JP2002275535A - Method for producing steel pipe for hydroforming having strain aging property - Google Patents

Method for producing steel pipe for hydroforming having strain aging property

Info

Publication number
JP2002275535A
JP2002275535A JP2001074608A JP2001074608A JP2002275535A JP 2002275535 A JP2002275535 A JP 2002275535A JP 2001074608 A JP2001074608 A JP 2001074608A JP 2001074608 A JP2001074608 A JP 2001074608A JP 2002275535 A JP2002275535 A JP 2002275535A
Authority
JP
Japan
Prior art keywords
steel pipe
hydroforming
steel
less
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001074608A
Other languages
Japanese (ja)
Other versions
JP4419336B2 (en
Inventor
Yuji Hashimoto
裕二 橋本
Osamu Sonobe
治 園部
Shinjiro Kaneko
真次郎 金子
Akio Tosaka
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001074608A priority Critical patent/JP4419336B2/en
Publication of JP2002275535A publication Critical patent/JP2002275535A/en
Application granted granted Critical
Publication of JP4419336B2 publication Critical patent/JP4419336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a steel pipe which has excellent hydroformability, and is hardened by coating/baking treatment after hydroforming. SOLUTION: A steel sheet having a composition containing, by mass, 0.01 to <0.05% C, <=0.01% Si, <=3.0% Mn, <=0.15% P, <=0.015% S, <=0.01% Al and N of 0.005 to 0.02%, also by >=0.003% in a solid solution state, and the balance Fe with inevitable impurities and subjected to hot rolling or cold rolling is formed into a cylindrical shape, and the joint parts are welded. The steel pipe after the welding is annealed at 600 to 750 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車の構造部
材や足回り部材などの使途に好適な鋼管であって、とく
にハイドロフォーミングにおける加工性(ハイドロフォ
ーミング性)に優れ、しかも歪み時効性を有する構造用
鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe suitable for use as a structural member or undercarriage member of an automobile, and has excellent workability (hydroforming property) particularly in hydroforming and has strain aging. The present invention relates to a structural steel pipe.

【0002】[0002]

【従来の技術】自動車の構造部材として用いられる、種
々の断面形状をもつ中空部材を製造するには、従来か
ら、鋼板のプレス加工によって成形した部品同士をその
溶接代であるフランジ部でスポット溶接して接合する方
法が採用されてきたが、品質、生産効率の両面から改善
が求められていた。また、この構造用の中空部材に対し
ては、衝突時のより高い衝撃吸収能が求められるように
なり、高強度化が求められている。このため、従来のプ
レス成形による方法では、成形欠陥のない、また成形品
の形状・寸法精度の良好な部材を製造することが次第に
困難になりつつある。
2. Description of the Related Art In order to manufacture hollow members having various cross-sectional shapes used as structural members of automobiles, conventionally, parts formed by pressing a steel plate are spot-welded to each other at a flange portion which is a welding margin. Bonding methods have been adopted, but improvements have been demanded in terms of both quality and production efficiency. In addition, the hollow member for this structure is required to have a higher shock absorbing ability at the time of collision, and is required to have higher strength. For this reason, it is becoming increasingly difficult to produce a member having no molding defects and having good shape and dimensional accuracy of a molded product by the conventional press molding method.

【0003】このような問題を解決するための新しい成
形方法として、最近、ハイドロフォーミングによる成形
法が注目されはじめた。ハイドロフォーミングは、鋼管
を金型の内側に装填し、鋼管の内部に高圧液体を注入し
て拡管し、金型に沿わせるように塑性加工する方法であ
り、複雑形状部材の一体短時間成形をはかれるととも
に、成形後部材の形状特性により、モノコック的な作用
で強度・剛性を高めることもできる優れた成形法であ
る。ところで、このハイドロフォーミング用の鋼管とし
ては、一般に、容易に強度が得られ、かつ安価である、
質量%にしてC:0.10〜0.20%の低、中炭素鋼からなる
電縫鋼管が用いられることが多かった。
As a new molding method for solving such a problem, recently, a molding method by hydroforming has begun to attract attention. Hydroforming is a method of loading a steel pipe inside a mold, injecting a high-pressure liquid into the steel pipe, expanding the pipe, and performing plastic working along the mold. It is an excellent molding method that can be peeled off, and the strength and rigidity can be increased by a monocoque action due to the shape characteristics of the member after molding. By the way, as a steel pipe for hydroforming, generally, strength is easily obtained, and it is inexpensive.
In many cases, an electric resistance welded steel pipe made of low and medium carbon steel of 0.10 to 0.20% in mass% was used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
C量の電縫鋼管にハイドロフォーミングを施しても、材
料の加工性がよくないために、十分な拡管率が得られな
い場合があるという問題があった。このような状況にお
いて、電縫鋼管の素材そのものの加工性を高めるため
に、炭素量を著しく低減した極低炭素鋼を素材として用
いることが考えられる。しかし、極低炭素鋼の電縫鋼管
の場合には、ハイドロフォーミング性はよいものの、溶
接によってもたらされる新たな問題が起こる。その問題
とは、極低炭素鋼を素材とした電縫鋼管は鋼管製造時の
溶接熱により、熱影響部の結晶粒が粗大化して軟化し、
これをハイドロフォーミングすると、同部に変形が局部
的に集中し、素材がもつ高延性を十分に発揮できずに破
断しやすいこと、また、ハイドロフォーミングした部材
を他の部材と溶接した場合にも、同様な軟化が生じて溶
接部強度が十分に得られず、結局、それを使用した製造
物の使用部位強度が十分に得られないことである。この
ように、十分な拡管率が得られ、かつ溶接熱影響部の軟
化を生じにくい鋼管は未だに存在しないのが現状であ
る。
However, even if hydroforming is performed on an ERW steel pipe having such a C content, there is a problem that a sufficient expansion ratio may not be obtained due to poor workability of the material. there were. In such a situation, in order to enhance the workability of the material of the electric resistance welded steel pipe itself, it is conceivable to use a very low carbon steel having a significantly reduced carbon content as the material. However, in the case of an electric resistance welded steel pipe made of extremely low carbon steel, although the hydroforming property is good, a new problem caused by welding occurs. The problem is that the ERW steel pipe made of ultra-low carbon steel is coarsened and softened by the welding heat during the production of the steel pipe, causing the crystal grains of the heat-affected zone to coarsen
When this is hydroformed, the deformation is concentrated locally in the same part, the high ductility of the material can not be sufficiently exhibited, it is easy to break, and also when the hydroformed member is welded with other members The same softening occurs, and sufficient strength of the welded portion cannot be obtained. As a result, the strength of the used portion of the product using the same cannot be sufficiently obtained. As described above, at present, there is no steel pipe capable of obtaining a sufficient pipe expansion ratio and hardly causing the welding heat affected zone to soften.

【0005】そこで、本発明は、従来技術が抱えていた
これらの問題に鑑み、ハイドロフォーミングに適した鋼
管についての新たな提案を行うものである。とくに、こ
の発明は、ハイドロフォーミング性に優れるとともに、
溶接軟化を生じにくく、さらにハイドロフォーミング後
の塗装焼付処理で硬化する、いわゆる歪み時効性を具え
た、電縫鋼管の製造方法を提案することを目的とする。
なお、本発明法で目指す鋼管の具体的目標特性は、鋼管
の引張強度(TS)×拡管率(軸方向圧縮の条件下)で
表したハイドロフォーミング性が13000 MPa・%以上
であり、170 ℃×20分の歪み時効処理(焼付処理に相
当)による引張強度の上昇量で表した歪み時効硬化量が
40MPa以上であるものとする。なお、本発明中、「鋼
板」と記載の箇所があるが、これは鋼帯をも含む意味と
する。
In view of these problems of the prior art, the present invention proposes a new steel pipe suitable for hydroforming. In particular, this invention is excellent in hydroforming property,
An object of the present invention is to propose a method for producing an electric resistance welded steel pipe, which hardly causes welding softening and hardens by a baking treatment after hydroforming, so-called strain aging.
The specific target properties of the steel pipe aimed at by the method of the present invention are as follows. The hydroforming property expressed by the tensile strength (TS) of the steel pipe × expansion ratio (under the condition of axial compression) is 13000 MPa ·% or more, and 170 ° C. The amount of strain age hardening expressed as the increase in tensile strength due to × 20 minute strain aging treatment (equivalent to baking treatment)
It is assumed that the pressure is 40 MPa or more. In the present invention, there is a portion described as “steel plate”, which means that it includes a steel strip.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記課題を
解決するために、鋼管の成分組成、製造方法などについ
て種々の検討を重ねた。その結果、C量を質量%にして
0.01〜0.05%未満の範囲としたセミ極低炭素鋼を用いる
こと、固溶Nを適正量含有させること、鋼板を円筒状に
成形する際に生じた歪みを溶接後の焼鈍により取り除く
ことが極めて有効であることを見いだした。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors have repeated various studies on the composition of the steel pipe, the production method, and the like. As a result, the amount of C
It is extremely important to use semi-ultra low carbon steel with a range of 0.01 to less than 0.05%, to contain an appropriate amount of solute N, and to remove the distortion generated when the steel sheet is formed into a cylindrical shape by annealing after welding. Found to be effective.

【0007】本発明は上記知見を基にして完成したもの
であり、質量%で、C:0.01〜0.05%未満、Si:0.01%
以下、Mn:3.0 %以下、P:0.15%以下、S:0.015 %
以下、Al:0.01%以下、N:0.005 〜0.02%、かつ固溶
状態で0.003 %以上を含有し、残部はFeおよび不可避的
不純物からなる、熱延または冷延した鋼板を円筒状に成
形した後、継目部を溶接し、溶接後の鋼管を600 〜750
℃の温度で焼鈍することを特徴とする歪み時効性を有す
るハイドロフォーミング用鋼管の製造方法である。
The present invention has been completed on the basis of the above findings, and is expressed in terms of% by mass: C: 0.01 to less than 0.05%, Si: 0.01%
Mn: 3.0% or less, P: 0.15% or less, S: 0.015%
Hereafter, a hot-rolled or cold-rolled steel sheet containing 0.01% or less of Al, 0.005% to 0.02% of N, and 0.003% or more in a solid solution state and the balance of Fe and unavoidable impurities was formed into a cylindrical shape. After that, weld the seam and weld the steel pipe to 600-750.
This is a method for producing a steel pipe for hydroforming having strain aging, characterized by annealing at a temperature of ° C.

【0008】[0008]

【発明の実施の形態】この発明における鋼成分の限定理
由、鋼管の製造方法などについて説明する。 C:0.01〜0.05%未満 C含有量を増やすと、鋼は強度が向上する反面、成形性
は低下する。とくにC含有量が0.05%以上では成形性の
低下が大きくなる。一方、含有量が0.01%に満たない
と、鋼管製造時の溶接熱影響部の結晶粒が粗大化し、ま
た、ハイドロフォーミングした部材をアーク溶接した際
にも同様に結晶粒が粗大化し、それを使用した製造物の
使用部位強度低下の原因となる。このため、C量は0.01
〜0.05%未満の範囲とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the steel composition in the present invention, the method of manufacturing a steel pipe, and the like will be described. C: 0.01 to less than 0.05% When the C content is increased, the strength of the steel is improved, but the formability is reduced. In particular, if the C content is 0.05% or more, the moldability is greatly reduced. On the other hand, if the content is less than 0.01%, the crystal grains of the heat affected zone at the time of steel pipe production become coarse, and when the hydroformed member is arc-welded as well, the crystal grains become coarse. This may cause a decrease in the strength of the used portion of the product used. Therefore, the amount of C is 0.01
The range is less than 0.05%.

【0009】Si:0.01%以下 Siは、鋼板を溶接するときと、それに本発明にいう溶接
後の焼鈍のときに、高温に再加熱したときに、鋼中の固
溶Nと結合して固溶N量を低下させ、歪み時効硬化量を
低下させる。目標とする歪み時効硬化特性を発揮させる
には、0.01%以下に抑制する必要がある。
Si: 0.01% or less Si is bonded to solute N in the steel when the steel sheet is welded and when it is reheated to a high temperature during annealing after welding according to the present invention. The amount of dissolved N is reduced, and the amount of strain age hardening is reduced. In order to exert the target strain age hardening characteristics, it is necessary to suppress the content to 0.01% or less.

【0010】Mn:3.0 %以下 Mnは、表面性状および溶接性を低下させることなく、鋼
板ひいてはハイドロフォーミングした部材の強度を向上
させるのに有効な元素であるが、3.0 %を超えて添加す
ると硬化しずぎ、ハイドロフォーミング時に達成可能な
拡管率が低下する。したがって、Mn含有量は3.0 %以下
の範囲とする。
Mn: 3.0% or less Mn is an element effective for improving the strength of a steel sheet and thus a hydroformed member without deteriorating the surface properties and weldability, but hardens when added over 3.0%. The expansion rate achievable during hydroforming is reduced. Therefore, the Mn content is limited to 3.0% or less.

【0011】P:0.15%以下 Pは、鋼の強度向上に有効な元素であるが、0.15%を超
えて含有させると溶接性が悪化する。とくに、Pによる
強化作用がさほど必要ではないとき、またC量が高く溶
接性の低下が懸念されるときには、0.02%以下に制限す
るのが望ましい。
P: 0.15% or less P is an element effective for improving the strength of steel. However, if it exceeds 0.15%, the weldability deteriorates. In particular, when the strengthening action by P is not so required, or when the C content is high and there is a concern that the weldability may be reduced, it is desirable to limit the content to 0.02% or less.

【0012】S:0.015 %以下 Sは、鋼中で非金属介在物として存在し、これが起点と
なってハイドロフォーミング中に鋼管が破断(バース
ト)する恐れがある。このため、S量は低いほど耐バー
スト性が改善され、0.015 %以下とすればその効果があ
らわれる。なお、耐バースト性の一層の向上には、好ま
しくは0.010 %以下、さらに好ましくは0.005 %以下に
制限するのがよい。
S: 0.015% or less S exists as nonmetallic inclusions in steel, and there is a possibility that the steel pipe may break (burst) during hydroforming by using this as a starting point. For this reason, the burst resistance is improved as the S content is lower, and the effect appears when the S content is 0.015% or less. In order to further improve the burst resistance, the content is preferably limited to 0.010% or less, more preferably 0.005% or less.

【0013】Al:0.01%以下 Alは、鋼の脱酸に必要であるとともに、結晶粒の粗大化
抑制のために有用な元素であるので、0.005 %以上の含
有が望まれる。しかし、0.01%を超えて多量に含むと、
固溶状態で残存するN量が減少し、歪み時効硬化量が低
下する。このため、歪み時効硬化の作用を十分に発揮さ
せるには、0.01%以下の範囲で含有させる。
Al: 0.01% or less Al is necessary for deoxidizing steel and is a useful element for suppressing the coarsening of crystal grains. Therefore, the content of Al is desirably 0.005% or more. However, if it contains a large amount exceeding 0.01%,
The amount of N remaining in the solid solution state decreases, and the amount of strain age hardening decreases. For this reason, in order to sufficiently exhibit the effect of strain age hardening, the content is contained in the range of 0.01% or less.

【0014】N:0.005 〜0.02%、かつ固溶状態のNと
して0.003 %以上 Nは、成形性(とくに延性)を低下させることなく鋼を
強化するのに有用な元素である。このような効果は、N
量(全N量)で0.005 %以上、かつ固溶状態のN量で0.
003 %以上含有させることによって生じる。一方、0.02
%を超えてNを含有すると、スラブ製造時に割れが生
じ、製造しにくくなる。よって、N量は0.005 〜0.02
%、かつ固溶状態Nは0.003 %以上の範囲とする。な
お、固溶状態のN量は、鋼全体のN量から地鉄を化学的
に溶解し、抽出残査を分析して得られたN量を差し引く
する方法で求めることができる。
N: 0.005 to 0.02%, and 0.003% or more as N in a solid solution state N is an element useful for strengthening steel without lowering formability (particularly ductility). Such an effect is
0.005% or more in terms of the amount (total N amount) and 0.1% in the solid solution state.
It is caused by containing 003% or more. On the other hand, 0.02
If N is contained in excess of%, cracks occur during slab production, making production difficult. Therefore, the N amount is 0.005 to 0.02
% And the solid solution state N are in the range of 0.003% or more. The amount of N in the solid solution state can be determined by a method of chemically dissolving base iron from the amount of N in the entire steel and subtracting the amount of N obtained by analyzing the extraction residue.

【0015】次に、本発明に係る鋼管の製造方法につい
て説明する。上述した成分組成にしたがう鋼を溶製した
後、連続鋳造法あるいは造塊−分塊法によりスラブとす
る。スラブは、熱間圧延により熱延鋼板とするか、さら
に冷間圧延−焼鈍の工程を経て冷延鋼板とする。このよ
うにして得られた熱延鋼板または冷延鋼板を素材とし
て、ロール成形により、ほぼ円筒状の形に成形し、両幅
端部同士を突き合わせて形成される継目部を溶接する。
ことに電縫溶接にて接合するのが好ましい。ここで、鋼
管の素材となる熱延鋼板あるいは冷延鋼板の段階で固溶
Nを0.003%以上確保しておくことが重要である。この
ような熱延鋼板は、上記の成分組成に従う鋼スラブの熱
間圧延工程において、熱間仕上圧延終了後0.5 秒以内に
冷却を開始し、おおむね40℃/s以上の冷却速度で650
℃以下まで冷却し、冷却終了温度以下の温度で巻取るこ
とにより製造できる。また、この熱延鋼板を冷間圧延し
た後、焼鈍時の加熱温度を750 ℃以下とすることによ
り、固溶Nを0.003 %以上含有する冷延鋼板を製造でき
る。本発明においては、歪み時効硬化性に寄与する固溶
Nを所定量以上確保することが極めて重要であるので、
上記工程におけるとくに鋼板の製造段階では、高温域
(750 ℃超え)に保持する時間を短くすることが有効で
ある。
Next, a method for manufacturing a steel pipe according to the present invention will be described. After smelting a steel according to the above-described composition, the slab is formed by a continuous casting method or an ingot-bulking method. The slab is formed into a hot-rolled steel sheet by hot rolling or a cold-rolled steel sheet through a process of cold rolling and annealing. The hot-rolled steel sheet or the cold-rolled steel sheet obtained in this manner is used as a material, formed into a substantially cylindrical shape by roll forming, and a joint formed by abutting both width end portions is welded.
In particular, it is preferable to join by electric resistance welding. Here, it is important to secure 0.003% or more of solute N at the stage of the hot rolled steel plate or the cold rolled steel plate as the material of the steel pipe. Such a hot-rolled steel sheet starts cooling within 0.5 seconds after the completion of hot finish rolling in a hot rolling step of a steel slab according to the above-mentioned composition, and is cooled at a cooling rate of about 40 ° C./s or more at about 650 ° C.
It can be manufactured by cooling to a temperature of not more than ° C. and winding at a temperature not higher than the cooling end temperature. Further, by cold-rolling this hot-rolled steel sheet and then setting the heating temperature during annealing to 750 ° C. or lower, a cold-rolled steel sheet containing 0.003% or more of solute N can be manufactured. In the present invention, since it is extremely important to ensure a predetermined amount or more of solid solution N that contributes to strain age hardening,
It is effective to shorten the time for maintaining the steel sheet in a high temperature range (above 750 ° C.), especially in the steel plate manufacturing stage in the above process.

【0016】次いで、上記工程で製造された熱延鋼板ま
たは冷延鋼板を円筒状に成形した後、継目部を電縫溶接
することによって鋼管とし、さらに溶接後の鋼管を600
〜750 ℃の温度で焼鈍することによって本発明の電縫鋼
管が製造される。ここで、溶接後の鋼管を600 〜750 ℃
の温度で焼鈍するのは、円筒状に成形する際に生じた歪
みを除去するためであり、焼鈍温度が600 ℃に満たない
と歪みの除去が十分でないために、電縫鋼管をこのまま
長期間放置したときに、歪み時効硬化のために引張強度
が上昇しハイドロフォーミング時の延性が低下してしま
う。一方、750 ℃を超えると歪み時効硬化性に寄与する
固溶N量を確保することが困難になる。よって、溶接後
の焼鈍は600 〜750 ℃の温度範囲で行う。この焼鈍にお
いては、焼鈍時間を1時間以内に短くすることが、固溶
Nを確保する上で有利である。上記の焼鈍は、長尺の電
縫鋼管を数十本単位で加熱炉に装入し所定温度に加熱す
るか、電縫鋼管製造ラインの電縫溶接部の下流にインラ
インの誘導加熱コイルを設置して所定温度に加熱し、ク
ーリングベッドに搬送して冷却するなどの方法で行う。
Next, the hot-rolled steel sheet or the cold-rolled steel sheet manufactured in the above process is formed into a cylindrical shape, and the seam portion is welded by electric resistance welding to form a steel pipe.
Annealing at a temperature of 750750 ° C. produces the ERW pipe of the present invention. Here, the steel pipe after welding is heated to 600-750 ° C.
Annealing at the temperature is to remove the strain generated during the forming into a cylindrical shape.If the annealing temperature is less than 600 ° C, the strain is not sufficiently removed, so the ERW steel pipe is left as it is for a long time. When left to stand, tensile strength increases due to strain age hardening, and ductility during hydroforming decreases. On the other hand, if the temperature exceeds 750 ° C., it becomes difficult to secure an amount of solid solution N which contributes to strain age hardening. Therefore, annealing after welding is performed in a temperature range of 600 to 750 ° C. In this annealing, shortening the annealing time within one hour is advantageous in securing solid solution N. For the above annealing, a long tens of ERW steel pipes are charged into a heating furnace in units of tens and heated to a predetermined temperature, or an inline induction heating coil is installed downstream of the ERW weld in the ERW steel pipe production line. Then, it is heated to a predetermined temperature, transported to a cooling bed, and cooled.

【0017】以上の方法で製造した電縫鋼管の特性は、
引張強度(MPa)×拡管率(%)が 13000 MPa・%以上の
ハイドロフォーミング性と、焼付処理(拡管率10%のハ
イドロフォーミング後、170 ℃×20分の熱処理)後の引
張強度と同処理前の鋼管の引張強度との差が40MPa以
上の歪み時効硬化量を有するものとなる。鋼管の引張強
度が小さいと、高い衝撃吸収能が得られず、また、拡管
率が小さいと、ハイドロフォーミングにより成形できる
形状が限定されてしまう。これらの2つの特性がバラン
スしていることが重要であるので、引張強度(MPa)×拡
管率(%)を 13000 MPa・%以上がよいのである。な
お、前記バランスを満足した上で、引張強度は好ましく
は350MPa以上、破断 (バースト) 限界拡管率は好ましく
は10%以上、さらに好ましくは28%以上あることが望ま
れる。ここで拡管率とは、外径do の鋼管を変形部長さ
lc =2do として、管端から管内面に液体を供給して
液圧を負荷し、円形断面自由バルジ変形させ、バースト
した時の最大外径dmax より、(dmax −do )/do
×100 で定義するものとする。この拡管率の測定は、自
由バルジ試験により行なう。
The characteristics of the ERW steel pipe manufactured by the above method are as follows.
Hydroforming properties with tensile strength (MPa) × expansion ratio (%) of 13000 MPa ·% or more, and the same treatment as after baking treatment (after hydroforming with expansion ratio of 10%, heat treatment at 170 ° C for 20 minutes) The difference from the tensile strength of the previous steel pipe has a strain age hardening amount of 40 MPa or more. If the tensile strength of the steel pipe is low, a high impact absorption capacity cannot be obtained, and if the pipe expansion ratio is low, the shape that can be formed by hydroforming is limited. Since it is important that these two properties are balanced, the tensile strength (MPa) × expansion rate (%) should be 13000 MPa ·% or more. After satisfying the above balance, it is desired that the tensile strength is preferably 350 MPa or more, and the breaking (burst) critical expansion ratio is preferably 10% or more, more preferably 28% or more. Here, the expansion ratio is defined as the maximum value when a steel pipe having an outer diameter do is set to a deformed part length lc = 2do, liquid is supplied from the pipe end to the inner surface of the pipe, liquid pressure is applied, a free bulge is deformed in a circular cross section, and burst occurs. From the outer diameter dmax, (dmax-do) / do
× 100 is defined. The expansion ratio is measured by a free bulge test.

【0018】この自由バルジ試験は、例えば、図1およ
び図2に示される金型2a,2bを、図3に示す構成の
ハイドロフオーミング加工装置を用いて、拡管を行なう
ことにより実施できる。図1は金型の斜視図であり、図
2は金型の断面図である。図において、1は鋼管であ
る。上部金型2a、下部金型2bはそれぞれ、長さ方向
両端域に、鋼管の外径do に略等しい径の円柱中抜面の
略半分で構成される鋼管保持部3を有し、長さ方向中央
部には、径dc の円柱中抜面の略半分で構成される変形
部4および傾斜角θ=45°のテーパー状変形部5とより
なる変形部6を有し、変形部6の長さlc がdo の2倍
となっている。変形部4の径dc は、鋼管の外径do の
2倍のものを使用するが、dc はdo の2倍に限るもの
ではなく、2倍程度あればよい。図3に示すように、こ
の上部金型2aと下部金型2bとで、金型それぞれの鋼
管保持部3に鋼管1が嵌まるように、鋼管1を挟み込
む。この状態で、鋼管1の両端から該鋼管1の内面側
に、軸押シリンダ7aを介して水等の液体を供給して、
液圧Pを鋼管1の内面に付与し、円形断面自由バルジ変
形させてバーストした時の最大外径dmax を測定する。
なお、図3中の8、9はそれぞれ金型2a、2bが鋼管
を挟み込んだ状態に保持しておくための、金型ホルダ、
アウターリングである。
This free bulge test can be carried out, for example, by expanding the dies 2a and 2b shown in FIGS. 1 and 2 using a hydroforming apparatus having the structure shown in FIG. FIG. 1 is a perspective view of a mold, and FIG. 2 is a sectional view of the mold. In the figure, 1 is a steel pipe. Each of the upper mold 2a and the lower mold 2b has a steel pipe holding portion 3 which is formed at substantially both ends in the longitudinal direction and which is formed by substantially half of a cylindrical hollow surface having a diameter substantially equal to the outer diameter do of the steel pipe. In the center part in the direction, there is a deformed part 6 consisting of a deformed part 4 constituted by substantially half of the hollow surface of the cylinder having a diameter dc and a tapered deformed part 5 having an inclination angle θ = 45 °. The length lc is twice as long as do. The diameter dc of the deformed portion 4 is twice as large as the outer diameter do of the steel pipe. As shown in FIG. 3, the steel pipe 1 is sandwiched between the upper mold 2a and the lower mold 2b such that the steel pipe 1 fits into the steel pipe holding portion 3 of each mold. In this state, a liquid such as water is supplied from both ends of the steel pipe 1 to the inner surface side of the steel pipe 1 via the shaft pushing cylinder 7a.
A hydraulic pressure P is applied to the inner surface of the steel pipe 1, and the maximum outer diameter dmax when bursting by free bulge deformation in a circular cross section is measured.
In addition, 8 and 9 in FIG. 3 are mold holders for holding the molds 2a and 2b with the steel tube sandwiched therebetween, respectively.
It is an outer ring.

【0019】なお、ハイドロフォーミングでは、管の両
端を固定する場合と、軸押シリンダ7aを鋼管を圧縮す
る方向に押し、管の両端から圧縮力を加える(軸方向圧
縮という)場合とがあるが、一般に、軸方向圧縮を加え
る方が高い拡管率を得ることが可能であり、本発明にお
いても、高い拡管率を得るには、管の両端から圧縮力を
適宜負荷するものとする。この圧縮力の負荷は、図3に
おいて、軸押シリンダ7a,7bに対して軸方向に圧縮
力Fを負荷することにより実施できる。
In hydroforming, there are a case where the both ends of the pipe are fixed, and a case where the axial pushing cylinder 7a is pushed in a direction for compressing the steel pipe and a compressive force is applied from both ends of the pipe (referred to as axial compression). In general, it is possible to obtain a high expansion ratio by applying axial compression, and in the present invention, in order to obtain a high expansion ratio, a compressive force is appropriately applied from both ends of the pipe. In FIG. 3, the compression force can be applied by applying a compression force F to the shaft pressing cylinders 7a and 7b in the axial direction.

【0020】さらに、拡管率10%のハイドロフォーミン
グ後、170 ℃×20分の熱処理を行なう歪み時効処理を行
う。ここで、拡管率10%のハイドロフォーミングは、図
2に示した金型において、変形部4の径dc が鋼管の外
径do の1.1 倍のものを用い、鋼管を金型の変形部6に
沿うまでハイドロフォーミングを行なうことにより実施
する。また、 170℃×20分の熱処理は、成形部品の塗装
焼付処理に相当するものである。したがって、歪み時効
処理により引張強度が40 MPa以上上昇するという上記の
特性を有することにより、ハイドロフォーミングによる
成形後の塗装焼付処理により、成形部品が高強度化し
て、高い衝撃吸収能を具えるようになるのである。
Further, after hydroforming at a pipe expansion ratio of 10%, a strain aging treatment of performing a heat treatment at 170 ° C. for 20 minutes is performed. Here, in the hydroforming with a pipe expansion ratio of 10%, in the mold shown in FIG. 2, the deformed portion 4 having a diameter dc of 1.1 times the outer diameter do of the steel pipe is used, and the steel pipe is transferred to the deformed portion 6 of the mold. It is carried out by performing hydroforming until it conforms. Further, the heat treatment at 170 ° C. for 20 minutes corresponds to a paint baking treatment of a molded part. Therefore, by having the above-mentioned characteristic that the tensile strength is increased by 40 MPa or more due to the strain aging treatment, the molded part is strengthened by the paint baking treatment after molding by hydroforming, so that the molded part has a high shock absorbing ability. It becomes.

【0021】[0021]

【実施例】各種化学成分からなる鋼スラブを1220℃に加
熱後、熱間圧延して板厚2.0 mmの熱延鋼板としたもの
を用いるか、または、熱間圧延に引き続き、酸洗−冷間
圧延−連続焼鈍の工程により板厚2.0 mmの冷延鋼板と
したものを用いる。ここで、熱間圧延にあたっては、圧
延終了後0.5 秒以内に冷却を開始し、40℃/s以上の冷
却速度で650 ℃以下まで冷却し、冷却終了温度以下かつ
400 ℃以上の温度で巻き取った。また、冷延鋼板では焼
鈍時の加熱温度を750 ℃以下とした。得られた熱延鋼板
または冷延鋼板の成分組成を表1に示す。これらの熱延
鋼板または冷延鋼板を、電縫鋼管製造ラインにて外径6
3.5mmの鋼管を製造し、その後、この鋼管を表1に示
す各条件で焼鈍熱処理した。
EXAMPLE A steel slab composed of various chemical components was heated to 1220 ° C. and then hot-rolled into a hot-rolled steel sheet having a thickness of 2.0 mm, or pickled and cooled following hot rolling. A cold-rolled steel sheet having a thickness of 2.0 mm by a process of cold rolling and continuous annealing is used. Here, in the hot rolling, cooling is started within 0.5 seconds after the end of the rolling, cooled to 650 ° C. or less at a cooling rate of 40 ° C./s or more, and cooled to a temperature lower than the cooling end temperature and
The film was wound at a temperature of 400 ° C. or more. For cold-rolled steel sheets, the heating temperature during annealing was set to 750 ° C or less. Table 1 shows the component composition of the obtained hot-rolled steel sheet or cold-rolled steel sheet. These hot rolled steel sheets or cold rolled steel sheets are cut to an outside diameter of 6
A 3.5 mm steel pipe was manufactured, and then this steel pipe was subjected to annealing heat treatment under the conditions shown in Table 1.

【0022】これらの電縫鋼管から、長手方向に引張試
験片(JISZ2201に準拠した12B号試験片)を
採取し、素材の引張強度を求めた。また、電縫鋼管を50
0 mmの長さに切断しハイドロフォーミング用の試験体
とした。図1〜3で説明したように、この試験体の両端
から水を供給して、円形断面自由バルジ変形させて、バ
ーストしたときの拡管率を測定した。ここで、金型の寸
法は、図2におけるlc が127 mm、dc が127 mm、
rd が7mm、lo が550 mm、θが45°のものを用い
た。各電縫鋼管の特性は、拡管率だけでなく、鋼管の強
度TSとのバランスを考慮して、TS×拡管率でも表し
た。また、電縫鋼管に拡管率10%のハイドロフォーミン
グ加工を行い、次いで170 ℃で20分の塗装焼付処理相当
の熱処理を施し、各工程終了後の引張強度(TS)を、
鋼管の変形部位よりJISZ2201に準拠した12B
号試験片を切り出して、それぞれ測定した。
From these ERW steel pipes, tensile test pieces (No. 12B test pieces in accordance with JISZ2201) were sampled in the longitudinal direction, and the tensile strength of the material was determined. In addition, 50 ERW steel pipes
It was cut to a length of 0 mm to obtain a test piece for hydroforming. As described with reference to FIGS. 1 to 3, water was supplied from both ends of the test body, the bulge was deformed in a circular cross-section, and the tube expansion ratio when bursting was measured. Here, the dimensions of the mold are as follows: lc in FIG. 2 is 127 mm, dc is 127 mm,
rd was 7 mm, lo was 550 mm, and θ was 45 °. The characteristics of each electric resistance welded steel pipe are represented not only by the expansion rate but also by TS × expansion rate in consideration of the balance with the strength TS of the steel pipe. The ERW steel pipe was subjected to hydroforming at an expansion ratio of 10%, and then subjected to a heat treatment equivalent to a paint baking treatment at 170 ° C. for 20 minutes.
12B based on JISZ2201 from the deformed part of the steel pipe
No. test pieces were cut out and measured.

【0023】[0023]

【表1】 [Table 1]

【0024】得られた結果を表2に示す。表1、2か
ら、本発明にしたがう電縫鋼管は、TS×拡管率が高
く、ハイドロフォーミング性が優れているとともに、歪
み時効硬化量が大きいことがわかる。すなわち、発明例
では、素材強度×拡管率の値で13000 MPa・%以上が
得られ、また焼付処理相当熱処理後のTS(D)と鋼管
のTS(B)との差が114MPa以上、焼付相当熱処
理後のTS(D)と10%ハイドロフォーミング後のTS
(C)との差が58MPa以上、という大きな歪み時効
硬化量が得られる。一方、比較例は、ハイドロフォーミ
ング性が劣るか、歪み時効硬化量が少ないかのいずれか
の難点を抱えており、ハイドロフォーミング部材の構造
部材としての性能に欠けるものである。
The results obtained are shown in Table 2. From Tables 1 and 2, it can be seen that the ERW steel pipe according to the present invention has a high TS × expansion ratio, excellent hydroforming properties, and a large amount of strain age hardening. That is, in the invention example, a value of 13000 MPa ·% or more is obtained as a value of material strength × expansion ratio, and a difference between TS (D) after heat treatment and TS (B) of the steel pipe is 114 MPa or more, equivalent to baking. TS (D) after heat treatment and TS after 10% hydroforming
A large amount of strain age hardening with a difference from (C) of 58 MPa or more is obtained. On the other hand, the comparative example has a disadvantage that either the hydroforming property is inferior or the amount of strain age hardening is small, and the performance of the hydroforming member as a structural member is lacking.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
ハイドロフォーミング性に優れ、しかも大きな歪み時効
硬化量を有する電縫鋼管を提供することが可能になる。
したがって、本発明は、ハイドロフォーミング後、塗装
焼付処理して製造される構造部材の高品質、安定生産に
大きく寄与する。
As described above, according to the present invention,
It becomes possible to provide an electric resistance welded steel pipe which is excellent in hydroforming property and has a large amount of strain age hardening.
Therefore, the present invention greatly contributes to high quality and stable production of a structural member manufactured by performing a paint baking process after hydroforming.

【図面の簡単な説明】[Brief description of the drawings]

【図1】自由バルジ試験に用いる金型を示す斜視図であ
る。
FIG. 1 is a perspective view showing a mold used for a free bulge test.

【図2】自由バルジ試験に用いる金型を示す断面図であ
る。
FIG. 2 is a sectional view showing a mold used for a free bulge test.

【図3】自由バルジ試験に用いるハイドロフォーミング
加工装置の構成の例を示す断面図である。
FIG. 3 is a sectional view showing an example of the configuration of a hydroforming apparatus used for a free bulge test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 38/00 301 C22C 38/00 301A 38/06 38/06 B23K 101:06 B23K 101:06 (72)発明者 金子 真次郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 登坂 章男 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K042 AA06 AA24 BA01 BA05 CA01 DA03 DC02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 38/00 301 C22C 38/00 301A 38/06 38/06 B23K 101: 06 B23K 101: 06 ( 72) Inventor Shinjiro Kaneko 1 Kawasaki-cho, Chuo-ku, Chiba-city, Chiba Pref. In the Technical Research Institute of Kawasaki Steel Co., Ltd. F term (reference) 4K042 AA06 AA24 BA01 BA05 CA01 DA03 DC02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.01〜0.05%未満、 Si:0.01%以下、 Mn:3.0 %以下、 P:0.15%以下、 S:0.015 %以下、 Al:0.01%以下、 N:0.005 〜0.02%、かつ固溶状態で0.003 %以上 を含有し、残部はFeおよび不可避的不純物からなる、熱
延または冷延した鋼板を円筒状に成形した後、継目部を
溶接し、溶接後の鋼管を600 〜750 ℃の温度で焼鈍する
ことを特徴とする歪み時効性を有するハイドロフォーミ
ング用鋼管の製造方法。
1. In mass%, C: 0.01 to less than 0.05%, Si: 0.01% or less, Mn: 3.0% or less, P: 0.15% or less, S: 0.015% or less, Al: 0.01% or less, N: 0.005 After forming a hot-rolled or cold-rolled steel sheet into a cylindrical shape, containing 0.02% or more and 0.003% or more in the solid solution state, with the balance being Fe and unavoidable impurities, the seam is welded, and A method for producing a steel pipe for hydroforming with strain aging, characterized by annealing a steel pipe at a temperature of 600 to 750 ° C.
JP2001074608A 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging Expired - Fee Related JP4419336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074608A JP4419336B2 (en) 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074608A JP4419336B2 (en) 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging

Publications (2)

Publication Number Publication Date
JP2002275535A true JP2002275535A (en) 2002-09-25
JP4419336B2 JP4419336B2 (en) 2010-02-24

Family

ID=18931843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074608A Expired - Fee Related JP4419336B2 (en) 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging

Country Status (1)

Country Link
JP (1) JP4419336B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005591A (en) * 2001-07-09 2003-01-23 현대자동차주식회사 The method of improving hydroformability by partial heat treatment to work hardened part in a hydroforming component
KR20030048491A (en) * 2001-12-11 2003-06-25 현대자동차주식회사 The tube with high strength and formability for hydroforming process
JP2006116595A (en) * 2004-09-21 2006-05-11 Nissan Motor Co Ltd Hydraulic forming apparatus and hydraulic forming method
CN112287486A (en) * 2020-10-30 2021-01-29 江苏科技大学 Performance prediction method for submersible cylindrical shell mold-free bulging process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005591A (en) * 2001-07-09 2003-01-23 현대자동차주식회사 The method of improving hydroformability by partial heat treatment to work hardened part in a hydroforming component
KR20030048491A (en) * 2001-12-11 2003-06-25 현대자동차주식회사 The tube with high strength and formability for hydroforming process
JP2006116595A (en) * 2004-09-21 2006-05-11 Nissan Motor Co Ltd Hydraulic forming apparatus and hydraulic forming method
JP4577560B2 (en) * 2004-09-21 2010-11-10 日産自動車株式会社 Hydraulic forming apparatus and hydraulic forming method
CN112287486A (en) * 2020-10-30 2021-01-29 江苏科技大学 Performance prediction method for submersible cylindrical shell mold-free bulging process
CN112287486B (en) * 2020-10-30 2024-03-19 江苏科技大学 Performance prediction method for non-mould free bulging process of cylindrical shell of submersible

Also Published As

Publication number Publication date
JP4419336B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
KR100878731B1 (en) Welded steel pipe having excellent hydroformability and method for making the same
JP5732999B2 (en) High-strength ERW steel pipe and manufacturing method thereof
JP4461626B2 (en) Manufacturing method of steel pipe for hydroforming having strain aging
JP4419336B2 (en) Manufacturing method of steel pipe for hydroforming having strain aging
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
KR100884515B1 (en) Welded steel pipe having excellent hydroformability and method for making the same
JP2001131704A (en) Steel tube for hydroforming, hot rolled stock for steel tube and producing method therefor
JP4474731B2 (en) Structural electric resistance welded steel pipe with excellent hydroforming properties and strain aging
JP4474728B2 (en) Structural electric resistance welded steel pipe having excellent hydroforming property and precipitation strengthening ability, method for producing the same, and method for producing hydroformed members
JP3965563B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP2003041345A (en) Steel pipe of welded thin sheet and manufacturing method therefor
JP4126950B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4474730B2 (en) Manufacturing method of structural electric resistance welded steel pipe with excellent hydroforming properties
JPH0364233B2 (en)
JP4126949B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
KR100529516B1 (en) Process for manufacturing non-heat treated highly elongated hydroforming steal pipe
JP4244749B2 (en) Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof
JP4399954B2 (en) Structural electric resistance welded steel pipe excellent in hydroforming property and manufacturing method thereof
KR100901746B1 (en) Process for Manufacturing Ultra High Strength Hydroforming Steel Pipe and Tube
JP4626394B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JP4474729B2 (en) Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening
JPH0741312B2 (en) Large diameter stainless clad square steel pipe manufacturing method
JPH0213008B2 (en)
JP3512863B2 (en) Hot-rolled high-strength steel sheet for processing having excellent heat resistance and softening properties with excellent corrosion resistance and fatigue properties, and a method for producing the same
JPH05117748A (en) Production of high-strength electric resistance welded tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees