JP4461626B2 - Manufacturing method of steel pipe for hydroforming having strain aging - Google Patents

Manufacturing method of steel pipe for hydroforming having strain aging Download PDF

Info

Publication number
JP4461626B2
JP4461626B2 JP2001074607A JP2001074607A JP4461626B2 JP 4461626 B2 JP4461626 B2 JP 4461626B2 JP 2001074607 A JP2001074607 A JP 2001074607A JP 2001074607 A JP2001074607 A JP 2001074607A JP 4461626 B2 JP4461626 B2 JP 4461626B2
Authority
JP
Japan
Prior art keywords
steel pipe
hydroforming
less
steel
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001074607A
Other languages
Japanese (ja)
Other versions
JP2002273527A (en
Inventor
裕二 橋本
治 園部
真次郎 金子
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001074607A priority Critical patent/JP4461626B2/en
Publication of JP2002273527A publication Critical patent/JP2002273527A/en
Application granted granted Critical
Publication of JP4461626B2 publication Critical patent/JP4461626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の構造部材や足回り部材などの使途に好適な鋼管であって、とくにハイドロフォーミングにおける加工性(ハイドロフォーミング性)に優れ、しかも歪み時効性を有する構造用鋼管に関する。
【0002】
【従来の技術】
自動車用の構造部材として用いられる、種々の断面形状をもつ中空部材を製造するには、従来から、鋼板のプレス加工によって成形した部品同士をその溶接代であるフランジ部でスポット溶接して接合する方法が採用されてきたが、品質、生産効率の両面から改善が求められていた。
また、この構造用の中空部材に対して、衝突時のより高い衝撃吸収能が求められるようになり、高強度化が求められている。このため、従来のプレス成形による方法では、成形欠陥のない、また成形品の形状・寸法精度の良好な部材を製造することが次第に困難になりつつある。
【0003】
このような問題を解決するための新しい成形方法として、最近、ハイドロフォーミングによる成形法が注目されはじめた。ハイドロフォーミングは、鋼管を金型の内側に装填し、鋼管の内部に高圧液体を注入して拡管し、金型に沿わせるように塑性加工する方法であり、複雑形状部材の一体短時間成形をはかれるとともに、形成後部材の形状特性により、モノコック的な作用で強度・剛性を高めることもできる優れた成形法である。
ところで、このハイドロフォーミング用の鋼管としては、一般に、容易に強度が得られ、かつ安価である、質量%にしてC:0.10〜0.20%の低、中炭素鋼からなる電縫鋼管が用いられることが多かった。
【0004】
【発明が解決しようとする課題】
しかしながら、かかるC量の電縫鋼管にハイドロフォーミングを施しても、材料の加工性がよくないために、十分な拡管率が得られない場合があるという問題があった。
このような状況において、電縫鋼管の素材そのものの加工性を高めるために、炭素量を著しく低減した極低炭素鋼を素材として用いることが考えられる。しかし、極低炭素鋼の電縫鋼管の場合には、ハイドロフォーミング性はよいものの、溶接によってもたらされる新たな問題が起こる。その問題とは、極低炭素鋼を素材とした電縫鋼管は鋼管製造時の溶接熱により、熱影響部の結晶粒が粗大化して軟化し、これをハイドロフォーミングすると、同部に変形が局部的に集中し、素材がもつ高延性を十分に発揮できずに破断しやすいこと、また、ハイドロフォーミングした部材を他の部材と溶接した場合にも、同様な軟化が生じて溶接部強度が十分に得られず、結局、それを使用した製造物の使用部位強度が十分に得られないことである。
このように、十分な拡管率が得られ、かつ溶接熱影響部の軟化を生じにくい鋼管は未だに存在しないのが現状である。
【0005】
そこで、本発明は、従来技術が抱えていたこれらの問題に鑑み、ハイドロフォーミングに適した鋼管についての新たな提案を行うものである。とくに、この発明は、ハイドロフォーミング性に優れるとともに、溶接軟化を生じにくく、さらにハイドロフォーミング後の塗装焼付処理で硬化する、いわゆる歪み時効性を具えた、電縫鋼管の製造方法を提案することを目的とする。
なお、本発明法で目指す鋼管の具体的目標特性は、鋼管の引張強度(TS)×拡管率(軸方向圧縮の条件下)で表したハイドロフォーミング性が13000 MPa・%以上であり、焼付処理後の引張強度と鋼管の引張強度との差が40MPa以上の歪み時効硬化量を有するものとする。
なお、本発明中、鋼板と記載の箇所があるが、これは鋼帯をも含む意味とする。
【0006】
【課題を解決するための手段】
発明者らは、上記課題を解決するために、鋼管の成分組成、製造方法などについて種々の検討を重ねた。その結果、C量を質量%にして0.01〜0.05%未満の範囲としたセミ極低炭素鋼を用いること、固溶Nを適正量含有させること、継目部を電気抵抗溶接する際にこの部位を除く部位の温度を100 ℃未満に抑えるように維持し、かつ溶接後は常温まで冷却することが極めて有効であることを見いだした。
【0007】
本発明は上記知見を基にして完成したものであり、質量%で
C:0.01〜0.05%未満、
Si:1.0 %以下、
Mn:3.0 %以下、
P:0.15%以下、
S:0.015 %以下、
Al:0.04%以下、
N:0.005 〜0.02%、かつ固溶状態で0.003 %以上
を含有し、残部はFeおよび不可避的不純物からなる、熱延または冷延した鋼板を円筒状に成形した後、継目部を除く部位の温度が 100℃未満に維持されるように溶接し、溶接後から常温までを5℃/s以上の速度で冷却することを特徴とする歪み時効性を有するハイドロフォーミング用鋼管の製造方法である。
【0008】
【発明の実施の形態】
この発明における鋼成分の限定理由、鋼管の製造方法などについて説明する。ここで、鋼成分の%は、特に断らないかぎり、質量%を意味するものとする。
C:0.01〜0.05%未満
C含有量を増やすと、鋼は強度が向上する反面、成形性は低下する。とくにC含有量が0.05%以上では成形性の低下が大きくなる。一方、含有量が0.01%に満たないと、鋼管製造時の溶接熱影響部の結晶粒が粗大化し、また、ハイドロフォーミングした部材をアーク溶接した際にも同様に結晶粒が粗大化し、それを使用した製造物の使用部位強度低下の原因となる。このため、C量は0.01〜0.05%未満の範囲とする。
【0009】
Si:1.0 %以下
Siは、鋼の強度向上に有用な元素であり、所望の強度に応じて添加する。しかし、1.0 %を超えて添加すると、鋼管用の素材となる熱延鋼板または冷延鋼板の表面性状が悪化し、結局、それを素材として成形した鋼管の表面性状が悪化するため、ハイドロフォーミング中に鋼管の粗度が粗い箇所を起点として亀裂が進展し、鋼管が破断 (バースト) しやすくなる。このため、Si量は1.0 %以下の範囲とする。
【0010】
Mn:3.0 %以下
Mnは、表面性状および溶接性を低下させることなく、鋼板ひいてはハイドロフォーミングした部材の強度を向上させるのに有効な元素であるが、3.0 %を超えて添加すると硬化しすぎ、ハイドロフォーミング時に達成可能な拡管率が低下する。したがって、Mn含有量は3.0 %以下の範囲とする。
【0011】
P:0.15%以下
Pは、鋼の強度向上に有効な元素であるが、0.15%を超えて含有させると溶接性が悪化する。とくに、Pによる強化作用がさほど必要ではないとき、またC量が高く溶接性の低下が懸念されるときには、0.02%以下に制限するのが望ましい。
【0012】
S:0.015 %以下
Sは、鋼中で非金属介在物として存在し、これが起点となってハイドロフォーミング中に鋼管が破断(バースト)する恐れがある。このため、S量は低いほど耐バースト性が改善され、0.015 %以下とすればその効果があらわれる。なお、耐バースト性の一層の向上には、好ましくは0.010 %以下、さらに好ましくは0.005 %以下に制限するのがよい。
【0013】
Al:0.04%以下
Alは、鋼の脱酸に必要であるとともに、結晶粒の粗大化抑制のために有用な元素であるので、0.005 %以上の含有が望まれる。しかし、0.04%を超えて多量に含むと、固溶状態で残存するN量が減少し、歪み時効硬化量が低下する。このため、歪み時効硬化の作用を十分に発揮させるには、0.04%以下、好ましくは0.02%以下の範囲で含有させるのが望ましい。
【0014】
N:0.005 〜0.02%、かつ固溶状態のNとして0.003 %以上
Nは、成形性(とくに延性)を低下させることなく鋼を強化するのに有用な元素である。このような効果は、N量(全N量)で0.005 %以上、かつ固溶状態のN量で0.003 %以上含有させることによって生じる。一方、0.02%を超えてNを含有すると、スラブ製造時に割れが生じ、製造しにくくなる。よって、N量は0.005 〜0.02%、かつ固溶状態Nは0.003 %以上の範囲とする。なお、固溶状態のN量は、鋼全体のN量から地鉄を化学的に溶解し、抽出残査を分析して得られたN量を差し引く方法で求めることができる。
【0015】
次に、本発明に係る鋼管の製造方法について説明する。
上述した成分組成にしたがう鋼を溶製した後、連続鋳造法あるいは造塊−分塊法によりスラブとする。スラブは、熱間圧延により熱延鋼板とするか、さらに冷間圧延−焼鈍の工程を経て冷延鋼板とする。このようにして得られた熱延鋼板または冷延鋼板を素材として、ロール成形により、ほぼ円筒状の形に成形し、両幅端部同士を突き合わせて形成される継目部を溶接する。とくに電縫溶接にて接合するのが好ましい。
ここで、鋼管の素材となる熱延鋼板あるいは冷延鋼板の段階で固溶Nを0.003%以上確保しておくことが重要である。このような熱延鋼板は、上記の成分組成に従う鋼スラブの熱間圧延工程において、熱間仕上圧延終了後0.5 秒以内に冷却を開始し、おおむね40℃/s以上の冷却速度で650 ℃以下まで冷却し、冷却終了温度以下の温度で巻取ることにより製造できる。また、この熱延鋼板を冷間圧延した後、焼鈍時の加熱温度を750 ℃以下とすることにより、固溶Nを0.003 %以上含有する冷延鋼板を製造できる。
本発明においては、歪み時効硬化性に寄与する固溶Nを所定量以上確保することが極めて重要であり、そのため、上記工程において、とくに鋼板の製造段階では、高温域(750 ℃超え)に保持する時間を短くすることが有効である。
【0016】
また同様に、電縫溶接ならびにそれと相前後する電縫鋼管の製造過程においても、不要な加熱を避け、素材鋼板、それに溶接後鋼管の温度上昇と高温保持を抑制することが望ましい。かかる観点で、継目部を除く部位の温度が 100℃未満に維持されるように電縫溶接し、かつ電縫溶接後から常温までを5℃/s以上の速度で冷却することが必要である。これらの条件が共に満たされないと、管状に鋼管をまるめた時に受けた歪みにより、歪み時効硬化して強度が上昇してしまい、ハイドロフォーミング時に延性が低下して破断 (バースト) しやすくなるとともに、ハイドロフォーミング後の歪み時効に寄与する固溶Nを確保できなくなる。ここに、継目部を除く部位とは、継目部中央から管円周方向に左右それぞれ10°以上離れた範囲の部分とする。また、電縫溶接後の冷却速度は、溶接後、10秒間経過した時点で測定して求めた冷却速度をいうものとする。
電縫鋼管は、鋼板を丸めつつ長手方向に搬送し、鋼板幅端部同士を突き合わせ、溶接を進めていくから、溶接の済んだ箇所は次第に搬送方向下流側に送出される。よって、これを温度測定すればよい。
【0017】
こうした電縫鋼管製造時の条件を満たす具体的方法として、例えば、周波数50kHz以上の高周波溶接機を用い、溶接点の管内面にフェライトコアまたは珪素鋼などの磁性体を配設し、さらに溶接速度を20m/分以上にして電縫溶接すれば、継目部を除く部位の材料の温度を100℃未満に抑えられる。また、クーリングタワーにより常温以下に保たれた冷却水を貯留した冷却ボックス(長さ5〜10m)に、電縫溶接の直後に鋼管全体を浸漬して冷却するようにすれば、5℃/s以上の冷却速度を確保できる。
【0018】
以上の方法で製造した電縫鋼管の特性は、引張強度(MPa)×拡管率(%)が 13000 MPa・%以上のハイドロフォーミング性と、焼付処理(拡管率10%のハイドロフオーミング後、170 ℃×20分の熱処理)後の引張強度と同処理前の鋼管の引張強度との差が40MPa以上の歪み時効硬化量を有するものとなる。
鋼管の引張強度が小さいと、高い衝撃吸収能が得られず、また、拡管率が小さいと、ハイドロフォーミングにより成形できる形状が限定されてしまう。これらの2つの特性がバランスしていることが重要であるので、引張強度(MPa)×拡管率(%)は 13000 MPa・%以上がよいのである。なお、前記バランスを満足した上で、引張強度は好ましくは350MPa以上、破断 (バースト) 限界拡管率は好ましくは10%以上、さらに好ましくは28%以上あることが望まれる。
ここで拡管率とは、外径do の鋼管を変形部長さlc =2do として、管端から管内面に液体を供給して液圧を負荷し、円形断面自由バルジ変形させ、バーストした時の最大外径dmax より、(dmax −do )/do ×100 で定義するものとする。この拡管率の測定は、自由バルジ試験により行なう。
【0019】
この自由バルジ試験は、例えば、図1および図2に示される金型2a,2bを、図3に示す構成のハイドロフォーミング加工装置を用いて、拡管を行なうことにより実施できる。
図1は金型の斜視図であり、図2は金型の断面図である。図において、1は鋼管である。上部金型2a、下部金型2bはそれぞれ、長さ方向両端域に、鋼管の外径do に略等しい径の円柱中抜面の略半分で構成される鋼管保持部3を有し、長さ方向中央部には、径dc の円柱中抜面の略半分で構成される変形部4および傾斜角θ=45°のテーパー状変形部5とよりなる変形部6を有し、変形部6の長さlc がdo の2倍となっている。変形部4の径dc は、鋼管の外径do の2倍のものを使用するが、dc はdo の2倍に限るものではなく、2倍程度あればよい。図3に示すように、この上部金型2aと下部金型2bとで、金型それぞれの鋼管保持部3に鋼管1が嵌まるように、鋼管1を挟み込む。この状態で、鋼管1の両端から該鋼管1の内面側に、軸押シリンダ7aを介して水等の液体を供給して、液圧Pを鋼管1の内面に付与し、円形断面自由バルジ変形させてバーストした時の最大外径dmax を測定する。なお、図3中の8、9はそれぞれ金型2a、2bが鋼管を挟み込んだ状態に保持しておくための、金型ホルダ、アウターリングである。
【0020】
なお、ハイドロフォーミングでは、管の両端を固定する場合と、軸押シリンダ7aを鋼管1を圧縮する方向に押し、管の両端から圧縮力を加える(軸方向圧縮という)場合とがあるが、一般に、軸方向圧縮を加える方が高い拡管率を得ることが可能であり、本発明においても、高い拡管率を得るには、管の両端から圧縮力を適宜負荷するものとする。この圧縮力の負荷は、図3において、軸押シリンダ7a,7bに対して軸方向に圧縮力Fを負荷することにより実施できる。
【0021】
さらに、拡管率10%のハイドロフォーミング後、170 ℃×20分の熱処理を行なう歪み時効処理を行う。ここで、拡管率10%のハイドロフォーミングは、図2に示した金型において、変形部4の径dc が鋼管の外径do の1.1 倍のものを用い、鋼管を金型の変形部6に沿うまでハイドロフォーミングを行なうことにより実施する。また、 170℃×20分の熱処理は、成形部品の塗装焼付処理に相当するものである。
したがって、歪み時効処理により引張強度が40 MPa以上上昇するという上記の特性を有することにより、ハイドロフォーミングによる成形後の塗装焼付処理により、成形部品が高強度化して、高い衝撃吸収能を具えるようになるのである。
【0022】
【実施例】
各種化学成分からなる鋼スラブを1220℃に加熱後、熱間圧延して板厚2.0 mmの熱延鋼板としたものを用いるか、または、熱間圧延に引き続き、酸洗−冷間圧延−連続焼鈍の工程により板厚2.0 mmの冷延鋼板としたものを用いる。ここで、熱間圧延にあたっては、圧延終了後0.5 秒以内に冷却を開始し、40℃/s以上の冷却速度で650 ℃以下まで冷却し、冷却終了温度以下の温度で、かつ400 ℃以上の温度で巻き取った。また、冷延鋼板では焼鈍時の加熱温度を750 ℃以下とした。得られた熱延鋼板または冷延鋼板の成分組成を表1に示す。
【0023】
これらの熱延鋼板または冷延鋼板を、周波数350 kHzの高周波溶接機で、溶接点の管内面にフェライトコアの磁性体を配設し、電縫溶接位置から2m下流の位置に長さ10mの冷却ボックス(冷却水はクーリングタワーを介することにより水温が35℃以下に保持されている)を配置した設備を用いて、溶接速度を80m/分で外径63.5mmの電縫鋼管を製造した。このときの、継目部を除く部位における温度(最高温度)と溶接後13.3m下流の位置 (10秒後) における溶接後の冷却速度を表1に併記する。なお、表1で、継目部以外の温度が発明範囲から外れた例は、周波数20kHzの高周波溶接機で、溶接点管内面にフェライトコアの磁性体を配設せずに製造し、溶接後の冷却速度が発明範囲から外れた例は、周波数20kHzの高周波溶接機を用い、冷却ボックスなしで製造した比較例である。
【0024】
得られた電縫鋼管から、長手方向に引張試験片(JISZ2201に準拠した12B号試験片)を採取し、素材の引張強度を求めた。また、電縫鋼管を500 mmの長さに切断しハイドロフォーミング用の試験体とした。図1〜3で説明したように、この試験体の両端から水を供給して、円形断面自由バルジ変形させて、バーストしたときの拡管率を測定した。ここで、金型寸法は、図2におけるlcが127 mm、dc が127 mm、rd が7mm、lo が550 mm、θが45°のものを用いた。
各電縫鋼管の特性は、拡管率だけでなく、鋼管の強度TSとのバランスを考慮して、TS×拡管率でも表した。また、電縫鋼管に拡管率10%のハイドロフォーミング加工を行い、次いで170 ℃20分の塗装焼付処理相当の熱処理を施し、各工程終了後の引張強度(TS)を、鋼管の変形部位よりJISZ2201に準拠した12B号試験片を切り出して、それぞれ測定した。
【0025】
【表1】

Figure 0004461626
【0026】
得られた結果を表2に示す。表1、2から、本発明にしたがう電縫鋼管は、TS×拡管率が高く、ハイドロフォーミング性が優れているとともに、歪み時効硬化量が大きいことがわかる。すなわち、発明例では、素材強度×拡管率の値で13000 MPa・%以上が得られ、また焼付処理相当熱処理後のTS(D)と鋼管のTS(B)との差が114MPa以上、焼付相当熱処理後のTS(D)と10%ハイドロフォーミング後のTS(C)との差が58MPa以上、という大きな歪み時効硬化量が得られる。
一方、比較例は、ハイドロフォーミング性が劣るか、歪み時効硬化量が少ないかのいずれかの難点を抱えており、ハイドロフォーミング部材の構造部材としての性能に欠けるものである。
【0027】
【表2】
Figure 0004461626
【0028】
【発明の効果】
以上説明したように、本発明によれば、ハイドロフォーミング性に優れ、しかも大きな歪み時効硬化量を有する電縫鋼管を提供することが可能になる。したがって、本発明は、ハイドロフォーミング後、塗装焼付処理して製造される構造部材の高品質、安定生産に大きく寄与する。
【図面の簡単な説明】
【図1】自由バルジ試験に用いる金型を示す斜視図である。
【図2】自由バルジ試験に用いる金型を示す断面図である。
【図3】自由バルジ試験に用いるハイドロフォーミング加工装置の構成の例を示す断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe that is suitable for use in automobile structural members, suspension members, and the like, and particularly relates to a structural steel pipe that is excellent in workability (hydroforming property) in hydroforming and has strain aging.
[0002]
[Prior art]
In order to manufacture hollow members having various cross-sectional shapes used as structural members for automobiles, parts formed by press working of steel plates are conventionally joined by spot welding at the flange portion that is the welding allowance. Although the method has been adopted, improvement has been demanded in terms of both quality and production efficiency.
In addition, the structural hollow member is required to have a higher shock absorption capability at the time of collision, and thus is required to have high strength. For this reason, in the conventional method by press molding, it is becoming increasingly difficult to manufacture a member having no molding defect and having a good shape and dimensional accuracy of a molded product.
[0003]
As a new molding method for solving such problems, a molding method by hydroforming has recently begun to attract attention. Hydroforming is a method in which a steel pipe is loaded inside a mold, a high-pressure liquid is injected inside the steel pipe, the pipe is expanded, and plastic working is performed along the mold. In addition to being peeled off, it is an excellent molding method that can increase the strength and rigidity by a monocoque action due to the shape characteristics of the formed member.
By the way, as the steel pipe for hydroforming, generally, an electric-resistance-welded steel pipe made of a medium carbon steel having a low mass of C: 0.10 to 0.20% in mass%, which is easily obtained and inexpensive, is used. There were many.
[0004]
[Problems to be solved by the invention]
However, there has been a problem that even if hydroforming is performed on the C amount of electric resistance welded steel pipe, the workability of the material is not good, so that a sufficient pipe expansion rate may not be obtained.
In such a situation, in order to improve the workability of the raw material of the electric resistance welded steel pipe, it is conceivable to use as a raw material an extremely low carbon steel having a significantly reduced carbon content. However, in the case of an ERW pipe made of ultra-low carbon steel, the hydroforming property is good, but a new problem caused by welding occurs. The problem is that ERW steel pipes made of ultra-low carbon steel are coarsened and softened due to the heat of welding during the manufacture of the steel pipe, and when this is hydroformed, deformation occurs locally in the same part. The material is concentrated and the high ductility of the material cannot be fully exhibited, and it is easy to break, and when a hydroformed member is welded to another member, the same softening occurs and the weld strength is sufficient. In the end, the use site strength of a product using the product cannot be sufficiently obtained.
Thus, the present situation is that there is not yet a steel pipe that can obtain a sufficient pipe expansion rate and is less likely to soften the weld heat affected zone.
[0005]
Therefore, in view of these problems that the prior art has, the present invention provides a new proposal for a steel pipe suitable for hydroforming. In particular, the present invention proposes a method for manufacturing an electric resistance welded steel pipe that has excellent hydroforming properties, is resistant to softening of welding, and is hardened by paint baking after hydroforming, so-called strain aging. Objective.
In addition, the specific target characteristics of the steel pipe aimed at by the method of the present invention is that the hydroforming property expressed by the tensile strength (TS) of the steel pipe x the expansion ratio (under the condition of axial compression) is 13000 MPa ·% or more, and the baking treatment The difference between the later tensile strength and the tensile strength of the steel pipe has a strain age hardening amount of 40 MPa or more.
In addition, in this invention, although there exists a location described as a steel plate, this shall mean also including a steel strip.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made various studies on the composition of steel pipes, the production method, and the like. As a result, when using a semi-very low carbon steel having a C content of mass% and in a range of 0.01 to less than 0.05%, containing an appropriate amount of solute N, and this portion when performing electrical resistance welding of the joint. It has been found that it is extremely effective to keep the temperature of the removed part below 100 ° C and to cool to normal temperature after welding.
[0007]
The present invention has been completed based on the above knowledge, and C: 0.01 to less than 0.05% by mass%,
Si: 1.0% or less,
Mn: 3.0% or less,
P: 0.15% or less,
S: 0.015% or less,
Al: 0.04% or less,
N: 0.005 to 0.02%, and contains 0.003% or more in a solid solution state, the balance is Fe and inevitable impurities, and after hot or cold rolled steel sheet is formed into a cylindrical shape, the portion except the seam portion It is a method for producing a steel pipe for hydroforming having strain aging, characterized in that welding is performed so that the temperature is maintained at less than 100 ° C., and cooling is performed at a rate of 5 ° C./s or higher after welding to normal temperature.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limiting the steel components in the present invention, the method of manufacturing the steel pipe, etc. will be described. Here,% of the steel component means mass% unless otherwise specified.
C: When the C content is increased from 0.01 to less than 0.05%, the strength of steel is improved, but the formability is lowered. In particular, when the C content is 0.05% or more, the moldability is greatly reduced. On the other hand, if the content is less than 0.01%, the crystal grains in the weld heat-affected zone at the time of steel pipe production become coarse, and when hydroformed members are arc welded, the crystal grains become coarse as well. This causes a reduction in strength of the used part of the used product. For this reason, C amount is taken as 0.01 to less than 0.05% of range.
[0009]
Si: 1.0% or less
Si is an element useful for improving the strength of steel, and is added depending on the desired strength. However, if it exceeds 1.0%, the surface properties of the hot-rolled steel sheet or cold-rolled steel sheet, which is the material for the steel pipe, will deteriorate, and eventually the surface texture of the steel pipe formed using it will deteriorate. On the other hand, cracks start from the places where the roughness of the steel pipe is rough, and the steel pipe tends to break (burst). For this reason, the amount of Si is made into the range of 1.0% or less.
[0010]
Mn: 3.0% or less
Mn is an element effective for improving the strength of steel plates and thus hydroformed members without deteriorating the surface properties and weldability, but if added over 3.0%, it hardens too much and can be achieved during hydroforming. Tube expansion rate decreases. Therefore, the Mn content is set to a range of 3.0% or less.
[0011]
P: 0.15% or less P is an element effective for improving the strength of steel, but if it exceeds 0.15%, weldability deteriorates. In particular, when the strengthening action by P is not so necessary, or when there is a concern about a decrease in weldability due to a high C content, it is desirable to limit it to 0.02% or less.
[0012]
S: 0.015% or less S exists as a non-metallic inclusion in steel, and this may be a starting point, and the steel pipe may break (burst) during hydroforming. For this reason, the lower the amount of S, the better the burst resistance, and if it is 0.015% or less, the effect is exhibited. In order to further improve the burst resistance, it is preferably limited to 0.010% or less, more preferably 0.005% or less.
[0013]
Al: 0.04% or less
Al is an element that is necessary for deoxidation of steel and is useful for suppressing the coarsening of crystal grains. Therefore, its content is preferably 0.005% or more. However, when it is contained in a large amount exceeding 0.04%, the amount of N remaining in a solid solution state is reduced, and the strain age hardening is reduced. For this reason, in order to fully exhibit the effect of strain age hardening, it is desirable to make it contain in 0.04% or less, preferably 0.02% or less.
[0014]
N: 0.005 to 0.02%, and N in a solid solution state is 0.003% or more. N is an element useful for strengthening steel without reducing formability (particularly ductility). Such an effect is produced by containing 0.005% or more in the N amount (total N amount) and 0.003% or more in the solid solution N amount. On the other hand, if N is contained in excess of 0.02%, cracks occur during slab manufacturing, which makes it difficult to manufacture. Therefore, the N amount is 0.005 to 0.02%, and the solid solution state N is 0.003% or more. The amount of N in the solid solution state can be determined by a method of subtracting the amount of N obtained by chemically dissolving the base iron from the amount of N in the entire steel and analyzing the extraction residue.
[0015]
Next, the manufacturing method of the steel pipe which concerns on this invention is demonstrated.
After melting the steel according to the above-described component composition, it is made into a slab by a continuous casting method or an ingot-bundling method. The slab is made into a hot-rolled steel sheet by hot rolling, or is further made into a cold-rolled steel sheet through a process of cold rolling-annealing. The hot-rolled steel sheet or cold-rolled steel sheet thus obtained is used as a raw material to be formed into a substantially cylindrical shape by roll forming, and a seam portion formed by abutting both width end portions is welded. In particular, it is preferable to join by electric resistance welding.
Here, it is important to secure 0.003% or more of solid solution N at the stage of a hot-rolled steel sheet or a cold-rolled steel sheet as a material of the steel pipe. Such a hot-rolled steel sheet starts cooling within 0.5 seconds after the hot finish rolling in the hot rolling process of the steel slab according to the above component composition, and is generally 650 ° C. or less at a cooling rate of 40 ° C./s or more. And can be produced by winding at a temperature not higher than the cooling end temperature. Moreover, after cold rolling this hot-rolled steel sheet, by setting the heating temperature during annealing to 750 ° C. or less, a cold-rolled steel sheet containing 0.003% or more of solute N can be produced.
In the present invention, it is extremely important to ensure a predetermined amount or more of solid solution N that contributes to strain age hardening. Therefore, in the above process, particularly in the steel plate manufacturing stage, it is maintained in a high temperature range (above 750 ° C.). It is effective to shorten the time to do.
[0016]
Similarly, it is desirable to avoid unnecessary heating and suppress the temperature rise and the high temperature holding of the raw steel plate and the steel pipe after welding in the process of manufacturing the ERW welding and the surrounding ERW steel pipe. From this point of view, it is necessary to perform electro-welding so that the temperature of the portion excluding the seam is maintained below 100 ° C., and to cool from the electro-welding welding to room temperature at a rate of 5 ° C./s or more. . If both of these conditions are not met, the strain experienced when the steel pipe is rounded into a tubular shape will increase the strength due to strain age hardening, and the ductility will decrease during hydroforming, making it easier to break (burst). It becomes impossible to secure solid solution N that contributes to strain aging after hydroforming. Here, the portion excluding the seam portion is a portion in a range separated from the center of the seam portion by 10 ° or more in the left and right directions in the pipe circumferential direction. In addition, the cooling rate after ERW welding refers to the cooling rate obtained by measurement when 10 seconds have elapsed after welding.
Since the ERW steel pipe is rolled in the longitudinal direction while rolling the steel sheet, the steel sheet width end portions are brought into contact with each other and welding is advanced, the welded portion is gradually sent out downstream in the conveying direction. Therefore, the temperature may be measured.
[0017]
As a specific method satisfying the conditions for manufacturing such an electric resistance welded steel pipe, for example, a high frequency welding machine having a frequency of 50 kHz or more is used, a magnetic body such as a ferrite core or silicon steel is disposed on the inner surface of the pipe at the welding point, and the welding speed is further increased. If the electric resistance welding is carried out at a speed of 20 m / min or more, the temperature of the material in the portion excluding the seam portion can be suppressed to less than 100 ° C. In addition, if the entire steel pipe is immersed and cooled immediately after ERW welding in a cooling box (length: 5 to 10 m) that stores cooling water kept at room temperature or lower by a cooling tower, it is 5 ° C./s or more. The cooling rate can be secured.
[0018]
The characteristics of ERW steel pipe manufactured by the above method are as follows: hydroforming property with tensile strength (MPa) x pipe expansion rate (%) of 13000 MPa ·% or more, and seizure treatment (after hydroforming with pipe expansion rate of 10%, 170 The difference between the tensile strength after heat treatment at 20 ° C. and the tensile strength of the steel pipe before the treatment has a strain age hardening amount of 40 MPa or more.
If the tensile strength of the steel pipe is small, a high impact absorbing ability cannot be obtained, and if the pipe expansion rate is small, the shape that can be formed by hydroforming is limited. Since it is important that these two characteristics are balanced, the tensile strength (MPa) x tube expansion rate (%) should be 13000 MPa ·% or more. In addition, after satisfying the above balance, the tensile strength is preferably 350 MPa or more, and the fracture (burst) limit expansion rate is preferably 10% or more, more preferably 28% or more.
The pipe expansion rate is the maximum when a steel pipe with an outer diameter do is deformed part length l c = 2do, liquid is supplied from the pipe end to the inner surface of the pipe, the hydraulic pressure is applied, the circular section free bulge is deformed, and bursts. The outer diameter dmax is defined as (dmax−do) / do × 100. This expansion rate is measured by a free bulge test.
[0019]
This free bulge test can be carried out, for example, by expanding the molds 2a and 2b shown in FIGS. 1 and 2 using the hydroforming apparatus having the configuration shown in FIG.
FIG. 1 is a perspective view of a mold, and FIG. 2 is a cross-sectional view of the mold. In the figure, 1 is a steel pipe. Each of the upper mold 2a and the lower mold 2b has a steel pipe holding portion 3 composed of substantially half of the hollowed surface of the cylinder having a diameter substantially equal to the outer diameter do of the steel pipe, at both ends in the length direction. In the central portion in the direction, there is a deformed portion 6 composed of a deformed portion 4 constituted by approximately half of the hollow surface of the cylinder having a diameter dc and a tapered deformed portion 5 having an inclination angle θ = 45 °. The length lc is twice as long as do. The diameter dc of the deformed portion 4 is twice that of the outer diameter do of the steel pipe, but dc is not limited to twice of do, and may be about twice. As shown in FIG. 3, the steel pipe 1 is sandwiched between the upper mold 2a and the lower mold 2b so that the steel pipe 1 fits in the steel pipe holding portion 3 of each mold. In this state, a liquid such as water is supplied from both ends of the steel pipe 1 to the inner surface side of the steel pipe 1 via the axial cylinder 7a, and a hydraulic pressure P is applied to the inner surface of the steel pipe 1 to form a free circular bulge deformation. The maximum outer diameter dmax when bursting is measured. In addition, 8 and 9 in FIG. 3 are a mold holder and an outer ring for holding the molds 2a and 2b in a state where the steel pipe is sandwiched, respectively.
[0020]
In hydroforming, there are a case where both ends of the pipe are fixed and a case where the axial cylinder 7a is pushed in the direction in which the steel pipe 1 is compressed and a compressive force is applied from both ends of the pipe (referred to as axial compression). When the axial compression is applied, it is possible to obtain a high tube expansion rate. Also in the present invention, in order to obtain a high tube expansion rate, a compressive force is appropriately applied from both ends of the tube. The compression force can be applied by applying a compression force F in the axial direction to the axial cylinders 7a and 7b in FIG.
[0021]
In addition, after hydroforming with a tube expansion rate of 10%, a strain aging treatment is performed in which heat treatment is performed at 170 ° C. for 20 minutes. Here, the hydroforming with a tube expansion rate of 10% uses the mold shown in FIG. 2 whose diameter dc of the deformed portion 4 is 1.1 times the outer diameter do of the steel pipe, and the steel pipe is used as the deformed portion 6 of the mold. It is carried out by hydroforming until it is along. Moreover, the heat treatment at 170 ° C. × 20 minutes corresponds to a paint baking process for molded parts.
Therefore, by having the above characteristics that the tensile strength increases by 40 MPa or more due to strain aging treatment, the molded parts are strengthened by the paint baking treatment after molding by hydroforming so as to have a high impact absorbing ability. It becomes.
[0022]
【Example】
A steel slab composed of various chemical components is heated to 1220 ° C and then hot rolled to form a hot rolled steel sheet with a thickness of 2.0 mm, or following hot rolling, pickling-cold rolling-continuous A cold rolled steel sheet having a thickness of 2.0 mm is used in the annealing process. Here, in hot rolling, cooling is started within 0.5 seconds after the end of rolling, cooling to 650 ° C. or less at a cooling rate of 40 ° C./s or more, at a temperature below the cooling end temperature and 400 ° C. or more. Winded up at temperature. In the case of cold-rolled steel sheets, the heating temperature during annealing was set to 750 ° C. or lower. Table 1 shows the component composition of the obtained hot-rolled steel sheet or cold-rolled steel sheet.
[0023]
These hot-rolled steel sheets or cold-rolled steel sheets are arranged with a ferrite core magnetic body on the inner surface of the pipe at the welding point using a high-frequency welder with a frequency of 350 kHz, and a length of 10 m at a position 2 m downstream from the ERW welding position. An electric resistance welded steel pipe having an outer diameter of 63.5 mm was manufactured at a welding speed of 80 m / min by using a facility in which a cooling box (cooling water was maintained at a temperature of 35 ° C. or less by passing through a cooling tower). Table 1 shows the temperature (maximum temperature) at the site excluding the seam and the cooling rate after welding at a position 13.3 m downstream after welding (after 10 seconds). In Table 1, an example in which the temperature other than the seam portion is out of the scope of the invention is a high frequency welding machine having a frequency of 20 kHz. An example in which the cooling rate deviates from the scope of the invention is a comparative example manufactured using a high frequency welder with a frequency of 20 kHz and without a cooling box.
[0024]
From the obtained ERW steel pipe, a tensile test piece (No. 12B test piece based on JISZ2201) was taken in the longitudinal direction, and the tensile strength of the material was determined. Moreover, the electric resistance steel pipe was cut | disconnected to the length of 500 mm, and it was set as the test body for hydroforming. As described with reference to FIGS. 1 to 3, water was supplied from both ends of the test body, and a circular cross section free bulge was deformed to measure the tube expansion rate when bursting. Here, the mold dimensions were as follows: lc in FIG. 2 was 127 mm, dc was 127 mm, rd was 7 mm, lo was 550 mm, and θ was 45 °.
The characteristics of each electric resistance welded steel pipe are expressed not only by the pipe expansion ratio but also by TS × pipe expansion ratio in consideration of the balance with the strength TS of the steel pipe. In addition, the ERW steel pipe was subjected to hydroforming with a tube expansion ratio of 10%, and then subjected to a heat treatment equivalent to a coating baking process at 170 ° C. for 20 minutes. The tensile strength (TS) after the completion of each process was determined from the deformation part of the steel pipe by JISZ2201 No. 12B test piece based on the above was cut out and measured.
[0025]
[Table 1]
Figure 0004461626
[0026]
The obtained results are shown in Table 2. From Tables 1 and 2, it can be seen that the electric resistance welded steel pipe according to the present invention has a high TS × expansion ratio, excellent hydroforming properties, and a large strain age hardening amount. That is, in the example of the invention, the value of the material strength × the tube expansion rate is 13000 MPa ·% or more, and the difference between the TS (D) after the heat treatment corresponding to the baking treatment and the TS (B) of the steel pipe is 114 MPa or more, which corresponds to the baking. A large strain age hardening amount is obtained in which the difference between TS (D) after heat treatment and TS (C) after 10% hydroforming is 58 MPa or more.
On the other hand, the comparative example has either a poor hydroforming property or a small strain age hardening amount, and lacks the performance as a structural member of the hydroforming member.
[0027]
[Table 2]
Figure 0004461626
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an electric resistance welded steel pipe having excellent hydroforming properties and a large strain age hardening amount. Therefore, the present invention greatly contributes to the high quality and stable production of the structural member manufactured by performing the coating baking process after hydroforming.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a mold used for a free bulge test.
FIG. 2 is a cross-sectional view showing a mold used for a free bulge test.
FIG. 3 is a cross-sectional view showing an example of the configuration of a hydroforming apparatus used for a free bulge test.

Claims (1)

質量%で
C:0.01〜0.05%未満、
Si:1.0 %以下、
Mn:3.0 %以下、
P:0.15%以下、
S:0.015 %以下、
Al:0.04%以下、
N:0.005 〜0.02%、かつ固溶状態で0.003 %以上
を含有し、残部はFeおよび不可避的不純物からなる、熱延または冷延した鋼板を円筒状に成形した後、継目部を除く部位の温度が 100℃未満に維持されるように溶接し、溶接後から常温までを5℃/s以上の速度で冷却することを特徴とする歪み時効性を有するハイドロフォーミング用鋼管の製造方法。
C: 0.01 to less than 0.05% by mass%,
Si: 1.0% or less,
Mn: 3.0% or less,
P: 0.15% or less,
S: 0.015% or less,
Al: 0.04% or less,
N: 0.005 to 0.02%, and contains 0.003% or more in a solid solution state, the balance is Fe and inevitable impurities, and after hot or cold rolled steel sheet is formed into a cylindrical shape, the portion except the seam portion A method for producing a steel pipe for hydroforming having strain aging, wherein welding is performed so that the temperature is maintained at less than 100 ° C., and cooling is performed at a rate of 5 ° C./s or more from welding to room temperature.
JP2001074607A 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging Expired - Fee Related JP4461626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074607A JP4461626B2 (en) 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074607A JP4461626B2 (en) 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging

Publications (2)

Publication Number Publication Date
JP2002273527A JP2002273527A (en) 2002-09-25
JP4461626B2 true JP4461626B2 (en) 2010-05-12

Family

ID=18931842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074607A Expired - Fee Related JP4461626B2 (en) 2001-03-15 2001-03-15 Manufacturing method of steel pipe for hydroforming having strain aging

Country Status (1)

Country Link
JP (1) JP4461626B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048491A (en) * 2001-12-11 2003-06-25 현대자동차주식회사 The tube with high strength and formability for hydroforming process
JP4819305B2 (en) * 2003-09-04 2011-11-24 日産自動車株式会社 Method for manufacturing reinforcing member
CN104162948B (en) * 2014-07-11 2016-08-24 初冠南 A kind of high intensity or inductile material hollow unit low pressure thermal forming device and method
CN113028116A (en) * 2021-03-29 2021-06-25 陈崇南 Blank body of circular cavity valve body-containing valve cover suitable for multi-valve valves and machining method
CN113028114A (en) * 2021-04-15 2021-06-25 陈崇南 Blank body suitable for flat oval cavity of multi-valve type valve and containing valve body and valve cover and forming method
CN114433706A (en) * 2022-02-08 2022-05-06 陈崇南 Hydraulic forming machining method for blank cover of straight-through ball valve blank

Also Published As

Publication number Publication date
JP2002273527A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
KR100878731B1 (en) Welded steel pipe having excellent hydroformability and method for making the same
JP2007270197A (en) Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor
JP4461626B2 (en) Manufacturing method of steel pipe for hydroforming having strain aging
JP5732999B2 (en) High-strength ERW steel pipe and manufacturing method thereof
JP4419336B2 (en) Manufacturing method of steel pipe for hydroforming having strain aging
JP2003201543A (en) Steel pipe having excellent workability and production method therefor
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
KR100884515B1 (en) Welded steel pipe having excellent hydroformability and method for making the same
JP4474731B2 (en) Structural electric resistance welded steel pipe with excellent hydroforming properties and strain aging
JP4474728B2 (en) Structural electric resistance welded steel pipe having excellent hydroforming property and precipitation strengthening ability, method for producing the same, and method for producing hydroformed members
JP3965563B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP2003041345A (en) Steel pipe of welded thin sheet and manufacturing method therefor
JP4126950B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4126949B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP2003286544A (en) Thin-walled steel pipe showing excellent hydroforming property and its manufacturing process
JP4474730B2 (en) Manufacturing method of structural electric resistance welded steel pipe with excellent hydroforming properties
JP4399954B2 (en) Structural electric resistance welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4474729B2 (en) Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening
JP4244749B2 (en) Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof
WO2023210046A1 (en) Electric resistance welded steel pipe and method for manufacturing same
JP4363345B2 (en) Hot-rolled steel sheet for hydroforming, its manufacturing method, and electric-welded steel pipe for hydroforming
KR101242939B1 (en) High strength austenitic high frequency welding steel pipe and method for manufacturing the same
KR100529516B1 (en) Process for manufacturing non-heat treated highly elongated hydroforming steal pipe
KR100901746B1 (en) Process for Manufacturing Ultra High Strength Hydroforming Steel Pipe and Tube
JP2000017338A (en) Production of electroseamed steel pipe for hydroform forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees