disposed adjacent to the vacuum sample chamber 60. An operation control unit 100 that controls and manages a series of processing of the entire apparatus including sample processing observation evaluation is arranged on the left side of the vacuum sample chamber 60.

次に、本実施形態のウェーハ導入操作を概説する。ウェーハカセット23がカセット導入手段81のテーブルに置かれ、作業開始指令が操作制御卓100から発せられると、ウェーハ搬送ロボット82がカセット内の指定されたスロットから試料となるウェーハを引き出し、図2に示すオリエンテーション調整手段83でウェーハ21の向きを所定の位置に調整される。次に、ウェーハ21はウェーハ搬送ロボット82によりウェーハ導入手段61上部のハッチ64が開かれた時点でウェーハを載置台63に乗せられる。ハッチ64を閉じると、ウェーハ周囲に狭い空間が形成されロードロック室となり、図示を省略した真空排気手段で排気した後、載置台63を下降する。次いで、ウェーハ搬送手段62が載置台63のウェーハ21を取り上げ、真空試料室60内の試料台24に載置する。尚、試料台24にはウェーハ21の反り矯正や振動防止のためウェーハ21をチャックする手段を必要に応じて設ける。入力されたウェーハ21上の観察分析位置の座標値情報をもとに操作制御部100により、試料台24を動かしウェーハ21の観察分析位置を収束イオンビー部光学系31の直下に合わせて停止する。   Next, the wafer introduction operation of this embodiment will be outlined. When the wafer cassette 23 is placed on the table of the cassette introduction means 81 and a work start command is issued from the operation control console 100, the wafer transfer robot 82 pulls out a wafer as a sample from a designated slot in the cassette, and FIG. The orientation adjusting means 83 shown adjusts the orientation of the wafer 21 to a predetermined position. Next, the wafer 21 is placed on the mounting table 63 when the hatch 64 above the wafer introducing means 61 is opened by the wafer transfer robot 82. When the hatch 64 is closed, a narrow space is formed around the wafer to form a load lock chamber. After evacuation by a vacuum evacuation means (not shown), the mounting table 63 is lowered. Next, the wafer transfer means 62 picks up the wafer 21 on the mounting table 63 and mounts it on the sample table 24 in the vacuum sample chamber 60. The sample stage 24 is provided with means for chucking the wafer 21 as necessary to correct warpage of the wafer 21 and to prevent vibration. Based on the input coordinate value information of the observation analysis position on the wafer 21, the operation control unit 100 moves the sample stage 24 to stop the observation analysis position of the wafer 21 just below the focused ion beam optical system 31.

次に、図3を用いて試料加工観察評価の過程を説明する。本発明の試料観察装置では、集束イオビーム光学系31は、イオン源1、イオン源1から放出するイオンビームを集束するレンズ2、イオンビーム走査偏向器3等で構成され、また、電子ビーム光学系41は、電子銃7、前記電子銃7から放出する電子ビーム8を集束する電子レンズ9、電子ビーム走査偏向器10で構成される。その他に、集束イオンビーム(FIB)4または電子ビーム8をウェーハ21に照射してウェーハからの二次粒子を検出するための二次粒子検出器6、ウェーハ21を載せる可動の試料台24、所望の試料位置を特定するため試料台の位置を制御する試料台制御装置25、マニピュレータ70先端のプローブ72を微小試料の摘出位置に移動し、摘出し、集束イオンビーム(FIB)4または電子ビーム8を照射して微小試料の特定位置を観察評価する上で最適な位置や方向を制御するためのマニピュレータ制御装置15と電子ビーム8の照射時に励起されるX線検出のためのX線検出器16と、微小試料をプローブ72に固定するための堆積ガス供給装置17と、先端に軽元素材料からなる部材56を有する軽元素部材挿入装置55を備えている。軽元素部材56の大きさは長さ5mm幅2mm厚さ2.5mmである。軽元素部材56は図7に示すように孔57を有している。孔の直径は1mmで深さ2mmである。   Next, the process of sample processing observation evaluation will be described with reference to FIG. In the sample observation apparatus of the present invention, the focused ion beam optical system 31 includes an ion source 1, a lens 2 that focuses the ion beam emitted from the ion source 1, an ion beam scanning deflector 3, and the like, and an electron beam optical system. Reference numeral 41 includes an electron gun 7, an electron lens 9 that focuses the electron beam 8 emitted from the electron gun 7, and an electron beam scanning deflector 10. In addition, the secondary particle detector 6 for detecting the secondary particles from the wafer by irradiating the wafer 21 with the focused ion beam (FIB) 4 or the electron beam 8, the movable sample stage 24 on which the wafer 21 is placed, desired The sample stage controller 25 for controlling the position of the sample stage in order to specify the position of the sample, and the probe 72 at the tip of the manipulator 70 are moved to the position for extracting the micro sample, and extracted, and the focused ion beam (FIB) 4 or the electron beam 8 And an X-ray detector 16 for detecting X-rays excited upon irradiation of the electron beam 8 and a manipulator control device 15 for controlling an optimum position and direction in observing and evaluating a specific position of the micro sample. And a deposition gas supply device 17 for fixing the micro sample to the probe 72, and a light element member insertion device 55 having a member 56 made of a light element material at the tip. The size of the light element member 56 is 5 mm long, 2 mm wide, and 2.5 mm thick. The light element member 56 has a hole 57 as shown in FIG. The hole diameter is 1mm and the depth is 2mm.

次に、本実施形態で、ウェーハ導入後の試料加工観察評価の過程を概説する。
まず、試料台を下げてプローブ72の先端をウェーハ21から離した状態で、試料台24に対して水平方向(XY方向)にプローブ72を移動し、プローブ72の先端をFIB4の走査領域に設定する。マニピュレータ制御装置15は位置座標を保存した後、プローブ72を退避する。
Next, in this embodiment, the process of sample processing observation evaluation after wafer introduction will be outlined.
First, in a state where the sample stage is lowered and the tip of the probe 72 is separated from the wafer 21, the probe 72 is moved in the horizontal direction (XY direction) with respect to the sample stage 24, and the tip of the probe 72 is set as the FIB4 scanning region. To do. The manipulator control device 15 retracts the probe 72 after storing the position coordinates.

集束イオンビーム光学系31からFIB4をウェーハ21に照射して、図4に示すように観察分析位置p2を横切ってコの字を描くように溝を形成する。加工領域は、長さ約5μm、幅約1μm、深さ約3μmであり、片方側面でウェーハ21と接続している。その後、試料台24を傾斜させ、FIB4で三角柱の斜面を形成するように加工する。ただし、この状態では、微小試料22とウェーハ21とは支持部S2で接続されている。次に、試料台24傾斜を戻した後、微小試料22に、マニピュレータ70先端のプローブ72を微小試料22の端部に接触させた後に、堆積ガス供給装置17(図3)により接触点33に照射し、FIB4の照射により接触点33に堆積膜を形成して、プローブ72を微小試料22に接合し一体化する。次に、支持部S2をFIB4で切断して微小試料22を切り取る。微小試料22はプローブ72に支持された状態になり、観察・分析を目的とする表面及び内部断面が微小試料22の観察分析面p3として取り出す準備が完了する。図4中で71はマニピュレータ70にプローブ72を保持するプローブ保持部である。次に、図5の(b)に示すように、マニピュレータ70を操作して微小試料22をウェーハ21表面から上の高さまで持ち上げる。尚、図5の(c)に示すように、必要に応じてプローブ72に支持された状態で微小試料22にFIB4を照射して適切に追加工して所望の厚さを持つ観察断面p3を形成する。   The FIB 4 is irradiated onto the wafer 21 from the focused ion beam optical system 31, and a groove is formed so as to draw a U-shape across the observation analysis position p2 as shown in FIG. The processing region has a length of about 5 μm, a width of about 1 μm, and a depth of about 3 μm, and is connected to the wafer 21 on one side surface. Thereafter, the sample stage 24 is tilted and processed so as to form a slope of a triangular prism with the FIB 4. However, in this state, the micro sample 22 and the wafer 21 are connected by the support portion S2. Next, after returning the inclination of the sample stage 24, the probe 72 at the tip of the manipulator 70 is brought into contact with the end of the micro sample 22 to the micro sample 22, and then the contact point 33 is reached by the deposition gas supply device 17 (FIG. 3). The deposited film is formed at the contact point 33 by irradiation of the FIB 4, and the probe 72 is joined and integrated with the micro sample 22. Next, the micro sample 22 is cut by cutting the support portion S2 with FIB4. The micro sample 22 is supported by the probe 72, and the preparation for taking out the surface and the internal cross section for the purpose of observation and analysis as the observation analysis surface p3 of the micro sample 22 is completed. In FIG. 4, reference numeral 71 denotes a probe holder that holds the probe 72 on the manipulator 70. Next, as shown in FIG. 5B, the manipulator 70 is operated to lift the micro sample 22 from the surface of the wafer 21 to an upper height. As shown in FIG. 5 (c), the observation cross-section p3 having a desired thickness is obtained by irradiating the micro sample 22 with the FIB 4 while being supported by the probe 72 as necessary, and appropriately performing additional processing. Form.

次に、図6に示すように、微小試料22を回転させて、電子ビーム光学系41の電子ビーム8が観察断面p3へ概略垂直に入射するようにマニピュレータ70を動かして微小試料22の姿勢を制御した後静止させる。次に、図6に示すように電子ビーム8が入射する面とは反対側の空間に軽元素部材挿入装置55により炭素からなる軽元素部材56マニピュレータ70の先端のプローブ72と試料台24との間の位置に相対的に移動し挿入する。このとき軽元素部材に設けた孔の上面の中心付近に試料が位置するようにする。微小試料22から孔の上面までの距離は約0.1mmになるように設置する。   Next, as shown in FIG. 6, the micro sample 22 is rotated, and the manipulator 70 is moved so that the electron beam 8 of the electron beam optical system 41 is incident on the observation cross section p3 substantially perpendicularly. It is made to rest after being controlled. Next, as shown in FIG. 6, the probe 72 at the tip of the light element member 56 manipulator 70 made of carbon and the sample table 24 are inserted into the space opposite to the surface on which the electron beam 8 is incident by the light element member insertion device 55. Move relative to the position between and insert. At this time, the sample is positioned near the center of the upper surface of the hole provided in the light element member. The micro sample 22 is installed so that the distance from the upper surface of the hole is about 0.1 mm.

電子ビーム8が微小試料22に入射すると微小試料22の表面から内部構造および表面形状を反映した2次電子301が発生するとともに、入射部分の元素組成に特有な特性X線を含むX線401が発生する。X線401を検出し、そのエネルギー分布を分析することにより電子ビームが照射される部分の元素組成を知ることができる(スポット元素分析)。電子ビーム8を微小試料22の観測分析面を一方向または2次元方向に走査し、この2次電子、およびX線をそれぞれ2次電子検出器6、X線検出器16で検出することにより観測分析面の形状及び、元素組成分布(元素ライン分析またはマッピング分析)を観察する。   When the electron beam 8 is incident on the micro sample 22, secondary electrons 301 reflecting the internal structure and surface shape are generated from the surface of the micro sample 22, and an X-ray 401 including characteristic X-rays peculiar to the elemental composition of the incident portion is generated. appear. By detecting the X-ray 401 and analyzing the energy distribution, the elemental composition of the portion irradiated with the electron beam can be known (spot element analysis). Observation is performed by scanning the electron beam 8 in one direction or two-dimensional direction on the observation analysis surface of the micro sample 22 and detecting the secondary electrons and X-rays by the secondary electron detector 6 and the X-ray detector 16 respectively. Observe the shape of the analysis surface and the elemental composition distribution (element line analysis or mapping analysis).

図8は本実施例における軽元素部材56の効果を説明する図で、図8(a)は従来の観測法、図8(b)は軽元素部材が挿入されていない微小試料を観測する場合、図8(c)、(d)は本発明の軽元素部材56を挿入した場合を示す。   FIG. 8 is a diagram for explaining the effect of the light element member 56 in this embodiment. FIG. 8 (a) is a conventional observation method, and FIG. 8 (b) is a case of observing a micro sample in which no light element member is inserted. 8C and 8D show the case where the light element member 56 of the present invention is inserted.

以下の説明では電子ビーム8の加速電圧が15kVで、試料21がシリコンウエハで、試料21および微小試料22の主成分がシリコンで、電子ビーム8の入射方向に沿った微小試料22の厚さが0.1μmである場合について述べる。電子ビーム8が微小試料22に入射すると約95%の電子が微小試料22を透過する。透過した電子の一例を図8(b)、(c)、(d)中の201で示した。透過する電子の広がり角は全角で約40度である。図に示した透過電子201はその一例を表したものであり、透過した電子がすべてこの軌道を通るわけではない。   In the following description, the acceleration voltage of the electron beam 8 is 15 kV, the sample 21 is a silicon wafer, the main component of the sample 21 and the minute sample 22 is silicon, and the thickness of the minute sample 22 along the incident direction of the electron beam 8 is The case of 0.1 μm will be described. When the electron beam 8 is incident on the micro sample 22, about 95% of the electrons are transmitted through the micro sample 22. An example of the transmitted electrons is indicated by 201 in FIGS. 8B, 8C, and 8D. The spread angle of transmitted electrons is about 40 degrees in all angles. The transmitted electron 201 shown in the drawing represents an example, and not all the transmitted electrons pass through this orbit.

図8(b)に示した軽元素部材が挿入されていない場合には、微小試料22を透過した電子201は試料であるシリコンウエハ21に入射する。入射した電子201はシリコンウエハ内で散乱され、再びシリコンウエハ表面から飛び出してくる電子205がある。この電子を後方散乱電子と呼ぶ。この過程で、シリコンウエハの表面から2次電子303、X線403が発生する。垂直入射(入射角0度)で約20%、60度入射で40%の入射電子が後方に散乱される。後方散乱された電子205は再び微小試料22に入射し、電子ビーム8の入射点とは別の個所で2次電子304、X線404を発生する。   When the light element member shown in FIG. 8B is not inserted, the electrons 201 transmitted through the micro sample 22 are incident on the silicon wafer 21 as the sample. The incident electrons 201 are scattered in the silicon wafer, and there are electrons 205 that jump out of the surface of the silicon wafer again. These electrons are called backscattered electrons. In this process, secondary electrons 303 and X-rays 403 are generated from the surface of the silicon wafer. About 20% of incident electrons are scattered backward at normal incidence (incidence angle 0 degree) and 40% at 60 degrees incidence. The back-scattered electrons 205 are incident on the micro sample 22 again, and secondary electrons 304 and X-rays 404 are generated at a location different from the incident point of the electron beam 8.

図6に示した2次電子検出器6は測定試料だけでなくその近傍から出た2次電子をほとんどすべて検出するようになっているので、微小試料表面で発生した2次電子301以外に透過電子により発生した2次電子303、後方散乱電子により発生した2次電子304も検出される。高分解能観察ではこのような2次電子はなるべく少ないほうが好ましい。次に、X線検出について述べる。図6には一般的な半導体X線検出器16示した。電子ビーム8の微小試料上の照射点とX線検出素子161の検出面で構成される円錐の側面の一部に沿った内面を持つコリメータ162がX線検出器の先端に取り付けられている。しかしながら、図中に示した2本の点線で挟まれた空間で発生したX線も検出される。したがって、図8(b)で示した微小試料22の電子ビーム8の照射点以外で発生したX線403,404も検出してしまう。このため、観察対象の微小試料からの信号だけではなく、微小試料の下にある導入試料であるシリコンウエハからの信号が検出されてしまい、実際に測定した結果でもシリコンウエハに直接電子線を照射した場合とほぼ同じX線スペクトルとなる。しかも、微小試料も導入試料も母材はシリコンであり、X線スペクトルには微小試料からのSiの特性X線と導入試料からのSiの特性X線が重なった状態で現れる。両成分の分離は不可能であった。このため、この構成では微小試料元素組成を精度良く、高感度で測定することが不可能であった。   Since the secondary electron detector 6 shown in FIG. 6 detects not only the measurement sample but also all the secondary electrons emitted from the vicinity thereof, the secondary electron detector 6 transmits in addition to the secondary electrons 301 generated on the surface of the micro sample. Secondary electrons 303 generated by electrons and secondary electrons 304 generated by backscattered electrons are also detected. In high-resolution observation, it is preferable that such secondary electrons are as few as possible. Next, X-ray detection will be described. FIG. 6 shows a general semiconductor X-ray detector 16. A collimator 162 having an inner surface along a part of a side surface of a cone formed by an irradiation point of the electron beam 8 on the minute sample and a detection surface of the X-ray detection element 161 is attached to the tip of the X-ray detector. However, X-rays generated in the space between the two dotted lines shown in the figure are also detected. Accordingly, the X-rays 403 and 404 generated other than the irradiation point of the electron beam 8 of the micro sample 22 shown in FIG. 8B are also detected. For this reason, not only the signal from the micro sample to be observed but also the signal from the silicon wafer, which is the introduced sample under the micro sample, is detected, and the electron beam is directly irradiated to the silicon wafer even in the actual measurement result. The X-ray spectrum is almost the same as the case. Moreover, the base material of both the micro sample and the introduced sample is silicon, and the characteristic X-rays of Si from the micro sample and the characteristic X-rays of Si from the introduced sample appear in the X-ray spectrum. Separation of both components was not possible. For this reason, with this configuration, it has been impossible to accurately measure the composition of a small sample element with high sensitivity.

図8(c)に示した微小試料22と試料21の間に孔を持たない表面が平坦な軽元素部材56を挿入する方法では、微小試料22を透過した電子は炭素からなる軽元素部材56に入射する。炭素からなる物質ではシリコンからなる物質よりも後方散乱の割合が少なく、垂直入射(入射角0度)で約6%、60度入射で27%の割合で、導入試料であるシリコンウエハと比較して後方散乱の割合を1/3以下になった。   In the method of inserting the light element member 56 having a flat surface without a hole between the micro sample 22 and the sample 21 shown in FIG. 8C, the electrons transmitted through the micro sample 22 are light element members 56 made of carbon. Is incident on. A material made of carbon has a lower backscattering rate than a material made of silicon, which is about 6% at normal incidence (incidence angle 0 °) and 27% at 60 ° incidence compared to a silicon wafer as an introduction sample. As a result, the ratio of backscattering was less than 1/3.

微小試料を透過した電子201により炭素部材からは炭素原子に特有な特性X線403が発生する。X線検出素子で検出した信号はX線エネルギーごとに弁別するので、微小試料のシリコンからのX線と区別することができる。また、炭素部材で後方散乱される電子の数をシリコンウエハで後方散乱される電子の数より少なくできるので、後方散乱電子205が微小試料22に戻って発生する2次電子304、X線404も少なくできる。ただし、炭素部材で発生した制動輻射による連続X線はシリコンウエハから発生する連続X線と積分強度では1/5程度になるもののSiの特性X線ピークの現れる1から3keVのエネルギー領域の連続X線(背景)強度はほとんど低減できなかった。このためこのエネルギー範囲にある特性X線を発生する元素の感度を向上させることができなかった。   Characteristic X-rays 403 peculiar to carbon atoms are generated from the carbon member by the electrons 201 transmitted through the minute sample. Since the signal detected by the X-ray detection element is discriminated for each X-ray energy, it can be distinguished from the X-ray from the silicon of the minute sample. Further, since the number of electrons backscattered by the carbon member can be smaller than the number of electrons backscattered by the silicon wafer, the secondary electrons 304 and X-rays 404 generated by the backscattered electrons 205 returning to the micro sample 22 are also obtained. Less. However, continuous X-rays generated by bremsstrahlung generated by carbon members are continuous X-rays generated from silicon wafers and the integrated intensity is about 1/5, but continuous X in the energy region of 1 to 3 keV where the characteristic X-ray peak of Si appears. The line (background) intensity could hardly be reduced. For this reason, the sensitivity of elements that generate characteristic X-rays in this energy range could not be improved.

図8(d)に示した本発明の特徴である、微小試料22と試料21の間に孔を設けた軽元素部材56を挿入する方法では、微小試料22を透過した電子のほとんどが炭素からなる軽元素部材56の孔57に入射する。   In the method of inserting the light element member 56 having a hole between the micro sample 22 and the sample 21, which is a feature of the present invention shown in FIG. 8D, most of the electrons transmitted through the micro sample 22 are made of carbon. It enters the hole 57 of the light element member 56.

透過した電子201が孔57の側面および底面に衝突すると上記と同様に反射電子403またはX線303が発生する。反射電子は入射電子に対して反射の関係にある方向に放射されるものが多い。従って、反射電子は孔内で吸収されるものが多く、再び孔から出てくるものが少なくなる。従って、微小試料22に再入射する反射電子は図8(c)と比較しても非常に少なくなる。加速電圧15kVの電子線を炭素からなる軽元素部材に照射した場合、電子線の進入深さは2.6μmである。本実施例では孔の底の厚さは0.2mmあるので、電子線は炭素部材を突き抜ける事は無い。また、孔内で発生したX線303は軽元素材部56の側部で吸収されるものがあり、X線検出器に到達するX線は低減される。このため、微小試料の観察対象以外で発生するX線が検出されることが低減される。また、炭素部材の帯電を防ぐために、炭素部材は接地されている。結果として、背景雑音が少なくなり高精度、信号雑音比の高い元素分析が可能となる。このため、微小試料22の高分解能かつ高精度な観察が可能となる。   When the transmitted electrons 201 collide with the side surface and bottom surface of the hole 57, the reflected electrons 403 or the X-rays 303 are generated as described above. Many of the reflected electrons are radiated in a direction in which the reflected electrons are reflected. Therefore, many of the reflected electrons are absorbed in the hole, and less of the reflected electrons come out of the hole. Therefore, the number of backscattered electrons re-entering the micro sample 22 is very small as compared with FIG. When a light element member made of carbon is irradiated with an electron beam with an acceleration voltage of 15 kV, the penetration depth of the electron beam is 2.6 μm. In this embodiment, since the thickness of the bottom of the hole is 0.2 mm, the electron beam does not penetrate the carbon member. Further, some of the X-rays 303 generated in the holes are absorbed by the side portion of the light source material portion 56, and the X-rays reaching the X-ray detector are reduced. For this reason, the detection of X-rays generated outside the observation target of the minute sample is reduced. The carbon member is grounded in order to prevent the carbon member from being charged. As a result, background noise is reduced, and elemental analysis with high accuracy and a high signal-to-noise ratio becomes possible. Therefore, it is possible to observe the minute sample 22 with high resolution and high accuracy.

図25は上記の本発明の効果を示すX線スペクトルである。効果を明確にするために、Siウエハの代わりにAl板を設置し、微小試料としては、Siウエハーから取り出した試料で、厚さを0.15ミクロンに薄膜化した微小試料を用いた。加速電圧25kV、ビーム電流約 1nA の電子線を微小試料に照射して発生するX線を100秒間蓄積して得た結果である。   FIG. 25 is an X-ray spectrum showing the effect of the present invention. In order to clarify the effect, an Al plate was installed in place of the Si wafer, and a micro sample that was taken out of the Si wafer and thinned to 0.15 microns was used as the micro sample. This is a result obtained by accumulating X-rays generated by irradiating an electron beam with an acceleration voltage of 25 kV and a beam current of about 1 nA for 100 seconds.

点線で示した曲線は図8(b)に対応するスペクトルで、連続X線信号の上に4個の特性X線ピークが観測されている。微小試料の母材であるSiに帰属する特性X線ピーク以外に微小試料の下側にあるAl板からの大きなAl特性X線ピークがスペクトルに現れている。これらの2つのピーク以外に、酸素と炭素元素に相当する特性X線ピークが現れている。これは微小試料及びAl板の酸化膜及び表面に付着したハイドロカーボンを反映したものと考えられる。連続X線の量は、Si単独の場合のSiの特性X線ピークと連続X線の比よりも大きくAl板からの連続X線が重なっていると考えられる。このように図8(b)に示す構成では下地のAl板からの大きなAl特性X線ピークと連続X線が重なり、微小試料のSiからの特性X線ピークの信号雑音比が悪くなっていることが判る。下地がSiウエハの場合には微小試料からのSiピークと下地からのSiピークが重なってしまい、分離できなくなってしまう。   The curve shown by the dotted line is a spectrum corresponding to FIG. 8B, and four characteristic X-ray peaks are observed on the continuous X-ray signal. In addition to the characteristic X-ray peak attributed to Si, which is the base material of the micro sample, a large Al characteristic X-ray peak from the Al plate below the micro sample appears in the spectrum. In addition to these two peaks, characteristic X-ray peaks corresponding to oxygen and carbon elements appear. This is considered to reflect the oxide film of the micro sample and the Al plate and the hydrocarbon adhering to the surface. It is considered that the amount of continuous X-rays is larger than the ratio of the characteristic X-ray peak of Si and continuous X-rays in the case of Si alone, and the continuous X-rays from the Al plate overlap. In this way, in the configuration shown in FIG. 8 (b), the large Al characteristic X-ray peak from the underlying Al plate and the continuous X-ray overlap, and the signal-to-noise ratio of the characteristic X-ray peak from Si of the micro sample is deteriorated. I understand that. When the base is a Si wafer, the Si peak from the micro sample and the Si peak from the base overlap, making separation impossible.

次に、細い実線で示した曲線L2は図8(c)に対応するスペクトルで、Siを母材とする微小試料とAl板の間に炭素板を挿入した場合に得られたものである。炭素板を挿入することにより、Al板からのAlのピークはほとんど観測されなくなる代わりに、炭素のピークが大きくなることが観測された。これは微小試料を透過して、Al板に衝突していた電子が炭素板に衝突して炭素の特性X線ピークが大きくなる。このようにこの実験条件では微小試料に照射した電子のほとんどが微小試料を透過していることが理解される。一方、連続X線の信号の総量は小さくなっているが、Siの特性X線のエネルギーでは炭素板を挿入する前と比較して大きく異なっていない。このため、Siのピークは孤立ピークになり判別が容易になったが、連続X線に対する比(信号雑音比)はあまり改善されていない。   Next, a curved line L2 indicated by a thin solid line is a spectrum corresponding to FIG. 8C and is obtained when a carbon plate is inserted between a micro sample having Si as a base material and an Al plate. By inserting the carbon plate, it was observed that the Al peak from the Al plate was hardly observed, but the carbon peak was increased. This penetrates the micro sample, and the electrons colliding with the Al plate collide with the carbon plate, and the characteristic X-ray peak of carbon increases. As described above, it is understood that most of the electrons irradiated to the minute sample are transmitted through the minute sample under this experimental condition. On the other hand, the total amount of continuous X-ray signals is small, but the characteristic X-ray energy of Si is not significantly different from that before inserting the carbon plate. For this reason, the Si peak becomes an isolated peak, which makes it easy to discriminate, but the ratio to the continuous X-ray (signal-to-noise ratio) has not improved much.

次に、太い実線で示した曲線L3は図8(c)に対応するスペクトルで、Siを母材とする微小試料とAl板の間に孔を有する炭素板を挿入した場合に得られたものある。孔の直径は1mm、深さは2mmであった。孔は貫通しておらず、孔底の厚さは0.5mmであった。微小試料の0.1mm下に孔の開口面のほぼ中心が来るように設置した。連続X線が大幅に減少すると共に、炭素の特性X線も減少することが確認できた。これにより、Siの特性X線ピークが高感度で検出することが実現できた。   Next, a curve L3 indicated by a thick solid line is a spectrum corresponding to FIG. 8 (c), and is obtained when a carbon plate having holes is inserted between a micro sample having Si as a base material and an Al plate. The hole diameter was 1 mm and the depth was 2 mm. The hole did not penetrate and the thickness of the hole bottom was 0.5 mm. The sample was installed so that the center of the opening surface of the hole was approximately 0.1 mm below the minute sample. It was confirmed that the continuous X-ray decreased significantly and the characteristic X-ray of carbon also decreased. As a result, it was possible to detect the characteristic X-ray peak of Si with high sensitivity.

図8(a)はウエハー最表面など微小試料ではなく厚い試料をを観察する場合の2次電子の発生状況を示したものである。ウエハー最表面に入射した電子ビーム8はウエハ内部で散乱を受け半径で約1μmの領域211に拡散し、一部はウエハ内で吸収され、一部は後方散乱される。上記拡散領域で最表面から数nm深さの間で発生した2次電子のみが表面から発生し、2次粒子検出器により検出される。すなわち、検出される2次電子は電子ビーム8の照射点からの2次電子301と後方散乱電子による2次電子302の和となる。X線は物質中の透過力が強いために、上記拡散領域で発生したX線402はウエハ表面に達する。このため、上記の測定条件ではX線による元素分析の空間分解能は数μmである。また、1μm以下の領域に存在する母材の元素とは異なる元素を検出しようとした場合、数μmに広がった部分からのX線を含んでしまうので、信号雑音比が低下してしまい高感度な検出が困難となる。   FIG. 8 (a) shows the generation of secondary electrons when observing a thick sample rather than a micro sample such as the outermost surface of the wafer. The electron beam 8 incident on the outermost surface of the wafer is scattered inside the wafer and diffused into a region 211 having a radius of about 1 μm, part of which is absorbed in the wafer and part of it is backscattered. In the diffusion region, only secondary electrons generated between the outermost surface and a depth of several nm are generated from the surface and detected by the secondary particle detector. That is, the detected secondary electrons are the sum of the secondary electrons 301 from the irradiation point of the electron beam 8 and the secondary electrons 302 due to backscattered electrons. Since the X-ray has a strong penetrating power in the substance, the X-ray 402 generated in the diffusion region reaches the wafer surface. For this reason, the spatial resolution of elemental analysis by X-rays is several μm under the above measurement conditions. In addition, when trying to detect an element different from the element of the base material existing in the region of 1 μm or less, X-rays from the part spread to several μm are included, so the signal-to-noise ratio is reduced and high sensitivity Detection becomes difficult.

一方、本実施の形態では、微小試料の厚さを0.1μm程度に薄く加工してあるので、電子ビーム8の微小試料中ではその厚さ程度にしか拡散せず、また微小試料中で後方散乱する電子も少ない。従って、2次電子は照射点で発生するものの比重が大きくなり、高分解能観察が可能となる。また、X線の発生領域も電子線の拡散領域に限られるので、X線検出による2次元元素分析の空間分解能を0.1μmと飛躍的に向上できる。   On the other hand, in the present embodiment, since the thickness of the micro sample is thinned to about 0.1 μm, it diffuses only in the thickness of the micro sample of the electron beam 8 and backscatters in the micro sample. There are few electrons to play. Therefore, the specific gravity of secondary electrons generated at the irradiation point increases and high-resolution observation is possible. In addition, since the X-ray generation region is limited to the electron beam diffusion region, the spatial resolution of two-dimensional elemental analysis by X-ray detection can be dramatically improved to 0.1 μm.

さらに、観察分析面p3の角度を望ましい角度に調整できるので、2次電子検出器6での2次電子の検出効率はウェーハ最表面を観察する場合と同程度になり、微小試料22の観察分析面p3の観察条件は非常に良好なものになり、従来例で問題であった分解能の低下を回避でき、しかも、より綿密な観察分析ができるようになる。また、微小試料22を、装置の外部に取り出すことなく、真空雰囲気の試料室内に置いたまま、観察・分析するため、対象試料の内部断面を室内大気暴露による汚染や異物付着無しに、高分解能、高精度、最適角度での観察・分析が実現可能となる。しかも1時間当たり2〜3ヶ所以上の高い処理能力での観察・分析が可能となる。   Furthermore, since the angle of the observation analysis plane p3 can be adjusted to a desired angle, the detection efficiency of secondary electrons by the secondary electron detector 6 is the same as that when observing the outermost surface of the wafer. The observation condition of the surface p3 becomes very good, the resolution reduction which is a problem in the conventional example can be avoided, and more detailed observation analysis can be performed. In addition, since the micro sample 22 is observed and analyzed while being left in the sample chamber in a vacuum atmosphere without being taken out of the apparatus, the internal cross section of the target sample can be high resolution without being contaminated by foreign air exposure or adhering foreign matter. High-precision observation and analysis at the optimum angle can be realized. Moreover, observation and analysis can be performed with a high processing capacity of 2 to 3 or more locations per hour.

本実施の形態では、垂直に加工した孔を利用した例を示したが、入射した電子が再放出されることがない構造であれば、どのような形状の孔でも本発明が適用されることは自明である。   In this embodiment, an example in which a vertically processed hole is used has been described. However, the present invention can be applied to a hole having any shape as long as incident electrons are not re-emitted. Is self-explanatory.

但し、プローブ72で宙吊り状態となった微小試料22は振動の影響を受け易いので、高倍率や振動の多い設置環境下で観察・分析する場合には、図9に示したように微小試料22を、軽元素部材56へ着地させることにより微小試料の振動を大幅に抑えることができ、良質の観察・分析が可能となる。   However, since the micro sample 22 suspended in the probe 72 is easily affected by vibration, the micro sample 22 is observed as shown in FIG. Is made to land on the light element member 56, the vibration of the minute sample can be greatly suppressed, and high-quality observation and analysis are possible.

以上、シリコンウエハ内の断面P3の観察について述べてきたが、シリコン表面の一部P2を観察する場合には図10に示すように観察分析面P2を電子ビーム8で走査すれば良い。この場合、面P2方向に反対側を薄く製膜する。従来、図7(a)に示す方法でシリコンウエハ表面を2次電子像観察によりシリコンウエハの表面に異物が観察された場合、その組成をX線観察により調べようとすると異物の厚さが薄いためにシリコンウエハ基板からのX線信号に埋もれてしまい、組成分析ができないことがあった。本実施例では薄く製膜した微小試料を観測するので、表面異物の下地からの信号が減少し、表面異物の組成に対する感度を一桁向上することが可能となる。   Although the observation of the cross section P3 in the silicon wafer has been described above, when observing a part P2 of the silicon surface, the observation analysis plane P2 may be scanned with the electron beam 8 as shown in FIG. In this case, the opposite side in the surface P2 direction is thinly formed. Conventionally, when a foreign substance is observed on the surface of the silicon wafer by secondary electron image observation by the method shown in FIG. 7A, the thickness of the foreign substance is thin when trying to examine the composition by X-ray observation. Therefore, it is buried in the X-ray signal from the silicon wafer substrate, and the composition analysis may not be possible. In the present embodiment, since a thin sample formed into a thin film is observed, the signal from the surface of the surface foreign matter is reduced, and the sensitivity to the composition of the surface foreign matter can be improved by an order of magnitude.

また、軽元素部材の材質として炭素の場合について述べたが、ベリリウムや、ベリリウムと炭素の複合物でもよい。ベリリウムを用いたときは微小試料を突き抜けてくる電子がベリリウムに衝突して発生するX線はベリリウム固有のエネルギーを持つが、現状のX線検出器では検出可能なエネルギー範囲より小さいので、X線スペクトルに現れないという利点がある。また、炭素とベリリウムの複合物を用いたときには、軽元素部材の位置を調整して、微小試料を透過した電子線が軽元素部材の炭素の部分に入射する場合とベリリウムに入射する場合の2つのスペクトルを観測することにより、スペクトルに現れる炭素のピークの発生要因、すなわち、微小試料からのものか、軽元素部材からのものかを分析できる。   Moreover, although the case where carbon is used as the material of the light element member has been described, beryllium or a composite of beryllium and carbon may be used. When beryllium is used, X-rays generated when electrons penetrating a minute sample collide with beryllium have energy inherent to beryllium, but are smaller than the energy range detectable by current X-ray detectors. There is an advantage that it does not appear in the spectrum. Further, when a composite of carbon and beryllium is used, the position of the light element member is adjusted, and an electron beam transmitted through the minute sample is incident on the carbon portion of the light element member and when incident on beryllium. By observing one spectrum, it is possible to analyze the generation factor of the carbon peak appearing in the spectrum, that is, whether it is from a small sample or from a light element member.

軽元素部材にあけた孔は本実施例においては円柱状の孔を用いたが、円柱状であることは本質ではなく、微小試料を透過した電子線が孔に入ることが本質なので、孔の形状については特に限定するものではない。
これらを纏めると、
電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台と、該電子ビームを該試料に照射して該試料から発生する電子およびX線を検出する検出器を備える試料観察装置において、試料の背後に少なくとも軽元素材料を含む部材(吸収部材)を設置して、該電子ビームを照射して該試料を観察するする試料観察方法にある。又、イオン源、イオンビームを集束するレンズ、イオンビーム走査偏向器を備える集束イオンビーム光学系と、電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台を備える試料観察装置において、該集束イオンビームを用いて該試料から第2の試料を分離する機能と、該第2の試料を摘出するためのマニピュレータと電子ビームを該微小試料に照射して該第2試料から発生する電子およびX線を検出する検出器を具備し、摘出された該第2の試料の背後に少なくとも軽元素材料を含む部材(吸収部材)を設置して、該第2の試料を電子ビームで観察する試料観察方法にもある。
<実施の形態2>
本発明の第2の実施例である試料観察装置の概略構成を図11、図12により説明する。本実施例では、図3に示した試料観察装置の基本構成に、第2のマニピュレータ55の先端に備えた軽元素部材のかわりに、図11に示した試料台24に埋め込んだ炭素からなる軽元素部材56を用いる。試料台24は試料21を搭載する面とその面より5mm程度低い面を有し、低い面に軽元素部材56を設置してある。図22は軽元素部材56を含む主要部の詳細断面図である。軽元素部材55は中心部に微小試料22を観測するための電子ビームの照射する方向に孔57を有している。孔57の直径は1mm、深さは2mmである。軽元素部材57はX線検出器16の方向に盛り上がった部分を有し、その部分に孔57の上側中心部に伸びた炭素板500が固定されている。試料21から集束イオンビームにより摘出し、必要に応じて加工した微小試料22をマニピュレータと試料台24の移動により孔57の入り口中心部に移動する。プローブ72に保持された試料を炭素板500の先端に接触して観測する。接触により観測時の微小試料の振動による影響を低減できる。
In this example, the hole formed in the light element member is a cylindrical hole. However, it is not essential that the hole is cylindrical, and it is essential that an electron beam transmitted through a micro sample enters the hole. The shape is not particularly limited.
Putting these together,
An electron source, a lens for focusing the electron beam, an electron beam optical system including an electron beam scanning deflector, a sample stage on which the sample is placed, and electrons and X generated from the sample by irradiating the sample with the electron beam In a sample observation apparatus having a detector for detecting a line, a sample observation method for observing the sample by irradiating the electron beam with a member (absorbing member) containing at least a light element material behind the sample is there. Also, an ion source, a lens for focusing an ion beam, a focused ion beam optical system including an ion beam scanning deflector, an electron source, a lens for focusing an electron beam, an electron beam optical system including an electron beam scanning deflector, and a sample In a sample observation apparatus including a sample stage on which a sample is placed, a function of separating a second sample from the sample using the focused ion beam, a manipulator for extracting the second sample, and an electron beam are combined with the minute sample. A detector for detecting electrons and X-rays generated from the second sample by irradiating the sample is provided, and a member (absorbing member) containing at least a light element material is placed behind the extracted second sample. There is also a sample observation method for observing the second sample with an electron beam.
<Embodiment 2>
A schematic configuration of a sample observation apparatus according to the second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the basic structure of the sample observation apparatus shown in FIG. 3 is replaced with a light element made of carbon embedded in the sample table 24 shown in FIG. 11 instead of the light element member provided at the tip of the second manipulator 55. The element member 56 is used. The sample stage 24 has a surface on which the sample 21 is mounted and a surface lower by about 5 mm than the surface, and a light element member 56 is installed on the lower surface. FIG. 22 is a detailed cross-sectional view of the main part including the light element member 56. The light element member 55 has a hole 57 in the center in the direction of irradiation with an electron beam for observing the micro sample 22. The diameter of the hole 57 is 1 mm and the depth is 2 mm. The light element member 57 has a portion raised in the direction of the X-ray detector 16, and a carbon plate 500 extending to the upper center portion of the hole 57 is fixed to the portion. The micro sample 22 extracted from the sample 21 by the focused ion beam and processed as necessary is moved to the entrance center of the hole 57 by the movement of the manipulator and the sample stage 24. The sample held by the probe 72 is in contact with the tip of the carbon plate 500 and observed. By touching, the influence of vibration of a minute sample at the time of observation can be reduced.

炭素板500の上面はコリメータ162により制限されるX線検出角409の下の境界線と一致するように配置されている。このため、電子ビーム8が微小試料22を透過し拡散を受けて孔57の内面に衝突して発生したX線の一部は厚い軽元素部材およびその外周の金属部材で吸収される。これにより観測されるX線スペクトルは背景雑音が少ないものになり、高精度かつ高感度な元素分析が可能となる。   The upper surface of the carbon plate 500 is disposed so as to coincide with the lower boundary line of the X-ray detection angle 409 limited by the collimator 162. For this reason, a part of the X-rays generated by the electron beam 8 passing through the micro sample 22 and being diffused and colliding with the inner surface of the hole 57 are absorbed by the thick light element member and the metal member on the outer periphery thereof. As a result, the observed X-ray spectrum has little background noise, and high-precision and high-sensitivity elemental analysis is possible.

さらに、本実施例では、試料を設置する位置と微小試料を軽元素部材56に移動して観測する位置の高さが異なっている。このため、電子光学系41からの距離(ワーキングディスタンス)を長くすることができ、高加速電圧にしても電子ビームを細く絞ることができる。本例では15kVの加速電圧で観測することが可能となっている。これにより低加速電圧の電子ビーム照射ではX線ピークが重なって弁別できない元素の検出が容易となる。また、高加速電圧の電子線は微小試料内での散乱が小さく、拡散しないので、高い空間分解能で微小試料の元素分布観測が可能になる。
本実施例ではひとつの軽元素部材56を設置した例を示したが、複数個の軽元素部材を試料21の周辺に配置してもよい。この場合には、試料21内の微小試料を摘出した部分に一番近い軽元素部材に微小試料を移動させることにより、より短時間で観測を開始することが可能となる。
Furthermore, in the present embodiment, the height of the position where the sample is installed and the position where the micro sample is moved to the light element member 56 and observed are different. For this reason, the distance (working distance) from the electron optical system 41 can be increased, and the electron beam can be narrowed down even with a high acceleration voltage. In this example, it is possible to observe with an acceleration voltage of 15 kV. This facilitates the detection of elements that cannot be distinguished because the X-ray peaks overlap when irradiated with an electron beam at a low acceleration voltage. In addition, since the electron beam with a high acceleration voltage has little scattering in the micro sample and does not diffuse, the element distribution of the micro sample can be observed with high spatial resolution.
In the present embodiment, an example in which one light element member 56 is provided is shown, but a plurality of light element members may be arranged around the sample 21. In this case, it is possible to start observation in a shorter time by moving the micro sample to the light element member closest to the portion of the sample 21 from which the micro sample has been extracted.

以上に述べたように、本実施例では、観察分析の角度を、垂直観察を含めた望ましい角度に調整できること、真空雰囲気の試料室内に置いたまま観察できること、微小試料を軽元素部材に固定することで、微小試料観測における振動の問題を回避できる、背景雑音の小さいX線スペクトルが得られる、高い加速電圧の電子ビームを用いることが可能となる、等により、微小試料22の観察条件は非常に良好になる。これにより、従来問題であった分解能の低下を回避でき、しかも最適、綿密な観察分析を迅速で高効率に行うことができる。結果として高品質な観察分析を高スループットで実行できる。
<実施の形態3>
本発明の第3の実施例である試料観察装置の概略構成を図13により説明する。本実施例では、図3に示した試料観察装置の基本構成に、軽元素部材を先端に有する第2のマニピュレータ55がないかわりに、第3の試料台18と、第3の試料台の角度や高さ等を制御する第2試料台制御装置19を加えたものである。
本実施例における集束イオンビーム光学系31からイオンビームを試料に照射してウェーハから微小試料を摘出するまでの過程は第1実施例と同様である。本実施例は、摘出した微小試料を、マニピュレータで支持した状態で観察・分析する代わりに、第3の試料台に固定し観察・分析を行うものである。図14は、第3の試料台18に微小試料22を固定した状態を示す。本実施例では、第3試料台18の微小試料固定部分の背面に炭素からなる軽元素部材56を設置してある。
微小試料22の観察面が軽元素部材56の反対側になるように、微小試料の底面を第3試料台18に接触して、FIB4で堆積性ガスを第3試料台18と微小試料22の接触点に堆積させたイオンアシストデポ膜75で第3試料台18への微小試料22を固定する。なお、微小試料22作成時や、該堆積性ガスを堆積させた時などに、観察断面21の表面への異物吸着や観察断面21の表面が破壊される不都合を予防するために、FIB4の照射角を微小試料の観察断面に平行になるように第3試料台操作で適切に角度設定した後、FIB4を照射して所望の観察断面21を作成することもできる。電子ビームは軽元素部材56とは反対側から照射して断面観察することになる。
図15に示す第3試料台を設置することにより複数の微小試料をまとめて扱うこともできる。ウェーハ21から微小試料22を摘出し、試料台脇の第3試料台18の適所へ固定し、次の微小試料22を摘出する操作を繰り返すことにより、ウェーハ21を試料台24に固定したまま複数個の断面観察と元素分析が可能であり、ウェーハ21全体に亘る断面構造の分布を効率的に調べることができる。図15において、第3試料台18に微小試料を数個並べて固定し、電子ビーム8に対して微小試料22が適切な角度になるように試料台24の停止方位と第2試料台18の角度を併せ調整した状態で試料観察・分析を行えば、複数個の微小試料を連続的あるいは比較しながら繰り返し観察分析できるので、ウェーハ21全体に亘って断面構造や元素分布を詳細かつ能率的に調べることができる。
As described above, in this embodiment, the angle of observation analysis can be adjusted to a desired angle including vertical observation, it can be observed while placed in a sample chamber in a vacuum atmosphere, and a micro sample is fixed to a light element member. Therefore, the observation condition of the micro sample 22 is extremely high because it can avoid the vibration problem in the micro sample observation, obtain an X-ray spectrum with a small background noise, use an electron beam with a high acceleration voltage, and the like. To be good. As a result, it is possible to avoid a reduction in resolution, which has been a problem in the prior art, and to perform optimum and meticulous observation analysis quickly and efficiently. As a result, high quality observation analysis can be performed with high throughput.
<Embodiment 3>
A schematic configuration of a sample observation apparatus according to the third embodiment of the present invention will be described with reference to FIG. In this embodiment, instead of the second manipulator 55 having the light element member at the tip in the basic configuration of the sample observation apparatus shown in FIG. 3, the angles of the third sample stage 18 and the third sample stage And a second sample stage control device 19 for controlling the height and the like.
The process from the focused ion beam optical system 31 in this embodiment to irradiating the sample with the ion beam and extracting the minute sample from the wafer is the same as in the first embodiment. In this embodiment, instead of observing / analyzing the extracted micro sample while supported by a manipulator, the micro sample is fixed to a third sample stage for observation / analysis. FIG. 14 shows a state in which the micro sample 22 is fixed to the third sample stage 18. In this embodiment, a light element member 56 made of carbon is installed on the back surface of the small sample fixing portion of the third sample stage 18.
The bottom surface of the micro sample is brought into contact with the third sample stage 18 so that the observation surface of the micro sample 22 is opposite to the light element member 56, and the deposition gas is allowed to flow between the third sample stage 18 and the micro sample 22 by FIB 4. The micro sample 22 is fixed to the third sample stage 18 with the ion-assisted deposition film 75 deposited at the contact point. In order to prevent inconvenience of foreign matter adsorption to the surface of the observation cross section 21 or destruction of the surface of the observation cross section 21 when the micro sample 22 is formed or when the deposition gas is deposited, irradiation of the FIB 4 is performed. It is also possible to create a desired observation section 21 by irradiating the FIB 4 after appropriately setting the angle by the third sample stage operation so that the angle is parallel to the observation section of the micro sample. The electron beam is irradiated from the side opposite to the light element member 56 and the cross section is observed.
By installing the third sample stage shown in FIG. 15, it is possible to handle a plurality of micro samples collectively. The micro sample 22 is extracted from the wafer 21, fixed to an appropriate position on the third sample table 18 beside the sample table, and the operation of extracting the next micro sample 22 is repeated, whereby a plurality of wafers 21 are fixed to the sample table 24. Individual cross-section observation and elemental analysis are possible, and the distribution of the cross-sectional structure over the entire wafer 21 can be efficiently examined. In FIG. 15, several micro samples are arranged and fixed on the third sample stage 18, and the stop orientation of the sample stage 24 and the angle of the second sample stage 18 so that the micro sample 22 is at an appropriate angle with respect to the electron beam 8. If the sample observation / analysis is performed in a state in which both are adjusted, it is possible to repeatedly observe and analyze a plurality of micro samples continuously or while comparing them, so that the cross-sectional structure and element distribution over the entire wafer 21 are examined in detail and efficiently. be able to.

以上に述べたように、本実施例も、ウェーハ表面を観察する場合と同程度の二次電子検出効率が得られること、観察分析の角度を、垂直観察を含めた望ましい角度に調整できること、真空雰囲気の試料室内に置いたまま観察できること、マニュピレータから切り離して微小試料を第2の試料台に固定することで、微小試料観測における振動の問題を回避できる、等により、微小試料22の観察条件は非常に良好になるの。これにより、従来問題であった分解能の低下を回避でき、しかも最適、綿密な観察分析を迅速で高効率に行うことができる。結果として高品質な観察分析を高スループットで実行できる。   As described above, the secondary electron detection efficiency similar to that in the case of observing the wafer surface can be obtained in this embodiment, the angle of observation analysis can be adjusted to a desired angle including vertical observation, vacuum The observation conditions of the micro sample 22 are such that it can be observed while being placed in the sample chamber in the atmosphere, and the problem of vibration in the micro sample observation can be avoided by separating the micro sample from the manipulator and fixing it to the second sample stage. It will be very good. As a result, it is possible to avoid a reduction in resolution, which has been a problem in the prior art, and to perform optimum and meticulous observation analysis quickly and efficiently. As a result, high quality observation analysis can be performed with high throughput.

本実施例では、第1のマニピュレータで摘出した微小試料を第3の試料台に固定して観察する方法、形態を示したが摘出した微小試料を第1のマニピュレータに固定した状態で、その下側に第3の試料台が来るようにして、第1のマニピュレータ(第1の保持器)により微小試料の向きを適宜調整して観察しても本発明が適用されることは自明である。また、このときに、微小試料が第2の試料台から離れているか、接触しているかは本質的な問題ではなくどちらでも構わない。
<実施の形態4>
本発明の第4の実施例である試料観察装置の概略構成を図16、図17により説明する。本実施例では、図3に示した試料観察装置の基本構成に、第2のマニピュレータ(第2の保持器)55の先端に備えた軽元素部材のかわりに、図17に示した第3試料台58を用いる。第3試料台58は、炭素からなる軽元素部材56を備え、試料台保持棒59を介して第2のマニピュレータ55の先端に取り付けられている。試料台保持棒は試料台58が振動しないような材質、寸法で設計されている。
In the present embodiment, the method and mode for observing the micro sample extracted with the first manipulator fixed to the third sample stage are shown, but in the state where the micro sample extracted is fixed to the first manipulator, It is obvious that the present invention can be applied even when the direction of the micro sample is appropriately adjusted and observed by the first manipulator (first holder) so that the third sample stage comes to the side. At this time, whether the minute sample is separated from or in contact with the second sample stage is not an essential problem and may be either.
<Embodiment 4>
A schematic configuration of a sample observation apparatus according to the fourth embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the third sample shown in FIG. 17 is used in place of the light element member provided at the tip of the second manipulator (second holder) 55 in the basic configuration of the sample observation apparatus shown in FIG. A table 58 is used. The third sample stage 58 includes a light element member 56 made of carbon, and is attached to the tip of the second manipulator 55 via a sample stage holding rod 59. The sample table holding bar is designed with a material and dimensions that do not cause the sample table 58 to vibrate.

本実施例における集束イオンビーム光学系31からイオンビームを試料に照射してウェーハから微小試料を摘出するまでの過程は第1実施例と同様である。本実施例は、摘出した微小試料を、マニピュレータで支持した状態で観察・分析する代わりに、第3試料台58に固定し観察・分析を行うものである。図17は、第3試料台58に微小試料22を固定した状態を示す。本実施例では、第2試料台18の微小試料固定部分の背面に炭素からなる軽元素部材56を設置してある。微小試料22の観察面が軽元素部材56の反対側になるように、微小試料の底面を第3試料台58に接触して、FIB4で堆積性ガスを第2試料台58と微小試料22の接触点に堆積させたイオンアシストデポ膜75で第3試料台58に微小試料22を固定する。なお、微小試料22作成時や、該堆積性ガスを堆積させた時などに、観察断面21の表面への異物吸着や観察断面21の表面が破壊される不都合を予防するために、FIB4の照射角を微小試料の観察断面に平行になるように第3試料台の操作で適切に角度設定した後、FIB4を照射して所望の観察断面21を作成することもできる。電子ビームは軽元素部材56とは反対側から照射して断面観察することになる。
第3の実施の形態で述べたように、本実施の形態でも複数の微小試料をまとめて扱うこともできる。ウェーハ21から微小試料22を摘出し、試料台脇の第2試料台58の適所へ固定し、次の微小試料22を摘出する操作を繰り返すことにより、ウェーハ21を試料台24に固定したまま複数個の断面観察と元素分析が可能であり、ウェーハ21全体に亘る断面構造の分布を効率的に調べることができる。
The process from the focused ion beam optical system 31 in this embodiment to irradiating the sample with the ion beam and extracting the minute sample from the wafer is the same as in the first embodiment. In this embodiment, instead of observing and analyzing the extracted micro sample in a state supported by a manipulator, the micro sample is fixed to the third sample stage 58 for observation and analysis. FIG. 17 shows a state in which the micro sample 22 is fixed to the third sample stage 58. In this embodiment, a light element member 56 made of carbon is installed on the back surface of the small sample fixing portion of the second sample stage 18. The bottom surface of the micro sample is brought into contact with the third sample stage 58 so that the observation surface of the micro sample 22 is opposite to the light element member 56, and the deposition gas is allowed to flow between the second sample stage 58 and the micro sample 22 using FIB 4. The micro sample 22 is fixed to the third sample stage 58 with the ion-assisted deposition film 75 deposited at the contact point. In order to prevent inconvenience of foreign matter adsorption to the surface of the observation cross section 21 or destruction of the surface of the observation cross section 21 when the micro sample 22 is formed or when the deposition gas is deposited, irradiation of the FIB 4 is performed. It is also possible to create the desired observation section 21 by irradiating the FIB 4 after setting the angle appropriately by operating the third sample stage so that the angle is parallel to the observation section of the minute sample. The electron beam is irradiated from the side opposite to the light element member 56 and the cross section is observed.
As described in the third embodiment, a plurality of minute samples can also be handled together in this embodiment. The micro sample 22 is extracted from the wafer 21, fixed to an appropriate position on the second sample table 58 beside the sample table, and the operation of extracting the next micro sample 22 is repeated, whereby a plurality of wafers 21 are fixed to the sample table 24. Individual cross-section observation and elemental analysis are possible, and the distribution of the cross-sectional structure over the entire wafer 21 can be efficiently examined.

以上に述べたように、本実施例も、ウェーハ表面を観察する場合と同程度の二次電子検出効率が得られること、観察分析の角度を、垂直観察を含めた望ましい角度に調整できること、真空雰囲気の試料室内に置いたまま観察できること、微小試料摘出用マニュピレータから切り離して微小試料を第3の試料台に固定することで、微小試料観測における振動の問題を回避できる、等により、微小試料22の観察条件は非常に良好になる。これにより、従来問題であった分解能の低下を回避でき、しかも最適、綿密な観察分析を迅速で高効率に行うことができる。
結果として高品質な観察分析を高スループットで実行できる。
<実施の形態5>
本発明の第5の実施例である試料観察装置の概略構成を図18により説明する。本実施例は従来の技術の項で述べたインレンズ方式走査型電子顕微鏡に本発明を適用した例で、図18は電子顕微鏡の対物レンズ周辺の詳細図である。ここでのインレンズ方式とは対物レンズ内に試料台と試料台上載置された試料を配置して計測する走査電子顕微鏡装置を示す。
As described above, the secondary electron detection efficiency similar to that in the case of observing the wafer surface can be obtained in this embodiment, the angle of observation analysis can be adjusted to a desired angle including vertical observation, vacuum The micro sample 22 can be observed while being placed in the sample chamber of the atmosphere, and the micro sample can be avoided by detaching it from the manipulator for extracting the micro sample and fixing the micro sample to the third sample stage. The observation conditions are very good. As a result, it is possible to avoid a reduction in resolution, which has been a problem in the prior art, and to perform optimum and meticulous observation analysis quickly and efficiently.
As a result, high quality observation analysis can be performed with high throughput.
<Embodiment 5>
A schematic configuration of a sample observation apparatus according to the fifth embodiment of the present invention will be described with reference to FIG. This embodiment is an example in which the present invention is applied to the in-lens scanning electron microscope described in the section of the prior art, and FIG. 18 is a detailed view around the objective lens of the electron microscope. The in-lens system here refers to a scanning electron microscope apparatus that measures by placing a sample stage and a sample placed on the sample stage in an objective lens.

図18に示すように本実施例では上下に配置した対物レンズの磁極707,708で挟まれた空間に試料台706に設置した薄膜試料22を挿入して観察する。薄膜試料22は所望の観察領域を含むようにFIB加工装置で実施の形態1の項で説明した方法で薄膜加工したもの、あるいは、従来の機械的研磨、イオンミリングにより薄膜化した試料、あるいは、粉体を炭化水素系の薄膜に固定したものである。薄膜試料22はメッシュと呼ばれる半円状の支持体26に固定されている。   As shown in FIG. 18, in this embodiment, the thin film sample 22 placed on the sample stage 706 is inserted and observed in a space between the magnetic poles 707 and 708 of the objective lens arranged above and below. The thin film sample 22 is a thin film processed by the method described in the first embodiment in the FIB processing apparatus so as to include a desired observation region, or a sample thinned by conventional mechanical polishing or ion milling, or The powder is fixed to a hydrocarbon-based thin film. The thin film sample 22 is fixed to a semicircular support 26 called a mesh.

薄膜試料22の下には本発明の特徴の一つである孔を有し、つば付き円筒状の外形を持つ炭素部材56が設置されている。孔の直径は1mm、深さは1.5mm、孔底の厚さは0.5mmである。薄膜試料22の右上方にはX線検出素子161が配置されている。薄膜試料22に電子線8を走査して発生するX線401をX線検出素子161で検出することにより薄膜試料22の元素分析をする。   Under the thin film sample 22, a carbon member 56 having a hole having one of the features of the present invention and having a cylindrical outer shape with a collar is installed. The hole diameter is 1 mm, the depth is 1.5 mm, and the hole bottom thickness is 0.5 mm. An X-ray detection element 161 is disposed on the upper right side of the thin film sample 22. The thin film sample 22 is subjected to elemental analysis by detecting the X-ray 401 generated by scanning the thin film sample 22 with the electron beam 8 by the X-ray detection element 161.

炭素板501を磁極707の下面に設置して、薄膜試料22に電子線8を照射して発生する、試料の上方に向かう反射電子205が衝突して発生する反射電子およびX線を低減している。炭素部材56の周辺は材質がタングステンの重金属材503で囲まれている。これにより炭素部材を突き抜けるX線を減衰するようになっている。また、炭素部材56の上部でX線検出器側の部分には、薄膜試料22を接着しているメッシュ26を覆うように炭素部材56に固定するための炭素材質の固定具504が設置されている。固定具504はX線検出素子の検出部周辺と薄膜試料22の電子線照射点を結ぶ円錐に接するように外側に向かって盛り上がった形状と名手いる。これにより炭素部材56の孔の入り口近傍に散乱電子が衝突して発生するX線をなるべく吸収し、X線検出素子に入らないようにしている。また、電子線8は完全な線状のビームではなく多少広がりを持つ。この裾部にある電子がメッシュに衝突するとメッシュの代表的な材質であるNi等の元素に特有なX線が発生し薄膜試料の正確な元素分析を阻害する。本実施例ではメッシュの上側を炭素材で覆うことによりメッシュを構成している元素の特性X線が発生しないようにしている。これらの効果に合わせて、薄膜試料22を透過する電子は炭素部材56の孔に入射するので、実施の形態1の項で述べた効果と同様にX線検出素子で検出される背景X線と薄膜試料22に再衝突する反射電子を低減できる。炭素部材56の孔底の厚さは0.5mmあるので、50kVの加速電圧でも電子線は透過することなく、吸収される。従って、本実施例では下側の磁極708には炭素板を設けていない。   The carbon plate 501 is placed on the lower surface of the magnetic pole 707 to reduce the reflected electrons and X-rays generated by the collision of the reflected electrons 205 that are generated by irradiating the thin film sample 22 with the electron beam 8 toward the upper side of the sample. Yes. The periphery of the carbon member 56 is surrounded by a heavy metal material 503 made of tungsten. As a result, X-rays penetrating the carbon member are attenuated. Also, a carbon material fixture 504 for fixing the thin film sample 22 to the carbon member 56 so as to cover the mesh 26 adhering to the thin film sample 22 is installed on the X-ray detector side above the carbon member 56. Yes. The fixture 504 is well known as a shape that swells outward so as to contact a cone connecting the periphery of the detection portion of the X-ray detection element and the electron beam irradiation point of the thin film sample 22. As a result, X-rays generated by collision of scattered electrons near the entrance of the hole of the carbon member 56 are absorbed as much as possible, and are prevented from entering the X-ray detection element. Further, the electron beam 8 is not a complete linear beam but has a slight spread. When the electrons in the skirt collide with the mesh, X-rays peculiar to elements such as Ni, which is a typical material of the mesh, are generated, thereby hindering accurate elemental analysis of the thin film sample. In this embodiment, the upper side of the mesh is covered with a carbon material so that the characteristic X-rays of the elements constituting the mesh are not generated. In accordance with these effects, electrons that pass through the thin film sample 22 enter the hole of the carbon member 56, so that the background X-rays detected by the X-ray detection element and the effects described in the first embodiment are The reflected electrons that re-impact on the thin film sample 22 can be reduced. Since the thickness of the hole bottom of the carbon member 56 is 0.5 mm, the electron beam is absorbed without being transmitted even at an acceleration voltage of 50 kV. Therefore, in this embodiment, the lower magnetic pole 708 is not provided with a carbon plate.

本実施例においても背景X線雑音、薄膜試料に再衝突する反射電子を大幅に低減できるので、高精度高感度な試料観察装置が可能となる。
<実施の形態6>
本発明の第6の実施例である試料観察装置の概略構成を図19により説明する。本実施例は走査型透過電子顕微鏡に本発明を適用した例で、図19は走査型透過電子顕微鏡電子顕微鏡の対物レンズ周辺の詳細図である。実施の形態5の項で述べたインレンズ型の走査電子顕微鏡と同じ構造となっている。透過型電子顕微鏡の場合には試料を透過する電子線で入射電子線と進行方法がほぼ同じ電子線を回折電子線像を観測して試料の原子配列などの構造を分析するのが主要な機能である。
Also in this embodiment, since background X-ray noise and reflected electrons re-collision with the thin film sample can be greatly reduced, a highly accurate and sensitive sample observation apparatus can be realized.
<Embodiment 6>
A schematic configuration of a sample observation apparatus according to the sixth embodiment of the present invention will be described with reference to FIG. This embodiment is an example in which the present invention is applied to a scanning transmission electron microscope, and FIG. 19 is a detailed view of the periphery of the objective lens of the scanning transmission electron microscope. The structure is the same as that of the in-lens scanning electron microscope described in the fifth embodiment. In the case of a transmission electron microscope, the main function is to analyze the structure such as the atomic arrangement of a sample by observing a diffracted electron beam image of an electron beam that passes through the sample and has the same traveling method as the incident electron beam. It is.

薄膜試料22の下には本発明の特徴の一つである。薄膜試料が上側磁極707と下側磁極708との間に試料台706が設けられている。試料台706にはメッシュ26がと付けられそれに試料が取り付けられている。電子線が試料を通過する際に生じるX線をが試料台やその周辺に散乱して照射され、そこから更にX線が発生しそれが検出素子161に入射すると前回実施例と同様に検出信号のバックグランドを上げてしまう原因となる。これを防ぐために、試料台706を軽元素部材でX線に対し覆う構造とする。具体的には、試料を通過した電子線を下側対物708の下に設けられたカメラユニット(図示はしていない)に入射させるための開口部を有する試料台の内壁部を軽元素で覆うこととする。この軽元素部材を試料台にネジでとめる構造や溶接固定する構造が考えられる。試料台の円筒状試料保持部分は例えば、内径が1mmで長さが3〜5mm肉厚が0.5mmのものが考えられる。薄膜試料22の右上方にはX線検出素子161が配置されている。
薄膜試料22に電子線8を走査して発生するX線401をX線検出素子161で検出することにより薄膜試料22の元素分析をする。
Below the thin film sample 22 is one of the features of the present invention. A sample stage 706 is provided between the upper magnetic pole 707 and the lower magnetic pole 708 for the thin film sample. A mesh 26 is attached to the sample stage 706, and a sample is attached thereto. When X-rays generated when the electron beam passes through the sample are scattered and irradiated on the sample stage and its surroundings, and further X-rays are generated and enter the detection element 161, the detection signal is the same as in the previous embodiment. Cause the background to be raised. In order to prevent this, the sample stage 706 is structured to cover the X-ray with a light element member. Specifically, the inner wall of the sample stage having an opening for allowing the electron beam that has passed through the sample to enter a camera unit (not shown) provided under the lower objective 708 is covered with a light element. I will do it. A structure in which the light element member is fastened to the sample stage with a screw or a structure in which the light element member is fixed by welding can be considered. For example, the cylindrical sample holding portion of the sample stage may have an inner diameter of 1 mm and a length of 3 to 5 mm and a thickness of 0.5 mm. An X-ray detection element 161 is disposed on the upper right side of the thin film sample 22.
The thin film sample 22 is subjected to elemental analysis by detecting the X-ray 401 generated by scanning the thin film sample 22 with the electron beam 8 by the X-ray detection element 161.

試料台706の構造は炭素部材56の孔が貫通している以外は実施の形態5で述べたものと同じである。炭素部材56の孔が貫通しているので試料を透過した電子の一部は対物レンズの下側の磁極708に衝突するものがあるので、磁極708の上面を炭素板502で覆っている。   The structure of the sample stage 706 is the same as that described in the fifth embodiment except that the hole of the carbon member 56 penetrates. Since the hole of the carbon member 56 penetrates, some of the electrons that have passed through the sample collide with the magnetic pole 708 on the lower side of the objective lens, so the upper surface of the magnetic pole 708 is covered with the carbon plate 502.

本実施例においても背景X線雑音、薄膜試料に再衝突する反射電子を大幅に低減できるので、高精度高感度な試料観察装置が可能となる。
<実施の形態7>
本発明の第7の実施例である試料観察装置の概略構成を図20により説明する。本実施例は汎用型の走査電子顕微鏡に本発明を適用した例で、図20は汎用型走査電子顕微鏡電子顕微鏡の対物レンズ周辺の詳細図である。本実施例における電子顕微鏡の対物レンズは試料の上側のみに磁極707を持つ構造になっている。磁極707の下側の空間が広く開いており、大型の試料台801に試料を設置して測定するようになっている。
Also in this embodiment, since background X-ray noise and reflected electrons re-collision with the thin film sample can be greatly reduced, a highly accurate and sensitive sample observation apparatus can be realized.
<Embodiment 7>
A schematic configuration of a sample observation apparatus according to the seventh embodiment of the present invention will be described with reference to FIG. The present embodiment is an example in which the present invention is applied to a general-purpose scanning electron microscope, and FIG. 20 is a detailed view around the objective lens of the general-purpose scanning electron microscope. The objective lens of the electron microscope in this embodiment has a structure having a magnetic pole 707 only on the upper side of the sample. A space below the magnetic pole 707 is wide open, and a sample is placed on a large sample stage 801 for measurement.

一般にこの型の電子顕微鏡では当方的に反射電子が発生するので、X線検出素子161と試料の間には一組の永久磁石からなる反射電子除去器802を設置して、反射電子がX線検出素子161に入射しないようにしている。反射電子除去器の原理は試料の観測点とX線検出素子の検出面で張られる空間を挟んで1組の永久磁石を設置し、磁石間にできる磁界により反射電子が曲げられる現象を利用したものである。実施の形態1から4までのX線検出器では明示しなかったが、反射電子除去器がコリメーターの内部に収納されている。   Generally, in this type of electron microscope, reflected electrons are generated in a direction, so a reflected electron remover 802 made of a pair of permanent magnets is installed between the X-ray detection element 161 and the sample, and the reflected electrons are converted into X-rays. The light does not enter the detection element 161. The principle of the backscattered electron remover is based on the phenomenon that the backscattered electrons are bent by the magnetic field created between the magnets by installing a pair of permanent magnets across the space stretched between the sample observation point and the detection surface of the X-ray detector. Is. Although not clearly shown in the X-ray detectors of the first to fourth embodiments, a backscattered electron remover is housed inside the collimator.

本実施例においても薄膜試料22の直下には本発明の特徴である孔を備えた炭素部材56が設置されている。   Also in this embodiment, a carbon member 56 having a hole, which is a feature of the present invention, is installed immediately below the thin film sample 22.

本実施例においても背景X線雑音、薄膜試料に再衝突する反射電子を大幅に低減できるので、高精度高感度な試料観察装置が可能となる。   Also in this embodiment, since background X-ray noise and reflected electrons re-collision with the thin film sample can be greatly reduced, a highly accurate and sensitive sample observation apparatus can be realized.

以上の実施の形態において、軽元素部材として軽元素材料を加工した部材を用いた例を示したが、金属等で加工した部材に軽元素材料を塗布したものでもよい。この場合、塗布する軽元素材料は電子線が透過しない厚さであることが必要がある。   In the above embodiment, an example in which a member obtained by processing a light element material is used as a light element member. However, a member processed with a metal or the like may be applied with a light element material. In this case, it is necessary that the light element material to be applied has a thickness that does not allow the electron beam to pass therethrough.

以上実施例を整理してみると、第1の発明は、電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台と、該電子ビームを該試料に照射して該試料から発生する電子を検出する電子線検出器とX線を検出するX線検出器のいずれか、または両方を備える試料観察装置において、試料の背後に軽元素材料を含み、かつ、孔を有する部材(吸収部材)を、試料台に設置して、該電子ビームを照射して該試料を観察する機能を有する電子線を用いた試料観察装置。   To summarize the above embodiments, the first invention relates to an electron source, a lens for focusing an electron beam, an electron beam optical system including an electron beam scanning deflector, a sample stage on which a sample is placed, and the electron In a sample observation apparatus provided with either or both of an electron beam detector for irradiating a beam to the sample and detecting electrons generated from the sample and an X-ray detector for detecting X-rays, a light element is provided behind the sample. A sample observation apparatus using an electron beam having a function of observing the sample by irradiating the electron beam by installing a member (absorbing member) including a material and having a hole on a sample stage.

また、第2の発明は、イオン源、イオンビームを集束するレンズ、イオンビーム走査偏向器を備える集束イオンビーム光学系と、電子源、電子ビームを集束するレンズ、電子ビーム走査偏向器を備える電子ビーム光学系と、試料を載置する試料台を備える試料観察装置において、該集束イオンビームを用いて該試料から第2の試料を分離する機能と、該第2の試料を摘出するためのマニピュレータと電子ビームを該微小試料に照射して該試料から発生する電子を検出する電子線検出器とX線を検出するX線検出器のいずれか、または両方を具備し、摘出された該第2の試料の背後に軽元素材料を含み、かつ、孔を有する部材(吸収部材)を、該試料台または該試料台と該第2の試料の間に設置して、該第2の試料を電子ビームで観察する機能を有する点にも有ります。   The second invention is an ion source, a lens for focusing an ion beam, a focused ion beam optical system including an ion beam scanning deflector, an electron source, a lens for focusing an electron beam, and an electron including an electron beam scanning deflector. In a sample observation apparatus including a beam optical system and a sample stage on which a sample is placed, a function of separating a second sample from the sample using the focused ion beam, and a manipulator for extracting the second sample And an electron beam detector for detecting electrons generated from the sample by irradiating the minute sample with the electron beam and an X-ray detector for detecting X-rays, or both, and the extracted second A member (absorbing member) containing a light element material and having a hole behind the sample is placed between the sample stage or the sample stage and the second sample, and the second sample is turned into an electron. The ability to observe with a beam There is also the point to.

更に、第2の発明で、第2の試料を摘出するためのマニピュレータは、該マニピュレータを該試料台と独立に駆動させるマニピュレータ制御装置を具備し、該第2の試料を前記マニピュレータで支持した状態で、観察用荷電粒子ビームの該第2の試料への照射角度可変機能を有することにもあります。また、第2の発明の吸収部材を配置する手段が、吸収部材を先端に有する第2のマニピュレータにより、請求項3記載のマニピュレータに摘出された該第2の試料の背後空間、すなわち、該観測用荷電粒子ビームを発生する装置に対して反対の空間に吸収部材を挿入する方法にあります。また、第2の発明の第2の試料を載置して、請求項2記載の試料台に軽元素材料からなる吸収部材を有する第2の試料台を具備する点にも有ります。
更に第2の発明の第2の試料を載置して、請求項2記載の試料台とは独立に駆動し、観測用荷電ビームの該微小試料への照射位置、角度を可変できる機能と、請求項1記載の軽元素部材を有する第3の試料台を具備することに有ります。
Furthermore, in the second invention, the manipulator for extracting the second sample includes a manipulator control device that drives the manipulator independently from the sample stage, and the second sample is supported by the manipulator. And there is also a function to change the irradiation angle of the charged particle beam for observation to the second sample. Further, the means for disposing the absorbing member of the second invention is a space behind the second sample extracted by the manipulator according to claim 3, that is, the observation by a second manipulator having an absorbing member at the tip. In this method, an absorbing member is inserted in the opposite space to the device that generates the charged particle beam. In addition, the second sample of the second invention is placed, and the second sample stage having an absorbing member made of a light element material is provided on the sample stage according to claim 2.
Furthermore, the second sample of the second invention is placed and driven independently of the sample stage according to claim 2, and the irradiation position and angle of the observation charged beam to the minute sample can be varied, The third sample stage is provided with the light element member according to claim 1.

吸収部材が重元素材料で覆われていて、その吸収部材が少なくとも、炭素、または、ベリリウム、または炭素とベリリウムの複合物で厚さが電子ビームの進入深さより大きいく接地されている点にも有ります。   The absorbing member is covered with a heavy element material, and the absorbing member is at least carbon, beryllium, or a composite of carbon and beryllium and grounded so that the thickness is larger than the penetration depth of the electron beam. There is.

本発明の第一の実施の形態における装置全体構成図。The whole apparatus block diagram in 1st embodiment of this invention. 本発明の第一の実施の形態における装置全体構成で平面図。The top view by the whole apparatus structure in 1st embodiment of this invention. 本発明の第一の実施の形態における装置詳細構成図。The apparatus detailed block diagram in 1st embodiment of this invention. 本発明の微小試料加工方法の例を示す図。The figure which shows the example of the micro sample processing method of this invention. 本発明の微小試料観察方法の例を示す図。The figure which shows the example of the micro sample observation method of this invention. 本発明の第一の実施の形態における詳細構成図。The detailed block diagram in 1st embodiment of this invention. 本発明の第三の実施の形態における主要部詳細図。The principal part detail figure in 3rd embodiment of this invention. 本発明の原理を説明する概略図。Schematic explaining the principle of the present invention. 本発明の第一の実施の形態における別の応用を示す概略図。Schematic which shows another application in 1st embodiment of this invention. 本発明の第一の実施の形態におけるさらに別の応用を示す概略図。Schematic which shows another application in 1st embodiment of this invention. 本発明の第二の実施の形態における主要部詳細図。The principal part detail figure in 2nd embodiment of this invention. 本発明の第二の実施の形態における主要部拡大断面図。The principal part expanded sectional view in 2nd embodiment of this invention. 本発明の第三の実施の形態における装置全体構成を示す図。The figure which shows the whole apparatus structure in 3rd embodiment of this invention. 本発明の第三の実施の形態における主要部詳細図。The principal part detail figure in 3rd embodiment of this invention. 本発明の第三の実施の形態における主要部詳細図。The principal part detail figure in 3rd embodiment of this invention. 本発明の第四の実施の形態における装置全体構成を示す図。The figure which shows the whole apparatus structure in 4th Embodiment of this invention. 本発明の第四の実施の形態における主要部詳細図。The principal part detail figure in the 4th Embodiment of this invention. 本発明の第五の実施の形態における主要部詳細図。The principal part detail figure in the 5th Embodiment of this invention. 本発明の第六の実施の形態における主要部詳細図。The principal part detail figure in the 6th Embodiment of this invention. 本発明の第七の実施の形態における主要部詳細図。The principal part detail figure in the 7th Embodiment of this invention. 従来の装置の概略構成図。The schematic block diagram of the conventional apparatus. 従来の加工方法を示す図。The figure which shows the conventional processing method. 従来の観察方法を示す図。The figure which shows the conventional observation method. 従来の装置の詳細構成図。The detailed block diagram of the conventional apparatus. 本発明の効果を示すX線スペクトル図。The X-ray spectrum figure which shows the effect of this invention.

符号の説明Explanation of symbols

1…イオン源、2…レンズ、3…イオンビーム走査偏向器、4…集束イオンビーム(FIB)、
5…中央制御表示装置、6…二次電子検出器、7…電子銃、8…電子ビーム、9…電子レンズ、
10…電子ビーム走査偏向器、14…マニピュレータ、15…マニピュレータ制御装置、
16…X線検出器、17…堆積ガス供給装置、18…第3試料台、19…第2試料台制御装置、21…ウェーハ、22…微小試料、23…カセット、24…試料台、25…試料台制御装置、31…集束イオンビーム光学系、32…集束イオンビーム光学系(#2)、41…電子ビーム光学系、51…分析装置、55…軽元素部材挿入装置、56…軽元素部材、57…孔、58…第3試料台、59…保持棒、60…真空試料室、61…ウェーハ導入手段、62…ウェーハ搬送手段、63…載置台、64…ハッチ、
70…マニピュレータ、71…プローブ保持部、72…プローブ、75…アシストデポ膜、
77…試料回収トレイ、81…カセット導入手段、82…ウェーハ搬送ロボット、83…オリエンテーション調整手段、90…ガス導入管、100…操作制御部、101…試料、105…堆積性ガス、107…角孔、108…底孔、109…きりかき溝、110…ガスノズル
161…X線検出素子、162…コリメータ、201−203…透過電子、205−207…後方散乱(反射)電子、301−304…2次電子、401−408…X線、409…X線検出角、500−504…炭素板、706…試料台、802…反射電子除去器
p1…観察箇所、p2…観察分析面、p3…観察分析面、s1…内部断面、s2…支持部。

DESCRIPTION OF SYMBOLS 1 ... Ion source, 2 ... Lens, 3 ... Ion beam scanning deflector, 4 ... Focused ion beam (FIB),
5 ... Central control display device, 6 ... Secondary electron detector, 7 ... Electron gun, 8 ... Electron beam, 9 ... Electron lens,
DESCRIPTION OF SYMBOLS 10 ... Electron beam scanning deflector, 14 ... Manipulator, 15 ... Manipulator control apparatus,
DESCRIPTION OF SYMBOLS 16 ... X-ray detector, 17 ... Deposition gas supply apparatus, 18 ... 3rd sample stand, 19 ... 2nd sample stand control apparatus, 21 ... Wafer, 22 ... Micro sample, 23 ... Cassette, 24 ... Sample stand, 25 ... Sample stage control device, 31 ... focused ion beam optical system, 32 ... focused ion beam optical system (# 2), 41 ... electron beam optical system, 51 ... analysis device, 55 ... light element member insertion device, 56 ... light element member , 57 ... hole, 58 ... third sample stand, 59 ... holding rod, 60 ... vacuum sample chamber, 61 ... wafer introduction means, 62 ... wafer transfer means, 63 ... mounting table, 64 ... hatch,
70 ... Manipulator, 71 ... Probe holder, 72 ... Probe, 75 ... Assist deposit film,
77 ... Sample collection tray, 81 ... Cassette introduction means, 82 ... Wafer transfer robot, 83 ... Orientation adjustment means, 90 ... Gas introduction pipe, 100 ... Operation control unit, 101 ... Sample, 105 ... Depositionable gas, 107 ... Square hole , 108 ... bottom hole, 109 ... groove, 110 ... gas nozzle 161 ... X-ray detection element, 162 ... collimator, 201-203 ... transmitted electrons, 205-207 ... backscattered (reflected) electrons, 301-304 ... secondary Electron, 401-408 ... X-ray, 409 ... X-ray detection angle, 500-504 ... Carbon plate, 706 ... Sample stand, 802 ... Reflected electron remover p1 ... Observation location, p2 ... Observation analysis plane, p3 ... Observation analysis plane , S1 ... internal cross section, s2 ... support part.

Claims (10)

電子源、電子ビームを集束するレンズ、電子ビームを走査する偏向器と、試料に電子ビームを照射するための対物レンズと、試料を載置する試料台と、電子ビームを試料片に照射して試料片から発生するX線を検出するX線検出器と、試料片を保持する第1の保持器と、前記試料台と前記第1の保持器の間に設けた軽元素材料を含みX線を低減する部材から成る遮蔽部材と、前記遮蔽部材を保持する第2の保持器と、を有することを特徴とする電子線を用いた試料観察装置。   An electron source, a lens that focuses the electron beam, a deflector that scans the electron beam, an objective lens that irradiates the sample with the electron beam, a sample stage on which the sample is placed, and an electron beam that irradiates the sample piece X-ray detector including an X-ray detector for detecting X-rays generated from the sample piece, a first holder for holding the sample piece, and a light element material provided between the sample stage and the first holder A sample observation apparatus using an electron beam, comprising: a shielding member made of a member for reducing the shielding property; and a second cage for holding the shielding member. 電子源、電子ビームを集束するレンズ、電子ビームを走査する偏向器と、試料に電子ビームを照射するための対物レンズと、一部が軽元素材料を含みX線を低減する部材から成る試料台と、試料片を保持する保持器と、前記保持に取り付けられた試料片を前記試料台の一部に接触し試料片に電子ビームを照射して試料片から発生するX線を検出するX線検出器と、を有することを特徴とする電子線を用いた試料観察装置。   A sample stage comprising an electron source, a lens for focusing the electron beam, a deflector for scanning the electron beam, an objective lens for irradiating the sample with the electron beam, and a member partially containing a light element material and reducing X-rays A holder for holding the sample piece, and an X-ray for detecting an X-ray generated from the sample piece by contacting the sample piece attached to the holder with a part of the sample stage and irradiating the sample piece with an electron beam And a sample observation device using an electron beam. 電子源、電子ビームを集束するレンズ、電子ビームを走査する偏向器と、試料に電子ビームを照射するための対物レンズと、試料を載置する第1の試料台と、前記第1の試料台上に設けられた第2の試料台と、前記第2の試料台の一部が軽元素材料を含みX線を低減する部材からなる遮蔽部材と、前記第2の試料台上に載置された試料に電子ビームを照射して試料から発生するX線を検出するX線検出器と、を有することを特徴とする電子線を用いた試料観察装置。   An electron source, a lens for focusing the electron beam, a deflector for scanning the electron beam, an objective lens for irradiating the sample with the electron beam, a first sample stage on which the sample is placed, and the first sample stage A second sample stage provided above, a shielding member made of a member that contains a light element material and reduces X-rays, and a part of the second sample stage, and is placed on the second sample stage And an X-ray detector that detects X-rays generated from the sample by irradiating the sample with an electron beam, and a sample observation apparatus using an electron beam. 前記遮蔽部材に開口部を有することを特徴する請求項1に記載の電子線を用いた試料観察装置。   The sample observation apparatus using an electron beam according to claim 1, wherein the shielding member has an opening. 電子源、電子ビームを集束するレンズ、電子ビームを走査する偏向器と、試料に電子ビームを照射するための対物レンズと、試料を載置する試料台と、電子ビームを試料に照射して試料から発生するX線を検出するX線検出器と、前記試料台に筒状で内壁が軽元素材料を含みX線を低減する部材から成る試料を保持するの保持器と、を有することを特徴とする電子線を用いた試料観察装置。   An electron source, a lens for focusing the electron beam, a deflector for scanning the electron beam, an objective lens for irradiating the sample with the electron beam, a sample stage on which the sample is placed, and a sample by irradiating the sample with the electron beam An X-ray detector for detecting X-rays generated from the sample; and a holder for holding a sample made of a member having a cylindrical shape and an inner wall containing a light element material and reducing X-rays on the sample stage. A sample observation device using an electron beam. 前記対物レンズの内部に前記保持器が配置されていることを特徴する請求項5記載の電子線を用いた試料観察装置。   The sample observation apparatus using an electron beam according to claim 5, wherein the cage is disposed inside the objective lens. イオン源、イオンビームを集束するレンズ、イオンビーム走査する偏向器を備える集束イオンビーム光学系と、電子源、電子ビームを集束するレンズ、電子ビーム走査する偏向器を備える電子ビーム光学系と、試料を載置する試料台と、集束イオンビームを用いて試料から試料片を分離し、試料片を摘出するためのマニピュレータと、電子ビームを試料片に照射して試料片から発生するX線を検出するX線検出器と、摘出された試料片の背後に軽元素材料を含む吸収部材と、試料片を電子ビームで観察する機能と、を有することを特徴とする電子線を用いた試料観察装置。   A focused ion beam optical system including an ion source, a lens for focusing an ion beam, a deflector for scanning an ion beam, an electron source, a lens for focusing an electron beam, an electron beam optical system including a deflector for scanning an electron beam, and a sample A sample stage, a manipulator for separating the sample piece from the sample using a focused ion beam, and extracting the sample piece, and irradiating the sample piece with the electron beam to detect X-rays generated from the sample piece A sample observation apparatus using an electron beam, characterized by having an X-ray detector to perform, an absorbing member including a light element material behind the extracted sample piece, and a function of observing the sample piece with an electron beam . 電子源、電子ビームを集束する工程と、電子ビームを偏向する工程と、、試料を試料台に載置する工程と、試料に電子ビームを試料に照射する工程と、電子ビームを試料に照射して試料から発生するX線を検出する工程と、前記試料台の試料から試料片を取り出すための試料片を保持する保持工程と、前記試料台から試料片を分離する工程と、と前記保持工程で保持された試料片を所定の位置に相対的に移動する工程と、軽元素材料を含みX線を低減する部材から成る遮蔽部材を前記試料台と前記保持器との間に設定する工程と、を有することを特徴とする電子線を用いた試料観察方法。   An electron source, a step of focusing the electron beam, a step of deflecting the electron beam, a step of placing the sample on the sample stage, a step of irradiating the sample with the electron beam, and irradiating the sample with the electron beam Detecting the X-rays generated from the sample, holding the sample piece for removing the sample piece from the sample on the sample stage, separating the sample piece from the sample stage, and the holding step A step of relatively moving the sample piece held at a predetermined position, and a step of setting a shielding member made of a member containing a light element material and reducing X-rays between the sample stage and the holder. The sample observation method using the electron beam characterized by having. イオン源からのイオンビームを集束する工程と、集束されたイオンビームで試料台上の試料から分離するために試料に保持器を固定する工程と、前記保持器に分離された試料片を取り付け所定位置に相対的に移動する工程と、前記試料台と前記保持器との間に軽元素材料を含みX線を低減する部材から成る遮蔽部材を配置する工程と、電子源からの電子ビームを集束する工程と、電子ビームを試料片上を照射して偏向する工程と、電子ビームを試料片を照射して試料から発生するX線を検出する工程と、を有することを特徴とする電子線を用いた試料観察方法。   A step of focusing the ion beam from the ion source, a step of fixing a holder to the sample for separation from the sample on the sample stage with the focused ion beam, and attaching a sample piece separated to the holder A step of moving relative to a position, a step of arranging a shielding member made of a member containing a light element material and reducing X-rays between the sample stage and the holder, and focusing an electron beam from an electron source An electron beam comprising: a step of deflecting an electron beam on the sample piece; and a step of irradiating the sample piece with the electron beam to detect X-rays generated from the sample. Sample observation method. 凹状で軽元素材料を含みX線を低減する遮蔽領域を含む試料台に試料を載置する工程と、イオン源からのイオンビームを集束する工程と、集束されたイオンビームで前記試料台上の試料から試料片を分離するために試料に保持器を固定する工程と、前記保持器に分離された試料片を取り付け前記試料台の前記遮蔽領域に相対的に移動する工程と、電子源からの電子ビームを集束する工程と、電子ビームを試料片上を照射して偏向する工程と、電子ビームを試料片を照射して試料から発生するX線を検出する工程と、を有することを特徴とする電子線を用いた試料観察方法。   A step of placing the sample on a sample stage including a concave, light element material and including a shielding region for reducing X-rays, a step of focusing an ion beam from an ion source, and a focused ion beam on the sample stage Fixing the holder to the sample in order to separate the sample piece from the sample; attaching the sample piece separated to the holder; and moving the sample piece relative to the shielding area of the sample stage; and A step of focusing the electron beam, a step of irradiating the sample with the electron beam and deflecting the sample, and a step of detecting the X-ray generated from the sample by irradiating the sample with the electron beam. Sample observation method using electron beam.
JP2006096411A 2006-03-31 2006-03-31 Sample observation device and method using electron beam Withdrawn JP2006194907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096411A JP2006194907A (en) 2006-03-31 2006-03-31 Sample observation device and method using electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096411A JP2006194907A (en) 2006-03-31 2006-03-31 Sample observation device and method using electron beam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001346849A Division JP3820964B2 (en) 2001-11-13 2001-11-13 Sample observation apparatus and method using electron beam

Publications (1)

Publication Number Publication Date
JP2006194907A true JP2006194907A (en) 2006-07-27

Family

ID=36801062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096411A Withdrawn JP2006194907A (en) 2006-03-31 2006-03-31 Sample observation device and method using electron beam

Country Status (1)

Country Link
JP (1) JP2006194907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305794A (en) * 2007-06-06 2008-12-18 Carl Zeiss Nts Gmbh Particle beam device and method for using with particle beam device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164135A (en) * 1982-03-25 1983-09-29 Agency Of Ind Science & Technol Semiconductor processing device using convergent ion beam
JPS62217550A (en) * 1986-03-19 1987-09-25 Toray Ind Inc Element analysis
JPH06231720A (en) * 1993-02-05 1994-08-19 Seiko Instr Inc Converged charged beam device and working observing method
JPH07273087A (en) * 1994-03-28 1995-10-20 Canon Inc Converged ion beam processing apparatus
JPH1145679A (en) * 1998-05-15 1999-02-16 Hitachi Ltd Cross section observing device
JP2000162102A (en) * 1998-11-25 2000-06-16 Hitachi Ltd Sample preparing device and sample preparing method
JP2001021467A (en) * 1999-07-08 2001-01-26 Hitachi Ltd Sample preparing method through use of focusing ion beam and focusing ion beam preparing device
JP2001084951A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Working observation device and sample working method
JP3874011B2 (en) * 2005-04-04 2007-01-31 株式会社日立製作所 Microsample processing observation method and apparatus
JP3941816B2 (en) * 2005-04-04 2007-07-04 株式会社日立製作所 Microsample processing observation method and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164135A (en) * 1982-03-25 1983-09-29 Agency Of Ind Science & Technol Semiconductor processing device using convergent ion beam
JPS62217550A (en) * 1986-03-19 1987-09-25 Toray Ind Inc Element analysis
JPH06231720A (en) * 1993-02-05 1994-08-19 Seiko Instr Inc Converged charged beam device and working observing method
JPH07273087A (en) * 1994-03-28 1995-10-20 Canon Inc Converged ion beam processing apparatus
JPH1145679A (en) * 1998-05-15 1999-02-16 Hitachi Ltd Cross section observing device
JP2000162102A (en) * 1998-11-25 2000-06-16 Hitachi Ltd Sample preparing device and sample preparing method
JP2001021467A (en) * 1999-07-08 2001-01-26 Hitachi Ltd Sample preparing method through use of focusing ion beam and focusing ion beam preparing device
JP2001084951A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Working observation device and sample working method
JP3874011B2 (en) * 2005-04-04 2007-01-31 株式会社日立製作所 Microsample processing observation method and apparatus
JP3941816B2 (en) * 2005-04-04 2007-07-04 株式会社日立製作所 Microsample processing observation method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305794A (en) * 2007-06-06 2008-12-18 Carl Zeiss Nts Gmbh Particle beam device and method for using with particle beam device
US8487270B2 (en) 2007-06-06 2013-07-16 Carl Zeiss Microscopy Gmbh Particle beam device and method for use in a particle beam device

Similar Documents

Publication Publication Date Title
JP3820964B2 (en) Sample observation apparatus and method using electron beam
KR102221931B1 (en) Method of Performing Electron Diffraction Pattern Analysis Upon a Sample
US8723144B2 (en) Apparatus for sample formation and microanalysis in a vacuum chamber
US8314386B2 (en) High collection efficiency X-ray spectrometer system with integrated electron beam stop, electron detector and X-ray detector for use on electron-optical beam lines and microscopes
US10629409B2 (en) Specimen preparation and inspection in a dual-beam charged particle microscope
US7659506B2 (en) Method and system for generating and reviewing a thin sample
EP2899744A1 (en) Method for preparing and analyzing an object as well as particle beam device for performing the method
EP2610891B1 (en) Charged particle beam device and sample observation method
CZ2012568A3 (en) Composite charged-particle-beam apparatus
EP4330657A1 (en) Back-scatter electrons (bse) imaging with a sem in tilted mode using cap bias voltage
JP2006047206A (en) Compound type microscope
JP4590590B2 (en) SEM for transmission operation with position sensitive detector
JP2006194907A (en) Sample observation device and method using electron beam
JP2020140961A (en) Multi-Beam Scanning Transmission Charged Particle Microscope
JP2012220337A (en) Analyzer for charged particle beam and analytical method therefor
JP2004151004A (en) Film thickness measuring method for groove sidewall and its device
JP2006156134A (en) Reflection imaging electron microscope
JPH10154480A (en) Microanalysis device
US8502142B2 (en) Charged particle beam analysis while part of a sample to be analyzed remains in a generated opening of the sample
JPH0883589A (en) Scanning electron microscope
JPH08148111A (en) Scanning electron microscope having automatic foreign matter search device
JP2005203383A (en) Micro testpiece processing and observation method and device
JP2005203382A (en) Micro testpiece processing and observation method and device
JP2002365248A (en) Method for analyzing sample
CN115516597A (en) Charged particle beam device and method for examining and/or imaging a sample

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100611

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100702

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101104