JP2002283468A - Fiber-reinforced pipe and its production method - Google Patents

Fiber-reinforced pipe and its production method

Info

Publication number
JP2002283468A
JP2002283468A JP2001082826A JP2001082826A JP2002283468A JP 2002283468 A JP2002283468 A JP 2002283468A JP 2001082826 A JP2001082826 A JP 2001082826A JP 2001082826 A JP2001082826 A JP 2001082826A JP 2002283468 A JP2002283468 A JP 2002283468A
Authority
JP
Japan
Prior art keywords
fiber
tubular body
reinforced resin
layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001082826A
Other languages
Japanese (ja)
Inventor
Tsutomu Ibuki
努 伊吹
Takayuki Odagiri
貴之 小田桐
Shiro Asada
史朗 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001082826A priority Critical patent/JP2002283468A/en
Publication of JP2002283468A publication Critical patent/JP2002283468A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily provide an FRP pipe which has a low void ratio and good flexural strength characteristics in spite of its high volume ratio of fibers. SOLUTION: In the pipe comprising a plurality of fiber-reinforced resin layers, the volume ratio of fibers of at least one layer is 70-82 vol.%. The void ratio of the pipe is 2 vol.% or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、釣り竿、ゴルフク
ラブ用シャフト、スキーストック、テニスラケット、ス
キーストック、自転車のフレーム等に用いられる繊維強
化樹脂製(以下FRP製という)管状体及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular body made of fiber-reinforced resin (hereinafter referred to as FRP) used for fishing rods, shafts for golf clubs, ski poles, tennis rackets, ski poles, bicycle frames and the like, and a method for producing the same. About.

【0002】[0002]

【従来の技術】釣り竿、ゴルフクラブ用シャフト、テニ
スラケット等は軽量かつ高強度、高剛性が要求されるた
めFRP製、特に炭素繊維強化樹脂(以下CFRPとい
う。)製が広く普及している。特に近年ではさらなる軽
量化のためより高い繊維体積含有率のCFRPを用いた
製品が市販されており、実開平6−7923号公報に
は、樹脂の質量含有率が概ね10〜20%(繊維体積含
有率にして約73〜86%に相当)である積層体が考案
されている。
2. Description of the Related Art Since fishing rods, golf club shafts, tennis rackets, etc. are required to be lightweight and have high strength and high rigidity, FRPs, particularly carbon fiber reinforced resins (hereinafter referred to as CFRPs), are widely used. Particularly, in recent years, products using CFRP having a higher fiber volume content have been marketed in order to further reduce the weight. A laminate having a content of about 73 to 86%) has been devised.

【0003】通常、60体積%以上の高い繊維体積含有
率を有するFRP製管状体は、樹脂含有率の低いプリプ
レグ(予め強化繊維を樹脂に含浸させたシート状の中間
材料)を積層又は巻回して、所定の成形条件にて製造さ
れる。これはプリプレグを介さず製造すると繊維体積含
有率を高くすることはできず、又、繊維体積含有率を一
定にすることも難しくなるからである。このため現在で
は樹脂の質量含有率が概ね20〜55%ほどのプリプレ
グが市販されるに至っている。
Generally, an FRP tubular body having a high fiber volume content of 60% by volume or more is formed by laminating or winding a prepreg having a low resin content (a sheet-like intermediate material in which a reinforcing fiber is impregnated in a resin in advance). Thus, it is manufactured under predetermined molding conditions. This is because the fiber volume content cannot be increased if it is produced without a prepreg, and it is difficult to keep the fiber volume content constant. For this reason, at present, prepregs having a resin mass content of about 20 to 55% have been commercially available.

【0004】しかしながら、含有率が20質量%ほどの
極端に低い樹脂含有率のプリプレグを用いてFRP製管
状体を製造する際には、プリプレグの粘着性が低いため
に作業性が悪い、FRP製管状体にボイドが残存するた
め曲げ強度が低くなる、剥離が生じやすいという問題が
生じる。
However, when manufacturing a FRP tubular body using a prepreg having an extremely low resin content of about 20% by mass, workability is poor due to low adhesiveness of the prepreg. Since voids remain in the tubular body, bending strength is reduced and peeling is likely to occur.

【0005】このため、特開平8−207166号公報
には、厚さ方向に樹脂量の少ない領域と樹脂量の多い領
域を有し、かつ平均樹脂含浸量を10〜20質量%とし
たプリプレグを用いたFRP製管状体の製造方法が、
又、特開平9−201434公報には繊維含有率が70
体積%以上の2枚のプリプレグの間に、これよりも薄く
繊維含有率が70体積%未満のプリプレグを挟んで成形
用芯金に巻きつけるFRP製管状体の製造方法が開示さ
れ、そのほか管状体製造業者の巻きつけ技術の向上によ
り樹脂含有量の低いプリプレグの作業性の悪さにについ
ては克服されてきた。
For this reason, Japanese Patent Application Laid-Open No. 8-207166 discloses a prepreg having a region with a small amount of resin and a region with a large amount of resin in the thickness direction and having an average resin impregnation amount of 10 to 20% by mass. The method of manufacturing the FRP tubular body used was
Japanese Patent Application Laid-Open No. 9-2014434 discloses that the fiber content is 70%.
Disclosed is a method for producing an FRP tubular body in which a thinner prepreg having a fiber content of less than 70% by volume is sandwiched between two prepregs having a volume percentage of not less than 70% by volume and wound around a core for molding. Improvements in wrapping techniques by manufacturers have overcome the poor workability of prepregs with low resin content.

【0006】一方、FRP層間の剥離を防ぐことを目的
に、特開平10−694号公報には、繊維方向が傾斜方
向に配向した斜行繊維本体層及び繊維方向を軸長方向に
配向した軸長繊維本体層の樹脂含浸量を略10質量%以
上25質量%未満にしたプリプレグを巻回すると共に、
斜行する繊維本体層と軸方向長繊維本体層との層間に樹
脂含有率の多い薄肉厚層を形成したことを特徴とする、
FRP製管状体が開示されている。しかし、樹脂含有率
の高いプリプレグを併用するとFRP製管状体の重量が
重くなるという問題が生じた。又、樹脂含有率の低いプ
リプレグを使用してFRP製管状体を成形する場合、粘
着性が低いために生じる積層界面のボイドだけでなく、
樹脂含有量が極端に低いためプリプレグでの強化繊維へ
の樹脂含浸が不十分であるために生じるボイドについて
は、樹脂含有率の高いプリプレグを併用すると、かえっ
てボイドが抜けにくくなるという問題があった。
On the other hand, for the purpose of preventing separation between FRP layers, Japanese Patent Application Laid-Open No. 10-694 discloses an oblique fiber main body layer in which the fiber direction is oriented in an inclined direction and an axis in which the fiber direction is oriented in an axial direction. While winding a prepreg in which the resin impregnation amount of the long fiber main body layer is approximately 10% by mass or more and less than 25% by mass,
Characterized in that a thin thick layer having a high resin content is formed between the skewed fiber main body layer and the axial long fiber main body layer,
An FRP tubular body is disclosed. However, when a prepreg having a high resin content is used in combination, a problem arises in that the weight of the FRP tubular body increases. Further, when molding a FRP tubular body using a prepreg having a low resin content, not only voids at the lamination interface generated due to low adhesiveness,
Regarding voids caused by insufficient resin impregnation of the reinforcing fibers in the prepreg due to extremely low resin content, when a prepreg having a high resin content is used in combination, there is a problem that the voids are hardly removed. .

【0007】更に、特開平10−67054号公報には
樹脂含有率が10〜20質量%である(繊維方向は管状
体の長手方向)第1プリプレグの連続巻回数が最大2回
になるように分断されていることを特徴とするFRP製
管状体が開示されている。連続巻き回数を2回以下と短
くすることはボイドの発生を低減する可能性はあるが、
不連続な層の増加による強度低下の懸念があり、一方で
製造が煩雑になるという問題があった。
Further, Japanese Patent Application Laid-Open No. 10-67054 discloses that the first prepreg having a resin content of 10 to 20% by mass (the fiber direction is the longitudinal direction of the tubular body) has a maximum of two continuous windings. An FRP tubular body characterized by being divided is disclosed. Shortening the number of continuous windings to two or less may reduce the occurrence of voids,
There is a concern that the strength may be reduced due to an increase in the number of discontinuous layers, while there is a problem that the production becomes complicated.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述のよう
に高い繊維含有率の層を含むFRP製管状体において
は、高い曲げ強度を得るのが難いという問題を解決し、
強度が向上したFRP製管状体及びこの製造方法を提供
するものである。
SUMMARY OF THE INVENTION The present invention solves the problem that it is difficult to obtain a high bending strength in an FRP tubular body including a layer having a high fiber content as described above.
An object of the present invention is to provide an FRP tubular body having improved strength and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明の第1の要旨は、
複数のFRP層を形成してなる管状体において、そのう
ち少なくとも1層の繊維体積含有率が70〜82体積%
であり、ボイド率が2体積%以下であることを特徴とす
る。
A first gist of the present invention is as follows.
In a tubular body having a plurality of FRP layers formed, at least one of the layers has a fiber volume content of 70 to 82% by volume.
And the void ratio is 2% by volume or less.

【0010】又、本発明の第2の要旨は、芯金上に複数
のFRP中間材料層を形成し、その上に樹脂フィルムを
定ピッチで巻回して固定し、加熱硬化した後、樹脂フィ
ルムを取り除く、FRP製管状体の製造方法において、
FRP中間材料層の少なくとも1層の繊維含有率が70
〜82体積%であり、樹脂フィルムを2重以上巻回すこ
とを特徴とするFRP製管状体の製造方法にある。
[0010] A second gist of the present invention is that a plurality of FRP intermediate material layers are formed on a cored bar, a resin film is wound thereon at a constant pitch, fixed, heated and cured. In the method for producing a tubular body made of FRP,
The fiber content of at least one of the FRP intermediate material layers is 70
~ 82% by volume, and a method for manufacturing an FRP tubular body characterized by winding a resin film twice or more.

【0011】[0011]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態と共に、本発明について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail together with preferred embodiments of the present invention.

【0012】本発明にかかるFRP製管状体は、FRP
層を積層してなり、そのうち少なくとも1層の繊維体積
含有率が70〜82体積%であり、前記高繊維含有層の
ボイド率が2体積%以下、より好ましくは1体積%以下
である。ここでいうボイド率はJIS K 7075に
規定されている炭素繊維強化プラスチックの繊維含有率
及び空洞率測定方法で求めた空洞率で定義される。ボイ
ド率が2体積%を超えるFRP製管状体では曲げ強度が
高くならず、測定位置によって強度にばらつきが生じ
る。
The tubular body made of FRP according to the present invention is made of FRP.
The layers are laminated, and at least one layer has a fiber volume content of 70 to 82% by volume, and the high fiber content layer has a void fraction of 2% by volume or less, more preferably 1% by volume or less. The void ratio here is defined by the fiber content of the carbon fiber reinforced plastic specified in JIS K 7075 and the void ratio obtained by the void ratio measurement method. In an FRP tubular body having a void ratio of more than 2% by volume, the bending strength does not increase, and the strength varies depending on the measurement position.

【0013】本発明で用いる強化繊維としては炭素繊
維、ガラス繊維、ボロン繊維、炭化珪素繊維、アルミナ
繊維、アラミド繊維、ポリフェニレンベンゾビスオキサ
ゾール繊維等があげられ、なかでも炭素繊維が比強度、
比剛性に優れるので最も好適である。
The reinforcing fibers used in the present invention include carbon fibers, glass fibers, boron fibers, silicon carbide fibers, alumina fibers, aramid fibers, polyphenylene benzobisoxazole fibers and the like.
It is most suitable because it has excellent specific rigidity.

【0014】又、FRP層を構成するマトリックス樹脂
は、特に限定されないが、エポキシ樹脂、不飽和ポリエ
ステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ポ
リビスマレイミド樹脂といった熱硬化性樹脂や熱可塑性
樹脂を用いることができる。中でもエポキシ樹脂は強化
繊維との接着性、強度発現性、硬化収縮率、耐湿性、耐
候性の観点から最も好適である。
The matrix resin constituting the FRP layer is not particularly limited, but a thermosetting resin or a thermoplastic resin such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a polyimide resin, and a polybismaleimide resin may be used. Can be. Among them, epoxy resins are most preferred from the viewpoints of adhesion to reinforcing fibers, strength development, cure shrinkage, moisture resistance, and weather resistance.

【0015】繊維体積含有率が70〜82体積%の高繊
維含有層は、得られる管状体を軽量化するため、少なく
とも1層有し、より好ましくは構成するFRP層数の半
数以上を高繊維含有層とすることで更なる軽量化を達成
することができる。高繊維含有層の強化繊維の配向角度
は、管状体の軸方法(長手方向)に対して0°(すなわ
ち軸方向に対して平行)〜90°までとすることができ
るが、なかでも配向角を0°又は45°とすると、軸方
向の曲げ強度、曲げ剛性、及び捻り強度、捻り剛性を高
める上で占める割合が高くなるので、このようなFRP
層を高繊維含有層とするとFRP製管状体の軽量化への
寄与が多くなる。
The high fiber content layer having a fiber volume content of 70 to 82% by volume has at least one layer in order to reduce the weight of the obtained tubular body. More preferably, at least half of the number of FRP layers constituting the high fiber content layer is high fiber. Further weight reduction can be achieved by using the containing layer. The orientation angle of the reinforcing fibers in the high fiber content layer can be from 0 ° (that is, parallel to the axial direction) to 90 ° with respect to the axial direction (longitudinal direction) of the tubular body. When 0 is set to 0 ° or 45 °, the ratio in increasing the bending strength, bending stiffness, torsional strength, and torsional stiffness in the axial direction increases, so that such FRP
When the layer is a high fiber content layer, the contribution to weight reduction of the FRP tubular body increases.

【0016】次に本発明のFRP製管状体の製造方法に
ついて述べる。本発明において、FRP製管状体は、芯
金上にFRP中間材料層を巻回して形成し、その上に樹
脂フィルムを定ピッチで巻回して固定し、加熱硬化した
後、樹脂フィルムを取り除く、FRP製管状体の製造法
において、前記FRP中間材層の少なくとも1層の繊維
含有率が70〜82体積%であり、前記樹脂フィルムが
2重以上巻回すことにより製造される。
Next, a method for producing the FRP tubular body of the present invention will be described. In the present invention, the FRP tubular body is formed by winding an FRP intermediate material layer on a cored bar, and fixing and winding a resin film thereon at a constant pitch, and after heating and curing, removing the resin film. In the method for producing an FRP tubular body, at least one layer of the FRP intermediate material layer has a fiber content of 70 to 82% by volume, and is produced by winding the resin film twice or more.

【0017】用いる繊維強化樹脂中間材料は、一般にプ
リプレグと呼ばれる強化繊維にマトリックス樹脂(熱硬
化性樹脂の場合は予備硬化状態)を予め含浸させたシー
ト状の製品であり、少なくとも1層は繊維含有率が70
〜82体積%(用いるプリプレグが炭素繊維強化エポキ
シ樹脂中間材料で炭素繊維の密度が1.8g/cm
エポキシ樹脂の密度が1.2g/cmならば、樹脂含
有率で約22.5〜13質量%)である。用いるプリプ
レグの厚さについては特に限定されないが、通常は15
〜200μmのものが好適に用いられる。
The fiber-reinforced resin intermediate material to be used is a sheet-like product in which a matrix resin (precured in the case of a thermosetting resin) is impregnated in advance with a reinforcing fiber generally called a prepreg, and at least one layer is a fiber-containing product. Rate 70
8282% by volume (the prepreg used is a carbon fiber reinforced epoxy resin intermediate material and the density of carbon fibers is 1.8 g / cm 3 ,
If the density of the epoxy resin is 1.2 g / cm 3 , the resin content is about 22.5 to 13% by mass). The thickness of the prepreg to be used is not particularly limited.
Those having a thickness of 200 μm are preferably used.

【0018】樹脂フィルムは、幅が10〜30mmであ
り、厚さが10〜40μm、より好ましくは20〜30
μmの樹脂製フィルムで、材質としては、特に限定され
ないが、ポリプロピレン、ポリエチレンテレフタレート
が耐熱性、強度、成形後のFRP製管状体との離型性の
点から好適である。更には、延伸処理を施されたポリプ
ロピレン、ポリエチレンテレフタレートが強度、熱収縮
率の大きさからより好適である。樹脂フィルムを巻回す
ピッチは1〜3mmの範囲が好適であり、2重以上巻き
まわすことにより、例え繊維含有率が70〜82体積%
の層を含んでいてもボイド率が2%以下のFRP製管状
体を成形すること可能となる。なお、2重以上に樹脂フ
ィルムを巻回する方法は特に限定されず、1度巻回した
樹脂フィルムの上からもう一度同じ操作により巻回する
方法や、樹脂フィルムの巻き出しを2基もつ機構の装置
を使用して1度の走査の間に2重に巻回す方法が例示さ
れる。
The resin film has a width of 10 to 30 mm and a thickness of 10 to 40 μm, more preferably 20 to 30 μm.
Although it is a resin film of μm and the material is not particularly limited, polypropylene and polyethylene terephthalate are preferable in terms of heat resistance, strength, and releasability from the molded FRP tubular body. Further, stretched polypropylene and polyethylene terephthalate are more preferable in terms of strength and heat shrinkage. The winding pitch of the resin film is preferably in the range of 1 to 3 mm. By winding twice or more, even if the fiber content is 70 to 82% by volume.
It is possible to form an FRP tubular body having a void ratio of 2% or less even if the above layer is included. The method of winding the resin film into two or more layers is not particularly limited, and a method of winding the resin film once wound on the same operation once again or a mechanism having two unwinding of the resin film may be employed. A method of using the apparatus to perform double winding during one scan is illustrated.

【0019】又、樹脂フィルムを巻回すテープ幅あたり
の張力としては、20〜60N/cm、より好ましくは
25〜50N/cmである。張力が20N/cmより小
さいと高繊維含有層にボイドが生じるので好ましくな
く、又60N/cmを超えると、張力により樹脂フィル
ムが切れることがあるので好ましくない。
The tension per tape width around which the resin film is wound is preferably 20 to 60 N / cm, more preferably 25 to 50 N / cm. If the tension is less than 20 N / cm, voids are generated in the high fiber content layer, which is not preferable. If the tension is more than 60 N / cm, the resin film may be broken by the tension, which is not preferable.

【0020】[0020]

【実施例】以下、実施例を挙げて本発明を具体的に説明
する。なお、FRP製管状体(ゴルフクラブ用シャフ
ト)の製作にあたって、以下のプリプレグ、芯金、樹脂
フィルムを使用した。 [プリプレグ]プリプレグとして、市販のMR350B
100S(三菱レイヨン(株)製、目付125g/
、樹脂含有率20質量%)を用意した。なお、本プ
リプレグに使用されている炭素繊維は、MR40(三菱
レイヨン(株)製、弾性率294GPa、密度1.77
g/cm、)であり、マトリックス樹脂は、エポキシ
樹脂#350(三菱レイヨン(株)製、密度1.20g
/cm、)である。 [芯金]管状体製造用芯金として、細径側先端部の外径
Daが5.0mm、細径側先端部より1000mm位置
の外径Dbが13.5mm、細径側先端部より1000
mmの位置から太径側先端部までの500mmは平行部
で、太径側先端部の外径Dcが13.5mmの図1
(a)に示す、全長1500mmの芯金を使用した。 [樹脂フィルム]管状体の成形に使用する樹脂フィルム
として市販の幅20mm、厚さ30μmのポリプロピレ
ン製テープ(商品名:ミレファン、三菱レイヨン(株)
製)を使用した。
The present invention will be specifically described below with reference to examples. The following prepreg, cored bar, and resin film were used in manufacturing an FRP tubular body (golf club shaft). [Prepreg] As prepreg, commercially available MR350B
100S (Mitsubishi Rayon Co., Ltd., basis weight 125g /
m 2 , resin content 20% by mass). The carbon fiber used in this prepreg was MR40 (manufactured by Mitsubishi Rayon Co., Ltd., elastic modulus 294 GPa, density 1.77).
g / cm 3 ), and the matrix resin is epoxy resin # 350 (manufactured by Mitsubishi Rayon Co., Ltd., density 1.20 g).
/ Cm 3 ). [Core metal] As a core metal for producing a tubular body, the outer diameter Da at the distal end on the smaller diameter side is 5.0 mm, the outer diameter Db at a position 1000 mm from the distal end on the smaller diameter side is 13.5 mm, and the outer diameter Db is 1000 from the distal end on the smaller diameter side.
In FIG. 1, 500 mm from the position of mm to the tip of the large diameter side is a parallel portion, and the outer diameter Dc of the tip of the large diameter side is 13.5 mm.
A core metal having a total length of 1500 mm shown in (a) was used. [Resin Film] A commercially available 20 mm wide, 30 μm thick polypropylene tape (trade name: Mirefan, Mitsubishi Rayon Co., Ltd.) as a resin film used for forming a tubular body
Manufactured).

【0021】(実施例)マンドレル細径側先端部より7
5mmの位置Pから細径側先端部より1240mmの
位置Pまでの部位に巻き付け、 PからPにわた
って3層となり、かつ、炭素繊維の方向が芯金軸方向に
対して+45°になるように、プリプレグMR350B
100Sを長さが1165mmである略台形(図1
(b)に示す)に切り出した。次に同様に巻き付けたと
きに、 PからPわたって3層となり、かつ、炭素
繊維の方向が芯金軸方向に対して−45°になるよう
に、同じプリプレグを切り出した(図1(c)に示
す)。ついでこれら2枚のプリプレグを貼り合わせた後
に芯金上に巻き付け、軸方向に対して±45°のFRP
層(以下、アングル層という)を形成した。なお、図1
(b)、(c)中、L=1165mm、L=56m
m、L=130mm、L=240mmであり、矢印
は炭素繊維の配向角度である。
(Embodiment) 7 from the tip of the small diameter side of the mandrel
Wrapped portion from the position P 1 of 5mm up to the position P 2 of 1240mm from the small-diameter side distal end becomes a three-layer over P 2 from P 1, and the + 45 ° direction of the carbon fibers relative to the metal core axis Prepreg MR350B
100S is a substantially trapezoid having a length of 1165 mm (FIG. 1).
(Shown in (b)). The next time likewise wrapped becomes P 2 over by three layers from P 1, and, as in the direction of the carbon fiber is -45 ° with respect to the metal core axis was cut the same prepreg (Figure 1 (Shown in (c)). Then, after bonding these two prepregs, winding them around the core metal, FRP of ± 45 ° with respect to the axial direction.
A layer (hereinafter, referred to as an angle layer) was formed. FIG.
In (b) and (c), L = 1165 mm, L 1 = 56 m
m, L 2 = 130 mm, L 3 = 240 mm, and the arrows indicate the orientation angles of the carbon fibers.

【0022】次にアングル層上に巻き付けたときに、
からPわたって4層となり、かつ、芯金軸方向に
対して炭素繊維が平行(0°)になるようにプリプレグ
MR350B100Sを切り出した(図1(d)に示
す)。そして、これをアングル層用の巻き付け層の上に
巻き付け、FRP層(以下、ストレート層という)を形
成した。なお、図1(d)中、L=1165mm、L
=85mm、L=184mm、L=240mmであ
り、矢印は炭素繊維の配向角度である。
Next, when wound on the angle layer,
From P 1 becomes P 2 over to four layers, and carbon fiber with respect to the metal core axis direction is cut out prepreg MR350B100S in parallel (0 °) (FIG. 1 (d)). Then, this was wound on a winding layer for an angle layer to form an FRP layer (hereinafter, referred to as a straight layer). In addition, in FIG. 1D, L = 1165 mm, L 4
= 85 mm, L 5 = 184 mm, L 3 = 240 mm, and the arrows indicate the orientation angles of the carbon fibers.

【0023】次に、ストレート層上に巻き付けたとき
に、 PおよびPから150mmの位置までは3層
となり、その後Pに向かって巻き付け層が減少してP
から300mmの位置でなくなり、かつ、炭素繊維が
0°になるように先端補強層用プリプレグMR350B
100Sを切り出した(図1(e)に示す)。そして、
これをストレート層の上にPから、P方向に300
mmまでの部位に巻き付け、FRP層(以下、先端補強
層という)を形成した。続いて、細径側外径調節用にプ
リプレグMR350B100Sを図1(f)に示した3
角形に切り出し、 Pから、P方向に100mmま
での部位に巻き付けた。なお、図1(e)、(f)中、
=69mm、L=81mm、L=300mm、
=150mm、L10=135mm、L11=10
0mmであり、矢印は炭素繊維の配向角度である。
Next, when the wound on the straight layer, the P 1 and P 1 to the position of 150mm becomes a three-layer, and then layer wound toward the P 2 decreases P
A prepreg MR350B for a tip reinforcing layer so that it is no longer at a position of 1 to 300 mm and the carbon fiber is at 0 °.
100S was cut out (shown in FIG. 1 (e)). And
This from P 1 on the straight layer 300 in the P 2 direction
The FRP layer (hereinafter, referred to as a tip reinforcing layer) was formed by wrapping around a part up to mm. Subsequently, the prepreg MR350B100S for adjusting the outer diameter on the small diameter side is shown in FIG.
Cut into square, wound on site from P 1, to 100mm in P 2 direction. In FIGS. 1 (e) and 1 (f),
L 6 = 69 mm, L 7 = 81 mm, L 8 = 300 mm,
L 9 = 150 mm, L 10 = 135 mm, L 11 = 10
0 mm, and the arrow indicates the orientation angle of the carbon fiber.

【0024】次に、樹脂フィルムをPの位置から約3
0mm芯金の太径側の位置より、張力50N(25N/
cm幅)下に2.5mmピッチ/回転で送りながらP
向かって巻回し、 Pを越えて、 Pの位置より約3
0mm芯金の細径側の位置まで巻回し、樹脂テープが外
れてこないように市販の粘着テープ(日東電工包装シス
テム(株)製、セロハンテープ)で止めた後、樹脂テー
プを切って1重目の巻回しを施した。さらに、1重目の
巻回した上から、1重目と同じ条件、同じ要領で巻回し
を施して2重目の巻回しを実施した。
Next, about the resin film from the position of P 2 3
A tension of 50N (25N /
cm width) wound toward the P 1 while feeding at a 2.5mm pitch / rotated downward, beyond the P 1, about 3 from the position of P 1
Wrap it to the position of the small diameter side of the 0 mm core bar, stop it with a commercially available adhesive tape (Nitto Denko Packaging System Co., Ltd., cellophane tape) so that the resin tape does not come off, then cut the resin tape to single Eye winding was applied. Further, after the first winding, the second winding was performed by applying the same winding conditions and the same procedure as the first winding.

【0025】次いで、これを135℃で2時間加熱硬化
した後、マンドレルを脱芯し、2重の樹脂フィルムを剥
いだ。両端を約10mmずつカットして、質量約57
g、長さ1145mm、細径側先端径約8.5mm、太
径側先端径約15.0mmのゴルフクラブ用シャフトを
得た。得られたシャフトのうち、5体をJIS K 7
075に規定されている炭素繊維強化プラスチックの繊
維含有率及び空洞率測定方法のうち、硫酸分解法で繊維
体積含有率および空洞率(ボイド率)を求めた。平均の
繊維体積含有率は73.4体積%であり、空洞率(ボイ
ド率)は0.8%であった。
Next, this was cured by heating at 135 ° C. for 2 hours, and then the mandrel was de-centered to peel off the double resin film. Cut both ends about 10mm each, mass about 57
g, a length of 1145 mm, a tip diameter on the small diameter side of about 8.5 mm, and a golf club shaft having a tip diameter on the large diameter side of about 15.0 mm. Five of the obtained shafts were JIS K7
Among the methods for measuring the fiber content and porosity of the carbon fiber reinforced plastic specified in 075, the fiber volume content and the porosity (void rate) were determined by the sulfuric acid decomposition method. The average fiber volume content was 73.4% by volume, and the void ratio (void ratio) was 0.8%.

【0026】シャフトの3点曲げ強力は製品安全協会策
定のゴルフクラブ用シャフトの認定基準及び基準確認方
法(通称産業大臣承認5産第2087号・平成5年10
月4日)のうち、細径側先端より175mmの位置(いわ
ゆるA点)と細径側先端より525mmの位置(いわゆ
るB点)、及び太径側先端より175mmの位置(いわゆ
るC点)の測定方法に従って測定を行った。測定本数は
25本であり、JISZ 8401に従って、平均値、
変動係数を計算した。A点の平均曲げ強力は957N
(25本測定のうちの最低値は870N、変動係数は
4.2%)、B点の平均曲げ強力は928N(最低値8
56N、変動係数は4.6%)、C点の平均曲げ強力は
1110N(最低値991N、変動係数は4.8%)で
あった。
The three-point bending strength of the shaft is determined by a certification standard for golf club shafts and a method for confirming the standards (commonly approved by the Minister of Industry, No. 5, No. 2087, October 1993).
4), a position 175 mm from the small-diameter end (so-called point A), a position 525 mm from the small-diameter end (so-called point B), and a position 175 mm from the large-diameter end (so-called point C). The measurement was performed according to the measurement method. The number of measurement was 25, and the average value was calculated according to JISZ8401.
The coefficient of variation was calculated. Average flexural strength at point A is 957N
(The lowest value among the 25 measurements was 870 N, the coefficient of variation was 4.2%), and the average bending strength at point B was 928 N (minimum value 8
56N, coefficient of variation was 4.6%), and the average bending strength at point C was 1110N (minimum value: 991N, coefficient of variation was 4.8%).

【0027】(比較例)実施例と全く同じ芯金、プリプ
レグ、パターンを使用して巻き付けを行った。樹脂フィ
ルムの巻回しは実施例と同じ樹脂フィルムを用い、実施
例と同じ張力、ピッチで1重の巻回しを行った。次い
で、1重の巻回しのみの状態で実施例と同じ加熱硬化、
脱芯、両端カットを行い、質量57g、長さ1145m
m、細径側先端径約8.5mm、太径側先端径約15.
0mmのゴルフクラブ用シャフトを得た。得られたシャ
フト5本の繊維体積含有率は73.2%、ボイド率は
3.1%であった。又得られたシャフトの曲げ強力を実
施例と同じ方法で25本測定した。 A点の平均曲げ強
力は894N(25本測定のうちの最低値は767N、
変動係数は5.5%)、B点の平均曲げ強力は878N
(最低値760N、変動係数は5.7%)、C点の平均
曲げ強力は1040N(最低値870N、変動係数は
6.2%)であった。
(Comparative Example) Winding was performed using the same core metal, prepreg, and pattern as in the example. For the winding of the resin film, the same resin film as in the example was used, and a single winding was performed with the same tension and pitch as in the example. Next, the same heat curing as in the example with only a single winding,
De-center, cut both ends, mass 57g, length 1145m
m, about 8.5 mm on the small diameter side, about 15.5 mm on the large diameter side.
A 0 mm golf club shaft was obtained. The fiber volume content of the five obtained shafts was 73.2%, and the void ratio was 3.1%. The bending strength of the obtained shaft was measured in the same manner as in the Example. The average bending strength at point A is 894N (the lowest value of the 25 measurements is 767N,
The coefficient of variation is 5.5%) and the average bending strength at point B is 878N.
(Minimum value: 760 N, coefficient of variation: 5.7%), and the average bending strength at point C was 1,040 N (minimum value: 870 N, coefficient of variation: 6.2%).

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、高い繊維体積含有率な
がら、ボイド率が低く、曲げ強度特性に優れたFRP製
管状体を容易に提供できる。よって本発明のFRP製管
状体は釣り竿、ゴルフクラブ用シャフト、スキーストッ
ク、テニスラケット、スキーストック、自転車のフレー
ム等に最適である。
According to the present invention, it is possible to easily provide an FRP tubular body having a low fiber content, a low void ratio, and excellent bending strength characteristics. Therefore, the FRP tubular body of the present invention is most suitable for fishing rods, golf club shafts, ski poles, tennis rackets, ski poles, bicycle frames, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例における芯金へのプリプレグの巻き付
けパターンを説明するものであり、(a)芯金を示す平
面図、(b)アングル層用プリプレグの平面図、(c)
アングル層用プリプレグの平面図、(d)ストレート層
用プリプレグの平面図、(e)先端補強層用プリプレグ
の平面図、(f)細径側外径調節用のプリプレグの平面
図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining a wrapping pattern of a prepreg around a core bar in an embodiment, (a) a plan view showing a core bar, (b) a plan view of a prepreg for an angle layer, and (c).
FIG. 2 is a plan view of a prepreg for an angle layer, (d) a plan view of a prepreg for a straight layer, (e) a plan view of a prepreg for a tip reinforcing layer, and (f) a plan view of a prepreg for adjusting a small-diameter side outer diameter.

フロントページの続き Fターム(参考) 2B019 AB03 AB04 AB14 AB22 2C002 AA05 CS03 MM02 PP01 4F205 AD16 AD19 AG08 AH59 HA02 HA23 HA33 HA35 HA45 HB01 HC17 HL11 HT13 HT20 HT22Continued on front page F-term (reference) 2B019 AB03 AB04 AB14 AB22 2C002 AA05 CS03 MM02 PP01 4F205 AD16 AD19 AG08 AH59 HA02 HA23 HA33 HA35 HA45 HB01 HC17 HL11 HT13 HT20 HT22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の繊維強化樹脂層からなる管状体に
おいて、少なくとも1層の繊維体積含有率が70〜82
体積%であり、ボイド率が2体積%以下である繊維強化
樹脂製管状体。
1. A tubular body comprising a plurality of fiber-reinforced resin layers, wherein at least one layer has a fiber volume content of 70 to 82.
A fiber-reinforced resin tubular body having a volume percentage of 2% by volume or less.
【請求項2】 繊維強化樹脂層を構成する強化繊維が炭
素繊維である請求項1記載の繊維強化樹脂製管状体。
2. The fiber-reinforced resin tubular body according to claim 1, wherein the reinforcing fibers constituting the fiber-reinforced resin layer are carbon fibers.
【請求項3】 高繊維含有層中の強化繊維が管状体軸方
向に対して0〜90°に配向している請求項1記載の繊
維強化樹脂製管状体
3. The fiber-reinforced resin tubular body according to claim 1, wherein the reinforcing fibers in the high fiber content layer are oriented at 0 to 90 ° with respect to the tubular body axial direction.
【請求項4】 芯金上に複数の繊維強化樹脂中間材料層
を形成し、その上に樹脂フィルムを定ピッチで巻回して
固定し、加熱硬化した後、その樹脂フィルムを取り除
く、繊維強化樹脂製管状体の製造方法において、繊維強
化樹脂中間材料層の少なくとも1層の繊維含有率が70
〜82体積%であり、樹脂フィルムを2重以上巻回すこ
とを特徴とする繊維強化樹脂製管状体の製造方法。
4. A fiber reinforced resin comprising a plurality of fiber reinforced resin intermediate material layers formed on a cored bar, a resin film wound thereon at a constant pitch, fixed, heated and cured, and then the resin film is removed. In the method for producing a tubular body, at least one of the fiber-reinforced resin intermediate material layers has a fiber content of 70%.
A method for producing a fiber-reinforced resin tubular body, which comprises winding a resin film twice or more.
【請求項5】 樹脂フィルムの巻きつけ張力が20〜6
0N/cmである請求項4記載の繊維強化樹脂管状体の
製造方法。
5. The winding tension of the resin film is 20-6.
The method for producing a fiber-reinforced resin tubular body according to claim 4, wherein the pressure is 0 N / cm.
【請求項6】 樹脂フィルムがポリプロピレン又はポリ
エチレンテレフタレートからなる請求項4又は5記載の
繊維強化樹脂製管状体の製造方法。
6. The method for producing a fiber-reinforced resin tubular body according to claim 4, wherein the resin film is made of polypropylene or polyethylene terephthalate.
【請求項7】 繊維強化樹脂中間材料を構成する強化繊
維が炭素繊維である請求項4〜6のいずれか1項記載の
繊維強化樹脂製管状体の製造方法。
7. The method for producing a fiber-reinforced resin tubular body according to claim 4, wherein the reinforcing fibers constituting the fiber-reinforced resin intermediate material are carbon fibers.
JP2001082826A 2001-03-22 2001-03-22 Fiber-reinforced pipe and its production method Pending JP2002283468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082826A JP2002283468A (en) 2001-03-22 2001-03-22 Fiber-reinforced pipe and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082826A JP2002283468A (en) 2001-03-22 2001-03-22 Fiber-reinforced pipe and its production method

Publications (1)

Publication Number Publication Date
JP2002283468A true JP2002283468A (en) 2002-10-03

Family

ID=18938721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082826A Pending JP2002283468A (en) 2001-03-22 2001-03-22 Fiber-reinforced pipe and its production method

Country Status (1)

Country Link
JP (1) JP2002283468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090603A (en) * 2007-10-11 2009-04-30 Sri Sports Ltd Method for manufacturing tubular body, and tubular body
JP2009136335A (en) * 2007-12-03 2009-06-25 Mrc Composite Products Co Ltd Shaft for golf club made of fiber-reinforced plastic
JP2009148558A (en) * 2007-12-19 2009-07-09 Taylor Made Golf Co Inc Golf club face with cover having roughness pattern
JP2016154451A (en) * 2015-02-23 2016-09-01 株式会社シマノ Fishing rod and top rod
JP2021027855A (en) * 2019-08-09 2021-02-25 住友ゴム工業株式会社 Golf club shaft and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090603A (en) * 2007-10-11 2009-04-30 Sri Sports Ltd Method for manufacturing tubular body, and tubular body
JP2009136335A (en) * 2007-12-03 2009-06-25 Mrc Composite Products Co Ltd Shaft for golf club made of fiber-reinforced plastic
JP2009148558A (en) * 2007-12-19 2009-07-09 Taylor Made Golf Co Inc Golf club face with cover having roughness pattern
JP2013236953A (en) * 2007-12-19 2013-11-28 Taylor Made Golf Co Inc Golf club face with cover having roughness pattern
JP2016154451A (en) * 2015-02-23 2016-09-01 株式会社シマノ Fishing rod and top rod
JP2021027855A (en) * 2019-08-09 2021-02-25 住友ゴム工業株式会社 Golf club shaft and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8057617B2 (en) Method for producing tubular body made of fiber reinforced resin and tubular body produced by method
JPH11197277A (en) Lightweight shaft for golf club
JP2002283468A (en) Fiber-reinforced pipe and its production method
JP4716550B2 (en) Paper-free prepreg and method for producing the same
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JPH02169B2 (en)
US20240009526A1 (en) Shaft, method for manufacturing shaft, and golf club shaft
JP2846742B2 (en) Golf club shaft and method of manufacturing the same
JP2004121402A (en) Golf club shaft
JP3692691B2 (en) Fiber reinforced plastic tubular body
JP2008080555A (en) Method for manufacturing tubular body made of fiber-reinforced resin
JP3508429B2 (en) Fiber reinforced plastic tubular body
JPH09277389A (en) Tapered hollow shaft
JPH09327536A (en) Shaft for lightweight golf club and its production
JP3384936B2 (en) Golf club shaft manufacturing method
JP4102487B2 (en) Golf club shaft made of fiber reinforced plastic
JP2000263653A (en) Tubular body made of fiber-reinforced composite material
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JP2009254401A (en) Lightweight shaft for golf club
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same
JP2005298810A (en) Epoxy resin composition, prepreg, fiber-reinforced composite material and method for producing them
KR920002103B1 (en) Golf shaft manufacturing method
JP2000051411A (en) Fiber-reinforced plastic shaft for golf club
JPH03168167A (en) Golf club shaft
JP2004091609A (en) Prepreg and fiber-reinforced composite material tubing