JP2002275548A - Method for separating boron from boron-containing alloy sludge - Google Patents

Method for separating boron from boron-containing alloy sludge

Info

Publication number
JP2002275548A
JP2002275548A JP2001071635A JP2001071635A JP2002275548A JP 2002275548 A JP2002275548 A JP 2002275548A JP 2001071635 A JP2001071635 A JP 2001071635A JP 2001071635 A JP2001071635 A JP 2001071635A JP 2002275548 A JP2002275548 A JP 2002275548A
Authority
JP
Japan
Prior art keywords
boron
sludge
solution
alloy sludge
containing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001071635A
Other languages
Japanese (ja)
Other versions
JP4699622B2 (en
Inventor
Hiroshi Ikuyori
浩 生頼
Hideo Yokoi
英雄 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2001071635A priority Critical patent/JP4699622B2/en
Priority to CNB021073694A priority patent/CN1220630C/en
Publication of JP2002275548A publication Critical patent/JP2002275548A/en
Application granted granted Critical
Publication of JP4699622B2 publication Critical patent/JP4699622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating boron from boron containing alloy sludge such as rare earth magnet alloy sludge by which boron can selectively and easily be separated from the alloy sludge with high efficiency without dissolving the whole of the sludge, and without dissolving a part of the alloy. SOLUTION: In the method for separating boron from the boron-containing alloy sludge, the boron-containing alloy sludge and an alkali aqueous solution are reacted, and boron is selectively eluted, and is thereafter separated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類磁石合金ス
ラッジ等のボロン含有合金スラッジから、選択的に、ま
た効率良くボロンを分離することができる、ボロン含有
合金スラッジからのボロンの分離方法に関する。
The present invention relates to a method for separating boron from boron-containing alloy sludge, which can selectively and efficiently separate boron from boron-containing alloy sludge such as rare earth magnet alloy sludge.

【0002】[0002]

【従来の技術】ボロンを含む合金スラッジ、例えば、R
(希土類)−Fe−B磁石スラッジは、スラッジ発生過程
からの油、有機物の混入によりスラッジそのままでは磁
石原料として再利用できない。そこで、これらは磁石ス
ラッジとして回収されている。磁石スラッジのリサイク
ルは、一般的に酸などに溶解させた後に分別沈澱法を用
いて各成分を分離し、回収する方法が用いられている。
2. Description of the Related Art Boron-containing alloy sludge such as R
(Rare earth) -Fe-B magnet sludge cannot be reused as a magnet raw material as it is due to the mixture of oil and organic matter from the sludge generation process. Therefore, they are collected as magnet sludge. In general, a method of recycling magnet sludge is to dissolve each component in an acid or the like and then separate and recover each component using a fractional precipitation method.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来法のよう
にスラッジの全量を酸で溶解する方法では、溶液中に合
金を構成する全ての元素がイオン化して存存するため、
それぞれの元素を分別沈澱法により回収するためには多
くの工程が必要となる。特に、ボロンイオンが存在する
場合には、分別沈澱法により金属を純粋な形で分離する
ことが非常に困難である。また、溶液中に存在する希土
類金属イオンをフッ化物の形で分別回収する場合、希土
類を回収した後の廃液中に含まれるフッ素イオンを処理
しなければならないが、溶液中にフッ素イオンとボロン
イオンとが存在する場合には、これらが強く結合してし
まい、フッ素イオンを処理することが困難となり、廃液
処理にコストがかさむ等の問題が発生する。そのため、
簡便で、スラッジを溶解することなくボロンを選択的に
分離する低コストな方法の開発が望まれている。
However, in the method of dissolving the entire amount of sludge with an acid as in the conventional method, since all elements constituting the alloy are ionized and exist in the solution,
Many steps are required to recover each element by the fractional precipitation method. In particular, when boron ions are present, it is very difficult to separate metals in a pure form by a fractional precipitation method. Also, when the rare earth metal ions present in the solution are separated and recovered in the form of fluoride, the fluorine ions contained in the waste liquid after the recovery of the rare earth must be treated, but the fluorine ions and boron ions are contained in the solution. When these are present, they are strongly bonded to each other, making it difficult to treat fluorine ions, resulting in problems such as an increase in cost for waste liquid treatment. for that reason,
It is desired to develop a simple and low-cost method for selectively separating boron without dissolving sludge.

【0004】従って、本発明の目的は、希土類磁石合金
スラッジ等のボロン含有合金スラッジを全て溶解させる
ことなく、また、合金の一部を溶解させることなく、該
合金スラッジから選択的に、且つ容易にボロンを分離す
ることができるボロン含有合金スラッジからのボロンの
分離方法を提供することにある。本発明の別の目的は、
希土類磁石合金スラッジ等のボロン含有合金スラッジを
全て溶解させることなく、また、合金の一部を溶解させ
ることなく、該合金スラッジから選択的に、効率良く、
且つ容易にボロンを分離することができるボロン含有合
金スラッジからのボロンの分離方法を提供することにあ
る。
[0004] Accordingly, an object of the present invention is to selectively and easily dissolve boron-containing alloy sludge such as rare earth magnet alloy sludge without dissolving all of the alloy sludge and without dissolving a part of the alloy. Another object of the present invention is to provide a method for separating boron from boron-containing alloy sludge that can separate boron. Another object of the invention is
Without dissolving all the boron-containing alloy sludge such as rare earth magnet alloy sludge, and without dissolving part of the alloy, selectively and efficiently from the alloy sludge,
It is another object of the present invention to provide a method for separating boron from boron-containing alloy sludge that can easily separate boron.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、ボロン含有合金ス
ラッジに、アルカリ水溶液を反応させることにより、合
金スラッジを全て溶解させたり、合金の一部を溶解させ
ないで、ボロンだけを選択的に溶出させることができる
ことを見出し本発明を完成した。また、ボロン含有合金
スラッジと、特定のアルカリ水溶液とを反応させる際
の、アルカリ水溶液の種類や濃度、若しくは使用量等を
選択したり、合金スラッジの粒径を特定なものに制御す
るなどの方法を採用することにより、ボロンの分離効率
を更に高くしうることを見出し本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by reacting an alkaline aqueous solution with a boron-containing alloy sludge, the alloy sludge can be completely dissolved, It has been found that only boron can be selectively eluted without dissolving a part of the present invention, and the present invention has been completed. In addition, when reacting a boron-containing alloy sludge with a specific alkaline aqueous solution, a method such as selecting the type and concentration of the alkaline aqueous solution, or the amount used, or controlling the particle size of the alloy sludge to a specific one. The present inventors have found that the separation efficiency of boron can be further increased by adopting the present invention, and completed the present invention.

【0006】すなわち本発明によれば、ボロン含有合金
スラッジと、アルカリ水溶液とを反応させボロンを選択
的に溶出させた後、分離することを特徴とするボロン含
有合金スラッジからのボロンの分離方法が提供される。
That is, according to the present invention, there is provided a method for separating boron from boron-containing alloy sludge, comprising reacting boron-containing alloy sludge with an alkaline aqueous solution to selectively elute and then separating boron. Provided.

【0007】[0007]

【発明の実施の形態】本発明の分離方法では、まず、ボ
ロン含有合金スラッジと、アルカリ水溶液とを反応させ
ボロンを選択的に溶出させる。前記ボロン含有合金スラ
ッジは、ボロンを含み、且つ合金のスラッジであれば特
に限定されない。好ましくは希土類金属と遷移金属元素
とボロンとを含む合金スラッジ、希土類金属と遷移金属
元素とボロンとから実質的になる合金スラッジ等が挙げ
られ、特に好ましくは、遷移金属元素として鉄を含むも
のが、本発明の分離方法において有効である。このよう
なものとしては、例えば、R(希土類)−Fe−B系磁石
スラッジ等が挙げられる。ボロン含有合金スラッジの粒
径は、粒径が大きいとボロンの溶出に時間がかかるた
め、平均粒径で100μm以下が好ましく、更に、ボロ
ンの溶出率をより高くするためには、50μm以下が好
ましく、10μm以下がより好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the separation method of the present invention, first, boron-containing alloy sludge is reacted with an aqueous alkali solution to selectively elute boron. The boron-containing alloy sludge is not particularly limited as long as it contains boron and is an alloy sludge. Preferably, an alloy sludge containing a rare earth metal, a transition metal element, and boron, an alloy sludge substantially consisting of a rare earth metal, a transition metal element, and boron, and the like, particularly preferably, those containing iron as the transition metal element It is effective in the separation method of the present invention. Such a material includes, for example, R (rare earth) -Fe-B-based magnet sludge. The particle diameter of the boron-containing alloy sludge is preferably 100 μm or less in average particle diameter because the time required for elution of boron is large if the particle diameter is large, and more preferably 50 μm or less to further increase the boron elution rate. And 10 μm or less is more preferable.

【0008】本発明の分離方法に用いるアルカリ水溶液
は、上記ボロン含有合金スラッジと反応させてボロンを
選択的に溶出させるものであれば良く、例えば、アルカ
リ金属塩の水溶液、アンモニア水溶液又はアンモニウム
塩水溶液等が挙げられる。前記アルカリ金属塩として
は、例えば、ナトリウム、カリウム、リチウム等のアル
カリ金属の水酸化物、炭酸塩等が挙げられ、特に、反応
性及び効率の点から水酸化リチウム、水酸化カリウム、
水酸化ナトリウム等の水酸化物が望ましい。前記アンモ
ニウム塩水溶液としては、例えば、炭酸アンモニウム水
溶液等が挙げられる。使用に際しては、これら単独でも
良いし、反応時に金属の溶出がともなわなければ2種以
上の混合物であっても良い。例えば、炭酸水素アルカリ
と炭酸アルカリとの混合物の場合、酸化条件下において
希土類金属を溶出させるので、使用できない。
The alkaline aqueous solution used in the separation method of the present invention may be any as long as it reacts with the above-mentioned boron-containing alloy sludge to selectively elute boron. And the like. Examples of the alkali metal salt include hydroxides and carbonates of alkali metals such as sodium, potassium and lithium, and particularly, lithium hydroxide and potassium hydroxide in view of reactivity and efficiency.
A hydroxide such as sodium hydroxide is desirable. Examples of the ammonium salt aqueous solution include an ammonium carbonate aqueous solution. When used, these may be used alone, or a mixture of two or more of them may be used as long as no metal is eluted during the reaction. For example, a mixture of an alkali hydrogen carbonate and an alkali carbonate cannot be used because a rare earth metal is eluted under oxidizing conditions.

【0009】本発明の分離方法において、前記ボロン含
有合金スラッジと、アルカリ水溶液とを反応させる際
の、アルカリ水溶液の濃度は、0.1mol/l以上が
好ましく、濃度が高い程ボロンの溶出能力が高くなる傾
向にあるので、1mol/l以上が特に好ましい。ま
た、5mol/lより濃くしても溶出能力は変わらなく
なるため、好ましくは0.1〜5mol/l、より好ま
しくは1〜3mol/lである。
In the separation method of the present invention, when the boron-containing alloy sludge is reacted with an aqueous alkali solution, the concentration of the aqueous alkali solution is preferably 0.1 mol / l or more. Since it tends to be high, 1 mol / l or more is particularly preferable. Also, since the elution ability does not change even if the concentration is higher than 5 mol / l, it is preferably 0.1 to 5 mol / l, more preferably 1 to 3 mol / l.

【0010】本発明の分離方法において、前記ボロン含
有合金スラッジと、アルカリ水溶液とを反応させる際
の、前記アルカリ水溶液の使用量は、前記ボロン含有合
金スラッジ中に含まれるボロンのモル数に対して高い程
ボロンの溶出率が高くなる傾向にあり、該ボロンのモル
数に対してアルカリが1倍量以上とすることによりボロ
ンの溶出率が良好になるので、1倍量以上が好ましく、
4倍量以上が特に好ましい。また、20倍量を超えると
添加したほどの効果が得られなくなるため、その上限は
20倍量が適当であり、より好ましくは15倍量程度で
ある。
In the separation method of the present invention, when the boron-containing alloy sludge is reacted with an alkaline aqueous solution, the amount of the alkaline aqueous solution used is based on the number of moles of boron contained in the boron-containing alloy sludge. The elution rate of boron tends to be higher as the amount is higher, and the elution rate of boron is improved by making the alkali 1 time or more with respect to the number of moles of boron.
Particularly preferred is 4 times or more. If the amount is more than 20 times, the effect as much as the added amount cannot be obtained. Therefore, the upper limit is suitably 20 times, more preferably about 15 times.

【0011】本発明の分離方法において、アルカリ水溶
液を構成する水は、アルカリを溶解させる量の存在であ
れば良く、合金スラッジ中のボロン以外のものを実質的
に溶解させない液であれば水以外のものを含んでいても
良い。
In the separation method of the present invention, the water constituting the aqueous alkali solution only needs to be present in an amount capable of dissolving the alkali, and other than water as long as it does not substantially dissolve anything other than boron in the alloy sludge. May be included.

【0012】本発明の分離方法において、前記ボロン含
有合金スラッジと、アルカリ水溶液とを反応させる際の
反応条件は、反応温度としては、室温程度から行うこと
ができるが、反応温度が低い場合にはボロンの溶出に時
間を要するため、同じ溶出能力を得るのにアルカリ水溶
液の濃度や使用量を多くする必要が生じる。従って、反
応温度は40℃以上が好ましく、特に好ましくは60℃
以上であるが、他の条件とを考慮した場合これに限定さ
れない。また、反応時間は6時間程度でもよいが、24
時間以上が好ましい。前記反応に際しては、超音波照射
を行ないながら反応させることもできる他、オートクレ
ーブ等を用いて、実質的に加圧下において反応させるこ
とも可能である。
In the separation method of the present invention, the reaction conditions for reacting the boron-containing alloy sludge with the aqueous alkali solution can be as low as about room temperature. Since it takes time to elute boron, it is necessary to increase the concentration and the amount of the aqueous alkaline solution to obtain the same elution ability. Therefore, the reaction temperature is preferably 40 ° C. or higher, particularly preferably 60 ° C.
As described above, the present invention is not limited to this in consideration of other conditions. The reaction time may be about 6 hours,
The time is preferably longer than an hour. At the time of the reaction, it is possible to carry out the reaction while irradiating ultrasonic waves, or to carry out the reaction substantially under pressure using an autoclave or the like.

【0013】本発明の分離方法では、上記反応の後、選
択的に溶出したボロンを分離する。該ボロンの分離は、
得られた反応物を、例えば、ろ過等により固形物(合金
スラッジ)とボロンイオンを含む溶液に分離することに
より行うことができる。得られた固形物は、更に乾燥等
を行うことにより、例えば、磁石合金のリサイクル工程
へ利用することができる。また、回収したボロン含有ア
ルカリ溶液は、ボロン濃度が高くなるまでアルカリ水溶
液として繰り返し使用することができる他、新たなアル
カリ水溶液を追加しながら再使用することも可能であ
る。更に、回収したボロン含有溶液は、例えば、公知の
蒸発乾固等の方法によって処理することによりボロンを
ボロン化合物として回収することができ、回収したボロ
ン化合物は再利用が可能である。
In the separation method of the present invention, after the above-mentioned reaction, the selectively eluted boron is separated. The separation of boron is
The reaction can be carried out by separating the obtained reaction product into a solution containing solid matter (alloy sludge) and boron ions by filtration or the like. The obtained solid can be further used for, for example, a step of recycling a magnet alloy by further drying or the like. The recovered boron-containing alkaline solution can be repeatedly used as an aqueous alkaline solution until the boron concentration becomes high, and can be reused while adding a new alkaline aqueous solution. Furthermore, the recovered boron-containing solution can be recovered as a boron compound by treating it by a known method such as evaporation to dryness, and the recovered boron compound can be reused.

【0014】[0014]

【発明の効果】本発明の分離方法では、ボロン含有合金
スラッジと、アルカリ水溶液とを反応させボロンを選択
的に溶出させるので、ボロン含有合金スラッジを全て溶
解させることなく、また該スラッジ中の金属の一部を溶
出させることなく、該合金スラッジから選択的に、且つ
容易にボロンを分離することができる。また、反応時に
おけるアルカリ水溶液の種類を特定なものとする手段、
アルカリ水溶液の濃度を特定濃度以上とする手段、アル
カリ水溶液の使用量を特定量以上とする手段、合金スラ
ッジの粒径を特定なものに制御する手段若しくはこれら
の組合せを採用することにより、ボロンの分離効率を更
に向上させることができる。
According to the separation method of the present invention, boron-containing alloy sludge reacts with an aqueous alkali solution to selectively elute boron, so that all of the boron-containing alloy sludge is not dissolved and the metal in the sludge is not dissolved. Can be selectively and easily separated from the alloy sludge without dissolving a part of the boron. Further, means for specifying the type of the aqueous alkaline solution at the time of the reaction,
By adopting a means for increasing the concentration of the alkaline aqueous solution to a specific concentration or more, a method for increasing the amount of the alkaline aqueous solution to a specific amount or more, a means for controlling the particle size of the alloy sludge to a specific one, or a combination thereof, Separation efficiency can be further improved.

【0015】[0015]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれに限定されない。実施例1 ボロンを0.8質量%含む、平均粒径10μmのNd−
Fe−B系合金スラッジ30gを70mlの純水に分散
させ合金スラッジ溶液を調製した。次いで、該合金スラ
ッジ溶液を撹拌しながら、含有されるボロンのモル数に
対して4倍モルのNaOHを加え、60℃に昇温した
後、24時間撹拌反応させた。反応後、反応液をろ過
し、固形物(スラッジ)と溶液に分離した。得られた固形
物を1000℃で乾燥した後、固形物中のボロンをセイ
コーインスツルメント社製ICP発光分光分析装置(S
PS−1100H)を用いて分析し、ボロンの溶出率を
求めた。結果を表1に示す。なお、合金スラッジの平均
粒径は、マイクロトラック社製レーザー回折式粒度分布
測定装置(商品名「マイクロトラック7997−10
型」、媒体として水を用い、サンプラーとして商品名
「SVR」を用いた)を用いて粒度分布を測定し、それ
から算出した値である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Nd- containing 0.8% by mass of boron and having an average particle size of 10 μm
30 g of Fe-B alloy sludge was dispersed in 70 ml of pure water to prepare an alloy sludge solution. Next, while stirring the alloy sludge solution, NaOH was added in an amount of 4 times the mole number of the contained boron, and the temperature was raised to 60 ° C., followed by a stirring reaction for 24 hours. After the reaction, the reaction solution was filtered to separate into a solid (sludge) and a solution. After the obtained solid was dried at 1000 ° C., boron in the solid was analyzed by an ICP emission spectrometer (SIP, manufactured by Seiko Instruments Inc.).
(PS-1100H) and the elution rate of boron was determined. Table 1 shows the results. The average particle size of the alloy sludge was measured using a laser diffraction particle size distribution analyzer (trade name: Microtrack 7997-10, manufactured by Microtrac Co., Ltd.).
The particle size distribution was measured using a “type”, water as a medium, and trade name “SVR” as a sampler), and the value was calculated therefrom.

【0016】実施例2〜23 アルカリ水溶液の種類、含有されるボロンのモル数に対
するアルカリ水溶液の使用量、反応時におけるアルカリ
水溶液の濃度、反応温度、反応時間、及びボロンを0.
8質量%含む、Nd−Fe−B系合金スラッジの平均粒
径を、表1に示すとおりに代えた以外は、実施例1と同
様に反応及びろ過を行い、得られた固形物(スラッジ)か
らボロンの溶出率を測定した。なお、実施例23につい
ては反応を、オートクレーブを用いて高温で行った。結
果を表1に示す。
Examples 2 to 23 The kind of the alkaline aqueous solution, the amount of the alkaline aqueous solution with respect to the number of moles of boron contained, the concentration of the alkaline aqueous solution at the time of the reaction, the reaction temperature, the reaction time, and the amount of boron were set at 0.
The reaction and filtration were carried out in the same manner as in Example 1 except that the average particle size of the Nd-Fe-B-based alloy sludge containing 8% by mass was changed as shown in Table 1, and the obtained solid (sludge) was obtained. And the elution rate of boron was measured. In addition, about Example 23, reaction was performed at high temperature using an autoclave. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ボロン含有合金スラッジと、アルカリ水
溶液とを反応させボロンを選択的に溶出させた後、分離
することを特徴とするボロン含有合金スラッジからのボ
ロンの分離方法。
1. A method for separating boron from boron-containing alloy sludge, comprising reacting boron-containing alloy sludge with an aqueous alkali solution to selectively elute and then separating boron.
【請求項2】 アルカリ水溶液が、アルカリ金属塩の水
溶液、アンモニア水溶液又はアンモニウム塩水溶液であ
る請求項1記載の分離方法。
2. The method according to claim 1, wherein the aqueous alkali solution is an aqueous alkali metal salt solution, an aqueous ammonia solution or an aqueous ammonium salt solution.
【請求項3】 ボロン含有合金スラッジと、アルカリ水
溶液とを反応させる際の、アルカリ水溶液の濃度が、
0.1mol/l以上である請求項1又は2記載の分離
方法。
3. The method according to claim 1, wherein when the boron-containing alloy sludge is reacted with the aqueous alkaline solution, the concentration of the aqueous alkaline solution is:
3. The separation method according to claim 1, wherein the amount is 0.1 mol / l or more.
【請求項4】 アルカリ水溶液の使用量が、前記ボロン
含有合金スラッジ中に含まれるボロンのモル数に対して
アルカリが1倍量以上となる量であることを特徴とする
請求項1〜3のいずれか1項記載の分離方法。
4. The method according to claim 1, wherein the amount of the aqueous alkali solution is such that the amount of alkali is at least 1 times the number of moles of boron contained in the boron-containing alloy sludge. The separation method according to claim 1.
【請求項5】 アルカリ金属塩が、アルカリ金属の水酸
化物であることを特徴とする請求項2記載の分離方法。
5. The method according to claim 2, wherein the alkali metal salt is a hydroxide of an alkali metal.
【請求項6】 合金スラッジの平均粒径が100μm以
下である請求項1〜5のいずれか1項記載の分離方法。
6. The method according to claim 1, wherein the average particle size of the alloy sludge is 100 μm or less.
【請求項7】 合金スラッジが、実質的に希土類金属元
素と遷移金属元素とボロンとからなることを特徴とする
請求項1〜6のいずれか1項記載の分離方法。
7. The separation method according to claim 1, wherein the alloy sludge substantially comprises a rare earth metal element, a transition metal element, and boron.
JP2001071635A 2001-03-14 2001-03-14 Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge Expired - Fee Related JP4699622B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001071635A JP4699622B2 (en) 2001-03-14 2001-03-14 Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge
CNB021073694A CN1220630C (en) 2001-03-14 2002-03-14 Method for separating boron from mud containing boron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071635A JP4699622B2 (en) 2001-03-14 2001-03-14 Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge

Publications (2)

Publication Number Publication Date
JP2002275548A true JP2002275548A (en) 2002-09-25
JP4699622B2 JP4699622B2 (en) 2011-06-15

Family

ID=18929329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071635A Expired - Fee Related JP4699622B2 (en) 2001-03-14 2001-03-14 Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge

Country Status (2)

Country Link
JP (1) JP4699622B2 (en)
CN (1) CN1220630C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139899A (en) * 2010-11-25 2011-08-03 汪晋强 Method for preparing magnesium sulfate monohydrate and co-producing manganese sulfate and calcium sulfate by using boric sludge
CN102139900A (en) * 2010-11-25 2011-08-03 汪晋强 Method for preparing magnesium sulfate heptahydrate co-produced with manganese sulfate and calcium sulfate from boric sludge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030919A (en) * 1998-07-09 2000-01-28 Sumitomo Metal Mining Co Ltd MANUFACTURE OF MATERIAL POWDER FOR R-Fe-B MAGNET

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030919A (en) * 1998-07-09 2000-01-28 Sumitomo Metal Mining Co Ltd MANUFACTURE OF MATERIAL POWDER FOR R-Fe-B MAGNET

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139899A (en) * 2010-11-25 2011-08-03 汪晋强 Method for preparing magnesium sulfate monohydrate and co-producing manganese sulfate and calcium sulfate by using boric sludge
CN102139900A (en) * 2010-11-25 2011-08-03 汪晋强 Method for preparing magnesium sulfate heptahydrate co-produced with manganese sulfate and calcium sulfate from boric sludge
CN102139900B (en) * 2010-11-25 2012-05-23 汪晋强 Method for preparing magnesium sulfate heptahydrate co-produced with manganese sulfate and calcium sulfate from boric sludge

Also Published As

Publication number Publication date
CN1220630C (en) 2005-09-28
JP4699622B2 (en) 2011-06-15
CN1375454A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
JP6622307B2 (en) Method for extraction and separation of rare earth elements
CA3089549C (en) Solvent extraction method
EP2305841A1 (en) Method for separating and recovering nickel and lithium
JP6448684B2 (en) Lithium recovery method
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
JP2006057142A (en) Method for recovering lithium
WO2022213678A1 (en) Method for recycling aluminum in waste positive electrode sheet by using selective leaching and application thereof
JP6986997B2 (en) Lithium carbonate manufacturing method and lithium carbonate
CN105143476A (en) Compounds and methods to isolate gold
JP5783536B2 (en) Boron recovery method
EP2454390B1 (en) Method for extracting at least one chemical element from a molten salt medium
JP2019529721A (en) Process for the production of concentrates of metals, rare metals and rare earth metals from residues of alumina production by the Bayer process or from materials having a similar chemical composition to the residue, and purification of the concentrates thus obtained
JP2002275548A (en) Method for separating boron from boron-containing alloy sludge
JP4439804B2 (en) Cobalt recovery method
JP2018028150A (en) Method for bleeding lithium ion battery scrap and method for recovering valuable metal
JP6423300B2 (en) Separation and recovery of yttrium and nickel from solid oxide fuel cell scrap
JPH06329414A (en) Production of rare earth fluoride
JPH11293357A (en) Selective recovery of cobalt compound
JP6908725B2 (en) Metal recovery agent, metal recovery liquid, metal compound recovery method and metal recovery method
JPH04198017A (en) Purification of scandium oxide
JP2006150332A (en) Treatment method for dust
JPH0357052B2 (en)
JP3245926B2 (en) Method for producing Mn-Zn ferrite
Pimassoni et al. The recovery of rare earth elements from waste electrical and electronic equipment: A review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees