JP2002284597A - Ferrite magnetic composite substrate - Google Patents

Ferrite magnetic composite substrate

Info

Publication number
JP2002284597A
JP2002284597A JP2001089602A JP2001089602A JP2002284597A JP 2002284597 A JP2002284597 A JP 2002284597A JP 2001089602 A JP2001089602 A JP 2001089602A JP 2001089602 A JP2001089602 A JP 2001089602A JP 2002284597 A JP2002284597 A JP 2002284597A
Authority
JP
Japan
Prior art keywords
substrate
ferrite
ferrite magnetic
film
composite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001089602A
Other languages
Japanese (ja)
Inventor
Mamoru Yoshimoto
護 吉本
Mitsuyoshi Matsushita
三芳 松下
Yasutaka Fukuda
泰隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP2001089602A priority Critical patent/JP2002284597A/en
Publication of JP2002284597A publication Critical patent/JP2002284597A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferrite magnetic composite substrate having soft magnetic characteristics further improved than ever. SOLUTION: In the ferrite magnetic composite substrate where a ferrite magnetic film that is epitaxially grown with a spinel structure is formed on a base board, the base board is made to be a single crystal ferrite with the spinel type crystal structure. In this case, the Curie temperature of the ferrite magnetic film is preferably >=20 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フェライト磁性複
合基板に係わり、特に、マイクロ磁気デバイスに利用可
能な磁気特性に優れたフェライト磁性複合基板に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite magnetic composite substrate, and more particularly to a ferrite magnetic composite substrate having excellent magnetic properties and usable for a micro magnetic device.

【0002】[0002]

【従来の技術】電子機器の小型・高性能化という最近の
動向の中で、磁気素子を高周波で駆動させるための開発
が進んでいる。この高周波駆動の実用化を図るには、磁
性体内で発生する渦電流を抑制することが重要な課題と
なっている。例えば、パワー系インダクタに使用する磁
気素子においては、高周波駆動によって渦電流の損失が
生じ、エネルギー効率が低下するという問題がある。こ
れを解決するため、例えば、特開平8−138934号
公報は、NaCl型結晶構造の多結晶酸化物(例えば、
MgO)からなる基板上に、電気抵抗の大きなスピネル
型結晶構造の多結晶フェライト磁性膜をエピタキシャル
に形成させた軟磁性膜を開示している。ここで、エピタ
キシャルとは、一つの結晶が、他の結晶の表面にある定
まった方位関係をとって成長する状態をいう。
2. Description of the Related Art With the recent trend of miniaturization and high performance of electronic equipment, development for driving a magnetic element at a high frequency is progressing. To put this high-frequency drive to practical use, it is important to suppress eddy currents generated in the magnetic material. For example, in a magnetic element used for a power inductor, there is a problem that eddy current is lost due to high-frequency driving and energy efficiency is reduced. To solve this problem, for example, Japanese Patent Application Laid-Open No. 8-138934 discloses a polycrystalline oxide having a NaCl type crystal structure (for example,
A soft magnetic film is disclosed in which a polycrystalline ferrite magnetic film having a spinel type crystal structure having a large electric resistance is formed epitaxially on a substrate made of MgO). Here, the term "epitaxial" refers to a state in which one crystal grows in a certain orientation on the surface of another crystal.

【0003】[0003]

【発明が解決しようとする課題】ところが、これまでの
フェライト磁性膜の特性は、そのバルク材あるいは金属
磁性膜に比べてその軟磁気特性(保磁力で評価)が大き
く劣っており、実用に供されていない状況にある。フェ
ライト磁性膜の軟磁気特性の劣化原因はいくつか考えら
れるが、該膜にかかる歪みが磁歪定数と結合して大きな
磁気異方性を発生することに起因するところが大きい。
この歪みの発生原因の一つに、結晶格子のミスマッチン
グがあり、このことを考慮して、前記特開平8−138
934号公報に記載されているように、基板にMgOを
利用する試みが多い。これは、MgOの格子定数0.4
2nmの2倍の値がフェライトの格子定数約0.84n
mにほぼ一致するためである。
However, the characteristics of the conventional ferrite magnetic film are far inferior to the soft magnetic characteristics (evaluated by the coercive force) as compared with the bulk material or the metal magnetic film. In a situation that has not been done. Although there are several possible causes of the deterioration of the soft magnetic properties of the ferrite magnetic film, a large part is caused by the fact that the strain applied to the film is combined with the magnetostriction constant to generate a large magnetic anisotropy.
One of the causes of the distortion is a mismatch of crystal lattices.
As described in JP-A-934, there are many attempts to use MgO for the substrate. This is because the lattice constant of MgO is 0.4
The value twice as large as 2 nm is the lattice constant of ferrite of about 0.84n.
This is because they substantially match m.

【0004】しかしながら、例えばJ.Appl.Ph
ys.81(1997)6884に開示されているよう
に、基板にMgOを使っても、フェライト磁性膜の磁気
特性の劣化は依然として大きく、実用化に対して不十分
な状況にある。
However, for example, in J. Appl. Ph
ys. As disclosed in JP 81 (1997) 6884, even if MgO is used for the substrate, the magnetic properties of the ferrite magnetic film are still greatly degraded, which is insufficient for practical use.

【0005】本発明は、かかる事情に鑑み、従来より軟
磁気特性に優れたフェライト磁性複合基板を提供するこ
とを目的としている。
[0005] In view of such circumstances, an object of the present invention is to provide a ferrite magnetic composite substrate having excellent soft magnetic characteristics.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意検討を重ね,その成果を本発明に具現化
した。
Means for Solving the Problems The inventor has conducted intensive studies to achieve the above object, and has embodied the results in the present invention.

【0007】すなわち、本発明は、基板上に、エピタキ
シャル成長させたスピネル型結晶構造のフェライト磁性
膜を形成したフェライト磁性複合基板において、前記基
板がスピネル型結晶構造の単結晶フェライトであること
を特徴とするフェライト磁性複合基板である。この場
合、前記フェライト磁性膜のキュリー温度が20℃以上
であることが好ましい。
That is, the present invention provides a ferrite magnetic composite substrate in which a ferrite magnetic film having a spinel crystal structure is epitaxially grown on a substrate, wherein the substrate is a single crystal ferrite having a spinel crystal structure. This is a ferrite magnetic composite substrate. In this case, the Curie temperature of the ferrite magnetic film is preferably 20 ° C. or higher.

【0008】本発明では、フェライト磁性膜をエピタキ
シャルに成長させる基板として、スピネル型結晶構造で
ある単結晶フェライトを用いるようにしたので、基板と
フェライト磁性膜との格子定数値が近くなるばかりでな
く、熱膨張率も接近するようになる。その結果、従来よ
り良好な軟磁気特性を有するをフェライト磁性複合基板
が実現できるようになる。
In the present invention, a single crystal ferrite having a spinel type crystal structure is used as a substrate on which a ferrite magnetic film is epitaxially grown. , The coefficient of thermal expansion also approaches. As a result, it becomes possible to realize a ferrite magnetic composite substrate having better soft magnetic characteristics than before.

【0009】[0009]

【発明の実施の形態】以下に、発明をなすに至った経緯
をまじえ、本発明の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below on the basis of the circumstances leading to the invention.

【0010】まず、発明者は、基板をMgOとした場合
に達成できなかったことを見直した。そして、基板と磁
性膜との熱膨張率の違いに着眼した。基板は、その上に
薄膜を形成する際、数100℃以上に加熱されるが、熱
膨張率が基板とフェライトで大きく違うと、成膜後の冷
却時に大きな歪みが膜中に発生し、軟磁気特性の劣化が
起きると考えられるからである。そこで、格子定数だけ
でなく、熱膨張率も成膜物質とマッチングする物質とす
ることにし、該物質の発見に努めた。その結果、表1に
示すように、基板にスピネル結晶構造の単結晶フェライ
トを利用するのが良いことを知り、本発明を完成させた
のである。
First, the inventor reviewed what could not be achieved when the substrate was made of MgO. Then, attention was paid to the difference in the coefficient of thermal expansion between the substrate and the magnetic film. The substrate is heated to several hundred degrees Celsius or more when a thin film is formed thereon. However, if the coefficient of thermal expansion differs greatly between the substrate and ferrite, large distortion occurs in the film upon cooling after film formation, and softening occurs. This is because deterioration of the magnetic characteristics is considered to occur. Therefore, the inventors decided not only the lattice constant but also the coefficient of thermal expansion to be a substance matching the film-forming substance, and worked to find the substance. As a result, as shown in Table 1, it was found that it was better to use single crystal ferrite having a spinel crystal structure for the substrate, and the present invention was completed.

【0011】[0011]

【表1】 [Table 1]

【0012】本発明では、基板としては、その上にエピ
タキシャルにフェライト磁性膜を成長させるスピネル結
晶構造の単結晶フェライトであれば良いが、下記の要件
が加わると一層好適である。 (A)基板の格子定数が、成膜されるフェライトの格子
定数の−10%〜+10%であること:格子定数のミス
マッチによる歪みが磁歪定数と結びついて磁気異方性を
発生し、軟磁気特性を劣化させる。この時、−10%〜
+10%を超えるミスマッチだと、その劣化度合いが大
きいので、基板の格子定数が成膜されるフェライト磁性
膜の格子定数の−10%〜+10%の範囲内にあると良
い。 (B)基板の熱膨張率が減膜されるフェライト膜の−1
0%〜+10%であること:数百℃で成膜後、冷却過程
で歪みが発生し、上記(A)と同じ理由で軟磁気特性を
劣化させる。この時、−10%〜+10%を超えるミス
マッチだとその劣化度合が大きくなるので、基板の熱膨
張率が成膜されるフェライト磁性膜の−10%〜+10
%の範囲にあると良い。 (C)基板のキュリー温度が20℃以下であること:基
板が室温で大きな磁化を持つと、基板全体に外部磁界が
かかるような使い方ができなくなる。従って、基板のキ
ュリー温度が20℃以下、すなわち室温で非磁性(常磁
性)であるとより好適である。
In the present invention, the substrate may be a single-crystal ferrite having a spinel crystal structure on which a ferrite magnetic film is epitaxially grown, but it is more preferable if the following requirements are added. (A) The lattice constant of the substrate is -10% to + 10% of the lattice constant of the ferrite film to be formed: the distortion due to the mismatch of the lattice constant is associated with the magnetostriction constant to generate magnetic anisotropy, Deteriorate characteristics. At this time, -10% ~
If the mismatch exceeds + 10%, the degree of deterioration is large. Therefore, the lattice constant of the substrate is preferably in the range of −10% to + 10% of the lattice constant of the ferrite magnetic film to be formed. (B) -1 of ferrite film whose coefficient of thermal expansion of the substrate is reduced
0% to + 10%: After film formation at several hundred degrees Celsius, distortion occurs in the cooling process, and the soft magnetic characteristics are deteriorated for the same reason as in the above (A). At this time, if the mismatch exceeds -10% to + 10%, the degree of deterioration increases. Therefore, the coefficient of thermal expansion of the substrate is -10% to + 10% of the ferrite magnetic film to be formed.
% Should be in the range. (C) The Curie temperature of the substrate is 20 ° C. or less: When the substrate has a large magnetization at room temperature, it cannot be used in such a manner that an external magnetic field is applied to the entire substrate. Therefore, it is more preferable that the substrate has a Curie temperature of 20 ° C. or lower, that is, non-magnetic (paramagnetic) at room temperature.

【0013】なお、基板に用いるスピネル結晶構造の単
結晶フェライトとしては、Znフェライト(ZnFe2
4)を用いれば良い。その格子定数や熱膨張率を、Z
nフェライトの一部をCr,Mn,Fe,Co,Ni,
Cu,Ti,Zr,V,Hf,Nb,Taから選ばれた
1種以上の元素で置換して調整できるからである。その
場合、金属原子の20原子%以下の置換が好ましい。2
0原子%を超えると、基板のキュリー温度が室温を超え
たり、単結晶化し難くなるからである。
The single-crystal ferrite having a spinel crystal structure used for the substrate includes Zn ferrite (ZnFe 2
O 4 ) may be used. The lattice constant and coefficient of thermal expansion are expressed as Z
Part of the n ferrite is Cr, Mn, Fe, Co, Ni,
This is because the adjustment can be performed by substituting at least one element selected from Cu, Ti, Zr, V, Hf, Nb, and Ta. In that case, substitution of 20 atom% or less of the metal atom is preferable. 2
If it exceeds 0 atomic%, the Curie temperature of the substrate exceeds room temperature or it becomes difficult to form a single crystal.

【0014】これに対して、フェライト磁性膜は、従来
より利用しているスピネル結晶構造のものであれば、い
かなる組成のもので良い。つまり、その格子定数や熱膨
張率にマッチングするように、基板を選択すれば良いか
らである。従って、フェライト磁性膜と基板とでフェラ
イトの組成が異なっていてもかまわない。また、この磁
性膜をスピネル結晶構造とするのは、磁気特性を良好に
するためであり、エピタキシャル成長させるのは、単結
晶として良好な磁気特性を得るためであることも従来通
りである。さらに、膜厚は用途により異なるが、0.1
〜10μm程度が好ましい。ただし、大きな磁性を保持
するため、そのキュリー温度は、20℃以上であること
が好ましい。
On the other hand, the ferrite magnetic film may have any composition as long as it has a conventionally used spinel crystal structure. That is, the substrate may be selected so as to match the lattice constant and the coefficient of thermal expansion. Therefore, the ferrite composition may be different between the ferrite magnetic film and the substrate. The spinel crystal structure of the magnetic film is used to improve the magnetic properties, and the epitaxial growth is conventionally performed to obtain good magnetic properties as a single crystal. Further, the film thickness depends on the application,
About 10 to about 10 μm is preferable. However, the Curie temperature is preferably 20 ° C. or higher in order to maintain large magnetism.

【0015】[0015]

【実施例】(実施例1)本発明の効果を確認するため、
スピネル結晶構造のMn0.1Zn0.9Fe24組成の単結
晶フェライト(結晶方位(111))を基板にして、そ
の上にNi0.4Zn0.6Fe24組成のフェライト磁性膜
をPLD(Pulse LaserDepositio
n)法で成膜し、フェライト磁性複合基板を製作した。
その際、フェライト磁性膜は、スピネル結晶構造で、し
かもその結晶は基板に対してエピタキシャル成長させ
た。成膜条件は、以下の通りである。
EXAMPLES (Example 1) In order to confirm the effects of the present invention,
A single crystal ferrite (crystal orientation (111)) having a composition of Mn 0.1 Zn 0.9 Fe 2 O 4 having a spinel crystal structure is used as a substrate, and a ferrite magnetic film having a composition of Ni 0.4 Zn 0.6 Fe 2 O 4 is formed thereon by PLD (Pulse Laser Deposition).
A film was formed by the method n) to produce a ferrite magnetic composite substrate.
At that time, the ferrite magnetic film had a spinel crystal structure, and the crystal was epitaxially grown on the substrate. The film forming conditions are as follows.

【0016】基板温度 400℃ 酸素分圧 1.0×10-6Torr レーザーパワー 2.0J/cm2 レーザー周波数 5Hz 成膜速度 0.07A/pulse(実施例2〜4)
表2に示す組成であるスピネル結晶構造の単結晶フェラ
イトを基板として、その上に表2に示す組成のフェライ
ト磁性膜を前記PLD法で成膜し、フェライト磁性複合
基板を作製した。その際、フェライト磁性膜も、スピネ
ル結晶構造で、しかもその結晶は基板に対してエピタキ
シャル成長させた。成膜条件は実施例1の場合と同じで
ある。 (比較例1)実施例1と同一組成のフェライト磁性膜を
MgO単結晶(結晶方位(111))基板上に成膜し、
フェライト磁性複合基板を作製した。その際、フェライ
ト磁性膜は、スピネル結晶構造で、しかもその結晶は基
板に対してエピタキシャル成長させた。成膜条件は実施
例1の場合と同じである。
Substrate temperature 400 ° C. Oxygen partial pressure 1.0 × 10 −6 Torr Laser power 2.0 J / cm 2 Laser frequency 5 Hz Film formation rate 0.07 A / pulse (Examples 2 to 4)
A ferrite magnetic film having a composition shown in Table 2 was formed thereon by a PLD method using a single crystal ferrite having a spinel crystal structure having a composition shown in Table 2 as a substrate, thereby producing a ferrite magnetic composite substrate. At this time, the ferrite magnetic film also had a spinel crystal structure, and the crystal was epitaxially grown on the substrate. The film forming conditions are the same as in the first embodiment. Comparative Example 1 A ferrite magnetic film having the same composition as in Example 1 was formed on an MgO single crystal (crystal orientation (111)) substrate.
A ferrite magnetic composite substrate was manufactured. At that time, the ferrite magnetic film had a spinel crystal structure, and the crystal was epitaxially grown on the substrate. The film forming conditions are the same as in the first embodiment.

【0017】実施例1〜4及び比較例1で作製したフェ
ライト磁性複合基板は、反射型高速電子線回折(RHE
ED)及びX線回折で調査した。その結果、いずれの基
板も、その上にフェライト磁性膜が方位(111)でエ
ピタキシャル成長していることが確認された。また、磁
気特性を、一括して表2に示した。
The ferrite magnetic composite substrates produced in Examples 1 to 4 and Comparative Example 1 were manufactured by a reflection type high-speed electron beam diffraction (RHE).
ED) and X-ray diffraction. As a result, it was confirmed that the ferrite magnetic film was epitaxially grown on each of the substrates in the orientation (111). Table 2 shows the magnetic properties in a lump.

【0018】[0018]

【表2】 [Table 2]

【0019】表2より、本発明に係るフェライト磁性複
合基板は、軟磁気特性(保磁力)が非常に良好であるこ
とが明らかである。
From Table 2, it is clear that the ferrite magnetic composite substrate according to the present invention has very good soft magnetic properties (coercive force).

【0020】[0020]

【発明の効果】以上述べたように、本発明により、従来
より良好な軟磁気特性を有するをフェライト磁性複合基
板が実現される。
As described above, according to the present invention, a ferrite magnetic composite substrate having better soft magnetic characteristics than the conventional one is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フェライト磁性基板の断面図である。FIG. 1 is a sectional view of a ferrite magnetic substrate.

【符号の説明】[Explanation of symbols]

1 フェライト磁性膜 2 基板 3 フェライト磁性複合基板 DESCRIPTION OF SYMBOLS 1 Ferrite magnetic film 2 Substrate 3 Ferrite magnetic composite substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 泰隆 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4G077 AA03 BC05 DA03 EA02 EA05 EA07 HA03 4K029 AA04 BA50 BB09 BC06 BD11 CA02 DB20 5E041 AB01 BD05 CA01 5E049 AB04 AC03 BA12 DB01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasutaka Fukuda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in Technical Research Institute, Kawasaki Steel Co., Ltd. 4G077 AA03 BC05 DA03 EA02 EA05 EA07 HA03 4K029 AA04 BA50 BB09 BC06 BD11 CA02 DB20 5E041 AB01 BD05 CA01 5E049 AB04 AC03 BA12 DB01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、エピタキシャル成長させたス
ピネル型結晶構造のフェライト磁性膜を形成したフェラ
イト磁性複合基板において、 前記基板がスピネル型結晶構造の単結晶フェライトであ
ることを特徴とするフェライト磁性複合基板。
1. A ferrite magnetic composite substrate comprising a substrate and a ferrite magnetic film having a spinel crystal structure epitaxially grown thereon, wherein the substrate is a single crystal ferrite having a spinel crystal structure. substrate.
【請求項2】 前記フェライト磁性膜のキュリー温度が
20℃以上であることを特徴とする請求項1記載のフェ
ライト磁性複合基板。
2. The ferrite magnetic composite substrate according to claim 1, wherein the Curie temperature of the ferrite magnetic film is 20 ° C. or higher.
JP2001089602A 2001-03-27 2001-03-27 Ferrite magnetic composite substrate Withdrawn JP2002284597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089602A JP2002284597A (en) 2001-03-27 2001-03-27 Ferrite magnetic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089602A JP2002284597A (en) 2001-03-27 2001-03-27 Ferrite magnetic composite substrate

Publications (1)

Publication Number Publication Date
JP2002284597A true JP2002284597A (en) 2002-10-03

Family

ID=18944513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089602A Withdrawn JP2002284597A (en) 2001-03-27 2001-03-27 Ferrite magnetic composite substrate

Country Status (1)

Country Link
JP (1) JP2002284597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057627A1 (en) * 2002-12-20 2004-07-08 The Circle For The Promotion Of Science And Engineering Power supply-use transformer or reactor and switching power supply using it, and composite magnetic particle compact and production method therefor.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057627A1 (en) * 2002-12-20 2004-07-08 The Circle For The Promotion Of Science And Engineering Power supply-use transformer or reactor and switching power supply using it, and composite magnetic particle compact and production method therefor.

Similar Documents

Publication Publication Date Title
JP6256360B2 (en) Permanent magnet and method for manufacturing the same
KR101147570B1 (en) Magnetic alloy, amorphous alloy ribbon, and magnetic part
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
KR101995154B1 (en) Soft magnetic alloy and magnetic device
TW201817897A (en) Soft magnetic alloy and magnetic device
JP2006191041A (en) Magnetic laminated structure and method of manufacturing the same
KR20180089316A (en) Soft magnetic alloy and magnetic device
KR20180089317A (en) Soft magnetic alloy and magnetic device
KR20180048377A (en) Soft magnetic alloy and magnetic device
TW201926370A (en) Soft magnetic alloy and magnetic component
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
JP2019123930A (en) Soft magnetic alloy and magnetic component
JP3392444B2 (en) Magnetic artificial lattice film
JP2002284597A (en) Ferrite magnetic composite substrate
WO2019003680A1 (en) Soft magnetic alloy and magnetic component
JP2554444B2 (en) Uniaxial magnetic anisotropic thin film
JP6845205B2 (en) Soft magnetic alloy strips and magnetic parts
JPH06224038A (en) Manufacture of thin film permanent magnet
JPH02183508A (en) Low-loss core
KR100473620B1 (en) Soft magnetic material of FeZrBAg system and a method for fabricating a soft magnetic thin film
JP7106919B2 (en) Soft magnetic thin films, thin film inductors and magnetic products
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP2003332127A (en) Method for manufacturing soft magnetic ferrite material
JP3810881B2 (en) High frequency soft magnetic film
JP2005187917A (en) Soft magnetic alloy, and magnetic component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603