JP2002276652A - Cylindrical roller bearing - Google Patents

Cylindrical roller bearing

Info

Publication number
JP2002276652A
JP2002276652A JP2001078924A JP2001078924A JP2002276652A JP 2002276652 A JP2002276652 A JP 2002276652A JP 2001078924 A JP2001078924 A JP 2001078924A JP 2001078924 A JP2001078924 A JP 2001078924A JP 2002276652 A JP2002276652 A JP 2002276652A
Authority
JP
Japan
Prior art keywords
bearing
outer ring
roller bearing
cylindrical roller
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001078924A
Other languages
Japanese (ja)
Inventor
Yoshinori Ueshima
好紀 植島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001078924A priority Critical patent/JP2002276652A/en
Publication of JP2002276652A publication Critical patent/JP2002276652A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/084Ball or roller bearings self-adjusting by means of at least one substantially spherical surface sliding on a complementary spherical surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Abstract

PROBLEM TO BE SOLVED: To have high loading capacity and aligning performance and hardly cause unbalance of the frictional moment balance of a roller by allowing the roller to make linear contact with a raceway. SOLUTION: This cylindrical roller bearing has the cylindrical roller 14 inserted between an inner ring 12 and an outer ring 10. The outside diameter surface 10B of the outer ring 10 is formed into a hemispherical shape having the radius larger than its distance from the bearing center, and an elastic material 30 hardly deformable compared with the outer ring is coated thereon so that the outer surface of the outer ring 10 becomes on approximately cylindrical shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒ころ軸受に係
り、特に、ロールの撓みや施工時のミスアライメントが
問題となる部位に用いるのに好適な、ミスアライメント
許容型の円筒ころ軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical roller bearing, and more particularly, to a misalignment-permissible cylindrical roller bearing suitable for use in a part where roll deflection or misalignment during construction is a problem.

【0002】[0002]

【従来の技術】例えば圧延ロールのような高負荷の回転
体を支持する、高負荷容量の軸受の1つに、図1に示す
如く、図の下方の軸受箱(図示省略)側に配置される外
輪10の内表面によって構成される外輪軌道10Aが、
軸中心と一致する球面形で構成されており、図上方の回
転体(図示省略)側に配置される内輪12との間に配設
される転動体(ころと称する)14が軌道10Aからは
み出さない範囲で、0.5°以上の調心が可能な、いわ
ゆる自動調心ころ軸受がある。図において、16は、こ
ろ14を保持するための保持器である。
2. Description of the Related Art As shown in FIG. 1, one of high-bearing bearings for supporting a high-load rotating body such as a rolling roll is disposed on a bearing box (not shown) below the drawing. Outer raceway 10A constituted by the inner surface of the outer race 10
A rolling element (referred to as a roller) 14 which is formed between the inner ring 12 and the rotating body (not shown) in the upper part of the figure protrudes from the track 10A. There is a so-called self-aligning roller bearing capable of performing an alignment of 0.5 ° or more within a range not to do so. In the figure, reference numeral 16 denotes a retainer for retaining the rollers 14.

【0003】又、図2に示す如く、外輪軌道10Aの球
面中心は、軸中心と一致しないが、ころ14端部と軌道
の隙間及び軸受全体での隙間により調心(設計次第で自
動調心並の調心可能)可能としたトロイダル軸受もあ
る。このトロイダル軸受は、軸受内部で、軸方向の逃げ
が、可能(一般的に軸受幅の10%まで可能)であり、
更に、低速では、保持器16を省略した総ころ化も可能
である。
As shown in FIG. 2, the center of the spherical surface of the outer raceway 10A does not coincide with the center of the shaft. However, the center of the outer raceway 10A is adjusted by the clearance between the end of the roller 14 and the raceway and the clearance of the entire bearing (automatic alignment depending on the design). Some toroidal bearings are possible. In this toroidal bearing, axial clearance is possible inside the bearing (generally, up to 10% of the bearing width).
Further, at low speeds, full-rolling without the retainer 16 is also possible.

【0004】あるいは、図3に示す如く、球面座18と
外輪10の外径面10Bで調心可能とした球面座付円筒
ころ軸受もある。この球面座付円筒ころ軸受の内部機構
は、通常の円筒ころ軸受と同じであり、軸受内部で軸方
向に逃げが可能であると共に、低速では総ころ化も可能
である。
[0004] Alternatively, as shown in FIG. 3, there is a cylindrical roller bearing with a spherical seat that can be aligned with the spherical seat 18 and the outer diameter surface 10B of the outer ring 10. The internal mechanism of the cylindrical roller bearing with a spherical seat is the same as that of a normal cylindrical roller bearing, and it is possible to escape in the axial direction inside the bearing, and it is also possible to perform full-rolling at a low speed.

【0005】又、図4に示す如く、球面座18と外輪1
0の外径面10Bの球面間で調心可能とした球面座付円
錐ころ軸受もある。この球面座付円錐ころ軸受の内部機
構は、通常の円錐ころ軸受と同様である。
As shown in FIG. 4, the spherical seat 18 and the outer ring 1 are provided.
There is also a tapered roller bearing with a spherical seat that can be aligned between the spherical surfaces of the outer diameter surface 10B. The internal mechanism of this tapered roller bearing with a spherical seat is the same as that of a normal tapered roller bearing.

【0006】あるいは、図5に示す如く、内径面20A
を球面にした専用の軸受箱(チョックとも称する)20
と、球面に成形した外輪10の外径面10Bの間で調心
する調心機能付軸受ユニットもある。この調心機能付軸
受ユニットの内部構造は、通常の円筒ころ軸受などと同
じである。
[0006] Alternatively, as shown in FIG.
Bearing box (also referred to as chock) 20 having a spherical surface
There is also a bearing unit with a centering function for centering between the outer diameter surface 10B of the outer ring 10 formed into a spherical surface. The internal structure of the bearing unit with the centering function is the same as that of a normal cylindrical roller bearing or the like.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図1に
示した自動調心ころ軸受は、曲面間の傾斜接触であるた
め、ころ14に紙面に垂直な方向のスキューモーメント
が常時作用し、ころ14が横向きになる傾向があるた
め、潤滑条件が悪く、摩擦力の絶対値が大きいと、ころ
スキューの影響が出るという問題点を有する。
However, in the self-aligning roller bearing shown in FIG. 1, since there is an inclined contact between the curved surfaces, a skew moment in the direction perpendicular to the paper surface always acts on the rollers 14, and Have a problem that the lubrication condition is poor and the absolute value of the frictional force is large, so that the roller skew is affected.

【0008】又、図2に示したトロイダル軸受は、温度
の高い定常使用状態で正立位置を保つように、温度の低
い組込み時に、熱膨張分だけオフセットして組み込む必
要があり、正立状態を保てなければ、自動調心ころ軸受
より程度は軽いが、同様の挙動不安定の問題を内在す
る。
In the toroidal bearing shown in FIG. 2, it is necessary to incorporate the toroidal bearing offset by the amount of thermal expansion when assembling at a low temperature so that the upright position is maintained in a normal use state at a high temperature. If this is not the case, the degree of lightness is lower than that of the spherical roller bearing, but the same problem of unstable behavior is inherent.

【0009】又、図3及び図4に示した球面座付ころ軸
受は、いずれも、ころ14のサイズが球面座18の分だ
け小さくなるという物理的制約のため、特に、保持器1
6付の場合には、負荷容量が小さく、例えば自動調心こ
ろ軸受の場合より20%程度小さくなる。又、球面座1
8の部分でのクリープ(スベリ)やフレッティング(微
動摩耗)の問題を内在する。
Further, in the roller bearings with spherical seats shown in FIGS. 3 and 4, the size of the rollers 14 is reduced by the size of the spherical seats 18, so that the cage 1
In the case of 6, the load capacity is small, for example, about 20% smaller than in the case of the spherical roller bearing. Also, spherical seat 1
The problem of creep (sliding) and fretting (small moving wear) in the portion 8 is inherent.

【0010】更に、図4に示した球面座付円錐ころ軸受
は、分割しないと組み込めないが、隙間を空けると開い
てしまうため、軸への固定は、ベアリングナットやボル
トによる押え込みが必要であり、部品及び組み込み工数
が増えるという問題点も有する。
Further, the tapered roller bearing with a spherical seat shown in FIG. 4 cannot be assembled unless it is divided, but it opens when a gap is left. Therefore, it is necessary to press the bearing with a bearing nut or bolt to fix it to the shaft. Also, there is a problem that the number of parts and the number of assembling steps are increased.

【0011】又、図5に示した調心機能付軸受ユニット
では、軸受箱20を専用、且つ、消耗品的に扱う必要が
あると共に、軸受箱20に形成された、球面座を構成す
る内径面20Aでのクリープやフレッティングの問題を
内在する。
In the bearing unit with the centering function shown in FIG. 5, it is necessary to handle the bearing box 20 as a dedicated and consumable product, and to form the inner diameter of the spherical seat formed on the bearing box 20. The problem of creep and fretting on the surface 20A is inherent.

【0012】一方、本発明に類似するものとして、実公
平3−11458には、ハウジングの内側に、外周面の
少なくとも両端側に凹部を有し、且つ、内周面に中央部
より両端側にいくに従って、その肉厚を厚くする傾斜部
を有したクッション材を配設した滑り軸受が提案されて
いるが、ころ軸受に関するものではなかった。
On the other hand, as similar to the present invention, Japanese Utility Model Publication No. 3-1458 has a concave portion at least on both ends of an outer peripheral surface inside a housing, and a concave portion on an inner peripheral surface at both ends from a central portion. A sliding bearing provided with a cushion material having an inclined portion for increasing the thickness of the sliding bearing has been proposed, but has not been related to a roller bearing.

【0013】又、実開平2−116025には、車軸管
の外端部分において車軸を支持する半浮動式後車軸用軸
受装置において、外輪外周面と車軸管内周面との間に弾
性体を介在することが記載されているが、やはりころ軸
受に関するものではなかった。
[0013] Also, in the actual unexamined Japanese Utility Model Publication No. 2-16025, in a semi-floating rear axle bearing device for supporting an axle at an outer end portion of an axle tube, an elastic body is interposed between an outer peripheral surface of the outer ring and an inner peripheral surface of the axle tube. However, it did not relate to roller bearings.

【0014】本発明は、前記従来の問題点を解消するべ
くなされたもので、高負荷容量で調心性があり、且つ、
ころと軌道を線接触として、ころの摩擦モーメントバラ
ンスの不釣り合いを生じ難くした、ミスアライメント許
容型の円筒ころ軸受を提供することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and has a high load capacity, an aligning property, and
An object of the present invention is to provide a misalignment-permissible cylindrical roller bearing in which the rollers and the raceway are in line contact and the friction moment balance of the rollers is less likely to be unbalanced.

【0015】[0015]

【課題を解決するための手段】前記のように、球面座の
ような調心専用の機能部品を設けると、物理的制約のた
め、負荷容量を大きくできない。又、自動調心ころ軸受
やトロイダル軸受のように、ころと内外輪軌道が曲面間
接触になると、(1)接触角度をもって接触する、
(2)境界潤滑域で摩擦力の絶対値が大きい、(3)高
速で発熱による油膜破断が起き易い、ようなケースで、
ころ廻りの摩擦モーメントバランスが狂い易く、スキュ
ーの問題が顕在化する。
As described above, when a functional component dedicated to alignment such as a spherical seat is provided, the load capacity cannot be increased due to physical restrictions. Further, when the rollers and the inner and outer raceways come into contact between the curved surfaces as in the case of a self-aligning roller bearing or a toroidal bearing, (1) the rollers contact each other at a contact angle.
In the case where (2) the absolute value of the frictional force is large in the boundary lubrication region, (3) the oil film breaks easily due to heat generation at high speed,
The friction moment balance around the rollers is easily out of order, and the problem of skew becomes apparent.

【0016】以上のことから、球面座のような調心専用
の機能部品を設けず、軸受内部のころと軌道の間は線接
触状態を維持するという条件を満たす軸受として、通常
の円筒穴の軸受箱と外輪外径面の間で直接調心させる軸
受を考案した。
In view of the above, as a bearing satisfying the condition that a line contact state is maintained between the rollers inside the bearing and the raceway without providing a functional component dedicated to centering such as a spherical seat, an ordinary cylindrical bore is used. A bearing that directly aligns between the bearing housing and the outer surface of the outer ring has been devised.

【0017】即ち、本発明は、内輪と外輪の間に円筒状
のころが挿入された円筒ころ軸受において、前記外輪の
少なくとも端部の外径面を、軸受中心からの距離よりも
大きな半径の球面形に形成し、前記外径面に、外輪の外
表面が略円筒形となるよう、外輪よりも変形し易い弾性
素材をコーティングすることにより、前記課題を解決し
たものである。
That is, according to the present invention, in a cylindrical roller bearing in which a cylindrical roller is inserted between an inner ring and an outer ring, at least the outer diameter surface of the end of the outer ring has a radius larger than the distance from the center of the bearing. The object has been achieved by forming a spherical surface and coating the outer diameter surface with an elastic material that is more easily deformed than the outer ring so that the outer surface of the outer ring becomes substantially cylindrical.

【0018】このようにして、軸受幅方向の両端寄りで
弾性素材の厚みを厚くすることで、ミスアライメントや
軸の撓みによって軸受にモーメントが作用した場合で
も、端部側の変位量を大きくでき、軸受全体が傾くこと
で、モーメントを吸収することが可能となる。
In this way, by increasing the thickness of the elastic material near both ends in the bearing width direction, even when a moment acts on the bearing due to misalignment or shaft deflection, the amount of displacement on the end side can be increased. By tilting the entire bearing, the moment can be absorbed.

【0019】[0019]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】本発明の第1実施形態は、図6に示す如
く、図3と同様の外輪10、内輪12、ころ14及び保
持器16を有する円筒ころ軸受において、外輪10の外
径面10Bを、軸受中心からの距離よりも大きな半径の
球面形に形成すると共に、前記外径面10Bに、例えば
フッ素樹脂もしくはゴムの高分子弾性素材30をコーテ
ィングし(弾性コーティングとも称する)、最終的に通
常の軸受と同様に円筒形の外表面30Aとなるように成
型したものである。図において、20は、円筒形の内径
面20Aを有する、通常の軸受箱、Aは、回転体から力
Fが加わった時のころ一外輪間面圧分布、Bは、同じく
外輪一軸受箱間面圧分布である。
In the first embodiment of the present invention, as shown in FIG. 6, in a cylindrical roller bearing having the same outer ring 10, inner ring 12, rollers 14 and retainer 16 as in FIG. The outer diameter surface 10B is coated with a polymer elastic material 30 of, for example, fluororesin or rubber (also referred to as an elastic coating), and finally formed into a spherical shape having a radius larger than the distance from the center of the bearing. It is molded so as to have a cylindrical outer surface 30A as in the case of the above bearing. In the figure, reference numeral 20 denotes a normal bearing box having a cylindrical inner surface 20A, A denotes a surface pressure distribution between the roller and the outer ring when a force F is applied from a rotating body, and B denotes a same between the outer ring and the bearing box. It is a surface pressure distribution.

【0021】このように、軸受幅方向の両端寄りで弾性
コーティング30の厚みを厚くすることで、ミスアライ
メントや軸の撓みによって、軸受に図7に示す如くモー
メントMが作用した場合でも、弾性素材30のばね性を
利用して端部側の変位量を大きくでき、軸受全体が傾く
ことで、モーメントMを吸収することが可能となる。
As described above, by increasing the thickness of the elastic coating 30 near both ends in the bearing width direction, even when the moment M acts on the bearing due to misalignment or shaft deflection as shown in FIG. The amount of displacement on the end side can be increased by utilizing the spring property of the bearing 30, and the moment M can be absorbed by tilting the entire bearing.

【0022】図8に、前記弾性素材30を選択するため
の各種材料の縦弾性係数と引張強さの関係の例を示す
(出典:「プラスチックデータハンドブック」)。高強
度素材になるほど、縦弾性係数も大きくなり、荷重に対
する素材の歪み(変形量)も小さくなる。例えば、普通
鋼とフッ素樹脂では縦弾性係数は100倍もの開きがあ
り、ゴムとフッ素樹脂との間でも100倍の開きがあ
る。これにより、高分子弾性素材で、ミスアライメント
や撓みによる軸受全体に作用するモーメントを開放し易
いことが分かる。
FIG. 8 shows an example of the relationship between the modulus of longitudinal elasticity and the tensile strength of various materials for selecting the elastic material 30 (source: "Plastic Data Handbook"). As the material becomes higher in strength, the modulus of longitudinal elasticity increases, and the distortion (deformation) of the material with respect to load decreases. For example, the modulus of longitudinal elasticity of common steel and fluororesin is 100 times larger, and that of rubber and fluororesin is 100 times larger. This shows that the polymer elastic material can easily release the moment acting on the entire bearing due to misalignment or bending.

【0023】円筒ころ軸受を考えた場合、作用するラジ
アル荷重をFrとすると、一般的な使用条件下での最大
転動体荷重Qmaxは、次式のように表わされる。
When a radial load acting on a cylindrical roller bearing is considered as Fr, the maximum rolling element load Qmax under general use conditions is expressed by the following equation.

【0024】 Qmax=5(Fr/Z) …(1) ここでZはころ数である。Qmax = 5 (Fr / Z) (1) where Z is the number of rollers.

【0025】仮に、この円筒ころ軸受のころ長さがLで
等しいと考えた場合、ころと外輪軌道間の平均変位量δ
meanは次式で表わされる。
If it is assumed that the roller length of this cylindrical roller bearing is equal to L, the average displacement δ between the roller and the outer ring raceway is assumed.
mean is represented by the following equation.

【0026】 δmean=4.36×10-7(Qmax0.9/L0.8) …(2)Δmean = 4.36 × 10 −7 (Qmax 0.9 / L 0.8 ) (2)

【0027】ここで、モーメントの作用によって、ころ
と外輪軌道の接触部面圧が一端で零となるような接触状
態になった場合に、他端側での変位量がδmeanの2倍に
なると仮定すると、変位量の大きい側での変位増大分を
軸受外径面で調心できれば、ころと外輪軌道間の平坦接
触状態を維持できる。
Here, when the contacting surface pressure of the roller and the outer ring raceway becomes zero at one end due to the action of the moment, if the displacement at the other end becomes twice as large as δmean. Assuming that the increase in displacement on the side with the larger displacement can be centered on the bearing outer diameter surface, a flat contact state between the rollers and the outer ring raceway can be maintained.

【0028】一般に、ころと外輪軌道の接触による変位
量は50μm以下のレベルであり、縦弾性率100Kgf
/mm2、弾性限界1Kgf/mm2の樹脂で、この変位を
弾性範囲内で吸収しようとすると、1%の歪みが50μ
mに相当する厚み、即ち、変位量の大きな端部で5mm
の厚みの樹脂がコーティングされていれば実現可能であ
る。
Generally, the amount of displacement due to the contact between the rollers and the outer raceway is at a level of 50 μm or less, and the longitudinal elastic modulus is 100 kgf.
/ Mm 2 , and a resin with an elastic limit of 1 kgf / mm 2 , if this displacement is to be absorbed within the elastic range, 1% strain is 50 μm.
m, that is, 5 mm at the end where the displacement amount is large.
It is feasible if a resin having a thickness of 3 mm is coated.

【0029】以上のように、外輪外径面にコーティング
する樹脂やゴムの素材と、その厚みを選択することで、
ミスアライメントや軸撓みを吸収する軸受が実現でき
る。
As described above, by selecting the material of the resin or rubber to be coated on the outer diameter surface of the outer ring and the thickness thereof,
A bearing that absorbs misalignment and shaft deflection can be realized.

【0030】なお、前記実施形態においては、弾性素材
30が外輪外径面10Bの全面に渡ってコーティングさ
れていたが、図9に示す第2実施形態のように、例えば
中央部30Bを空けてコーティングすることも可能であ
る。
In the above-described embodiment, the elastic material 30 is coated over the entire outer diameter surface 10B of the outer race. However, as in the second embodiment shown in FIG. Coating is also possible.

【0031】コーティング材もフッ素樹脂に限定され
ず、金属よりも変形し易い材料であれば、例えばポリエ
チレンやゴムを用いることが可能である。
The coating material is not limited to the fluororesin, and any material that is more easily deformed than metal, such as polyethylene or rubber, can be used.

【0032】[0032]

【発明の効果】本発明によれば、ミスアライメントや軸
の撓みによって軸受にモーメントが作用した場合でも、
端部側の変位量を大きくでき、軸受全体が傾くことで、
モーメントを吸収することが可能となる。従って、球面
座のような調心専用の機能部品を設けることなく、通常
の円筒穴の軸受箱と外輪外径面の間で直接調心させるこ
とが可能となる。よって、高負荷容量で調心性があり、
且つ、転動体と軌道を線接触として、ころの摩擦モーメ
ントバランスの不釣り合いを生じ難くした軸受を実現で
きる。
According to the present invention, even when a moment acts on the bearing due to misalignment or shaft deflection,
The displacement on the end side can be increased, and the entire bearing tilts,
It is possible to absorb the moment. Therefore, the centering can be performed directly between the bearing housing having a normal cylindrical hole and the outer diameter surface of the outer ring without providing a special functional component such as a spherical seat. Therefore, it has high load capacity and alignment,
In addition, it is possible to realize a bearing in which the rolling element and the raceway are in linear contact and the frictional moment balance of the rollers is less likely to be unbalanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の自動調心ころ軸受の要部構成を示す断面
FIG. 1 is a cross-sectional view showing a configuration of a main part of a conventional spherical roller bearing.

【図2】同じくトロイダル軸受の要部構成を示す断面図FIG. 2 is a cross-sectional view showing a main configuration of the toroidal bearing.

【図3】同じく球面座付円筒ころ軸受の要部構成を示す
断面図
FIG. 3 is a cross-sectional view showing a main part configuration of a cylindrical roller bearing with a spherical seat.

【図4】同じく球面座付円錐ころ軸受の要部構成を示す
断面図
FIG. 4 is a sectional view showing a configuration of a main part of a tapered roller bearing with a spherical seat.

【図5】同じく調心機能付軸受ユニットの要部構成を示
す断面図
FIG. 5 is a sectional view showing a configuration of a main part of the bearing unit with the centering function.

【図6】本発明の第1実施形態の要部構成を示す断面図FIG. 6 is a sectional view showing a configuration of a main part of the first embodiment of the present invention.

【図7】同じくモーメントが作用した状態を示す断面図FIG. 7 is a cross-sectional view showing a state in which a moment is applied.

【図8】本発明で弾性素材を選択するための、各種材料
の弾性係数と引張強さの関係の例を示す線図
FIG. 8 is a diagram showing an example of a relationship between elastic modulus and tensile strength of various materials for selecting an elastic material in the present invention.

【図9】本発明の第2実施形態の要部構成を示す断面図FIG. 9 is a sectional view showing a configuration of a main part of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…外輪 10B…外径面 12…内輪 14…転動体(ころ) 16…保持器 20…軸受箱 20A…内径面 30…弾性素材(コーティング) 30A…外表面 DESCRIPTION OF SYMBOLS 10 ... Outer ring 10B ... Outer diameter surface 12 ... Inner ring 14 ... Rolling element (roller) 16 ... Cage 20 ... Bearing box 20A ... Inner surface 30 ... Elastic material (coating) 30A ... Outer surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内輪と外輪の間に円筒状のころが挿入され
た円筒ころ軸受において、 前記外輪の外径面の少なくとも端部が、軸受中心からの
距離よりも大きい半径の球面形に形成され、 前記外径面に、外輪の外表面が略円筒形となるよう、外
輪よりも変形し易い弾性素材がコーティングされている
ことを特徴とする円筒ころ軸受。
1. A cylindrical roller bearing having a cylindrical roller inserted between an inner ring and an outer ring, wherein at least an end portion of an outer diameter surface of the outer ring is formed in a spherical shape having a radius larger than a distance from a center of the bearing. A cylindrical roller bearing, characterized in that the outer diameter surface is coated with an elastic material that is more easily deformed than the outer ring so that the outer surface of the outer ring has a substantially cylindrical shape.
JP2001078924A 2001-03-19 2001-03-19 Cylindrical roller bearing Pending JP2002276652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078924A JP2002276652A (en) 2001-03-19 2001-03-19 Cylindrical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078924A JP2002276652A (en) 2001-03-19 2001-03-19 Cylindrical roller bearing

Publications (1)

Publication Number Publication Date
JP2002276652A true JP2002276652A (en) 2002-09-25

Family

ID=18935459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078924A Pending JP2002276652A (en) 2001-03-19 2001-03-19 Cylindrical roller bearing

Country Status (1)

Country Link
JP (1) JP2002276652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418963A (en) * 2004-10-06 2006-04-12 Minebea Co Ltd A sliding bearing arrangement including a resilient member
JP2006125626A (en) * 2004-09-29 2006-05-18 Nsk Ltd Bearing unit with aligning function
JP2009041653A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Connecting rod of internal-combustion engine
WO2015133383A1 (en) * 2014-03-07 2015-09-11 株式会社ジェイテクト Power generation device and shaft coupling device used therein

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125626A (en) * 2004-09-29 2006-05-18 Nsk Ltd Bearing unit with aligning function
GB2418963A (en) * 2004-10-06 2006-04-12 Minebea Co Ltd A sliding bearing arrangement including a resilient member
GB2428752A (en) * 2004-10-06 2007-02-07 Minebea Co Ltd A bearing assembly
GB2428752B (en) * 2004-10-06 2007-03-14 Minebea Co Ltd A bearing assembly
GB2418963B (en) * 2004-10-06 2007-04-04 Minebea Co Ltd A bearing assembly
US7658546B2 (en) 2004-10-06 2010-02-09 Minebea Co. Ltd. Bearing assembly
JP2009041653A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Connecting rod of internal-combustion engine
WO2015133383A1 (en) * 2014-03-07 2015-09-11 株式会社ジェイテクト Power generation device and shaft coupling device used therein
CN106068382A (en) * 2014-03-07 2016-11-02 株式会社捷太格特 TRT and the axle coupling arrangement used in TRT
US10132362B2 (en) 2014-03-07 2018-11-20 Jtekt Corporation Power generation device and shaft coupling device with elastic member used therein

Similar Documents

Publication Publication Date Title
US5145267A (en) Automatic center adjusting roller bearing
US7963702B2 (en) Roller bearing
US6354745B1 (en) Fully self-aligning roller bearing
US5310269A (en) Roller bearings
US5975763A (en) Roller thrust bearing having improved efficiency and reduced noise generation
JPH11264416A (en) Ball bearing for high rotation speed
US4923313A (en) Device in rolling bearings
JP2002122146A (en) Conical roller bearing
JP2002276652A (en) Cylindrical roller bearing
US4714358A (en) Cage for lipless roller bearings
RU2555372C2 (en) Ball bearings and appropriate suspension stop
JP4239307B2 (en) Thrust tapered roller bearing
CN115045909B (en) Impact load-resistant foil hydrodynamic bearing and shafting
CN216666229U (en) Angular contact self-aligning roller bearing
JP3480000B2 (en) Rolling bearing
JP4090085B2 (en) Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls
WO2006098169A1 (en) Solid lubrication roller bearing
JP2006112555A (en) Roller bearing with aligning ring
US20100166354A1 (en) Roller bearing
JP2007139019A (en) Conical roller bearing
JP2615959B2 (en) Spherical roller bearing
JPS6128121Y2 (en)
CN219953956U (en) High-load rolling bearing
KR100734133B1 (en) Optimal Design Method Improved Rolling Contact Surface of Spherical Roller Bearings
CN213017249U (en) Crankshaft supporting structure of high-speed press