JP2002266697A - Slide member and manufacturing method thereof - Google Patents
Slide member and manufacturing method thereofInfo
- Publication number
- JP2002266697A JP2002266697A JP2001064998A JP2001064998A JP2002266697A JP 2002266697 A JP2002266697 A JP 2002266697A JP 2001064998 A JP2001064998 A JP 2001064998A JP 2001064998 A JP2001064998 A JP 2001064998A JP 2002266697 A JP2002266697 A JP 2002266697A
- Authority
- JP
- Japan
- Prior art keywords
- sliding member
- coating
- metal
- phase
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
- Physical Vapour Deposition (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種産業機械、輸
送機器等のエンジン、自動車エンジンの摺動部材、特に
カム・シムのシム(カムフォロア)、ピストンリングを
対象とする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine for various industrial machines and transportation equipment, a sliding member for an automobile engine, particularly a cam shim shim (cam follower), and a piston ring.
【0002】[0002]
【従来の技術】往復動内燃機関に使用されるピストンリ
ングには高度な耐摩耗特性が要求される。それ故、ピス
トンリングに耐摩耗特性を付与することを目的として、
摺動面に硬質クロムめっき層を形成させたピストンリン
グが内燃機関用ピストンリングとして従来から多用され
てきた。ところで、近年、内燃機関がますます高速化、
高出力化する趨勢にあり、したがってピストンリングの
使用条件もますます過酷なものとなってきている。その
ため、たとえば特開平7−286261号公報ではCrN
とCr2Nの混合からなる被膜が開示されており、該被膜の
ビッカース硬さはHv1700程度である。2. Description of the Related Art Piston rings used in reciprocating internal combustion engines are required to have high wear resistance. Therefore, for the purpose of imparting wear resistance to the piston ring,
A piston ring having a hard chromium plating layer formed on a sliding surface has been frequently used as a piston ring for an internal combustion engine. By the way, in recent years, internal combustion engines have become increasingly faster,
There is a trend to increase the output, and therefore, the operating conditions of the piston ring are becoming increasingly severe. Therefore, for example, in Japanese Patent Application Laid-Open No. 7-286261, CrN
And a coating comprising a mixture of Cr2N and V2, and the coating has a Vickers hardness of about Hv 1700.
【0003】一方、内燃機関の動弁機構であるカム・シ
ムについてはカムでは合金鋳鉄、シムでは合金鋼の浸炭
焼入れ材が一般には使用されている。表面粗さの低減を
図るため、シムに高硬度薄膜をコーティングした例が特
開平5−163909号公報に開示されている。これは
シムに形成された高硬度の被膜により相手側のカム面を
鏡面化して摩擦抵抗を低減するものである。該高硬度薄
膜としてTiNが好適である旨記載されている(実施例参
照)。[0003] On the other hand, for cams and shims which are valve mechanisms of internal combustion engines, alloy cast iron is generally used for cams and carburized and quenched material of alloy steel is used for shims. An example in which a shim is coated with a high-hardness thin film in order to reduce the surface roughness is disclosed in JP-A-5-163909. This is to reduce the frictional resistance by mirror-finishing the cam surface on the mating side with a high-hardness film formed on the shim. It is described that TiN is suitable as the high hardness thin film (see Examples).
【0004】このように、ピストンリング、シムの耐摩
耗性を向上するためピストンリングではクロムめっきに
加え、CrN被膜等、シムではTiN被膜等が検討されてき
た。As described above, in order to improve the wear resistance of the piston ring and the shim, a CrN coating and the like for the piston ring and a TiN coating and the like for the shim have been studied in addition to the chromium plating.
【0005】[0005]
【発明が解決しようとする課題】ところが、これらの被
膜は環境保全および省エネルギーの観点から重要な、自
動車排気ガス中のCO2、NOx低減及び燃費向上のための燃
料直接噴射やEGR(排ガス再循環)が適用されたときの
過酷な条件では十分な耐久性が見込めなかった。そこで
本発明は自動車排気ガス中のCO2、NOx低減及び燃費向上
のための燃料直接噴射やEGR(排ガス再循環)等の過酷
な摩耗条件でも従来エンジン以上の寿命が得られる被膜
を基材に被覆して高耐久性の摺動部材を得ることを目的
とするものである。なお、自動車以外の内燃機関でも同
様に過酷な条件が求められており、高耐久性の摺動部材
を得ることを目的とする。However, these coatings are important from the viewpoints of environmental protection and energy saving, and include direct fuel injection or EGR (exhaust gas recycle) for reducing CO 2 and NO x in automobile exhaust gas and improving fuel efficiency. Sufficient durability could not be expected under severe conditions when (circulation) was applied. Therefore, the present invention is based on a coating that can provide a longer life than conventional engines even under severe wear conditions such as direct fuel injection or EGR (exhaust gas recirculation) for reducing CO 2 and NO x in automobile exhaust gas and improving fuel efficiency. To obtain a highly durable sliding member. In addition, severe conditions are similarly required for internal combustion engines other than automobiles, and the object is to obtain a highly durable sliding member.
【0006】[0006]
【課題を解決するための手段】本発明は、第1に金属の
窒化物または金属の炭化物または金属の炭窒化物よりな
る結晶相および非晶質相の混合組織よりなる被膜を基材
上に被覆してなる摺動部材、第2に該被膜の結晶相の割
合が5%から95%で、残部を非晶質相であることを特
徴とする請求項1に記載の摺動部材、第3に上記摺動部
材において結晶相の粒径が1nm〜100nmの大きさ
であることを特徴とする摺動部材、第4に上記摺動部材
においてヌープ硬度が2000から8000までの硬度
の被膜を表面に形成したことを特徴とする摺動部材、第
5に上記摺動部材において、結晶相としてTi,Cr等周期
律表第IVa,Va,VIa属元素の窒化物または炭化物または
炭窒化物、非晶質相としてSi等周期律表第IIIb、IVb属
元素の窒化物または炭化物または炭窒化物とする摺動部
材、第6に上記摺動部材を用いたことを特徴とするピス
トンリング、第7に上記摺動部材を用いたことを特徴と
するカムフォロア、カム・シムのシム、第8に上記記載
の摺動部材において前記被膜をPVD法により金属蒸
気、反応ガスと基材を接触させることにより形成するこ
とを特徴とする摺動部材の製造方法を提供することで上
記課題を解決する。According to the present invention, there is firstly provided a coating film comprising a mixed structure of a crystalline phase and an amorphous phase comprising a metal nitride or a metal carbide or a metal carbonitride on a substrate. 2. The sliding member according to claim 1, wherein the coating has a crystalline phase ratio of 5% to 95%, and the remainder is an amorphous phase. 3. 3 is a sliding member, wherein the grain size of the crystal phase is 1 nm to 100 nm in the sliding member, and 4th is a coating having a Knoop hardness of 2,000 to 8,000 in the sliding member. Fifth, in the above-mentioned sliding member, a nitride, a carbide or a carbonitride of an element belonging to Group IVa, Va, VIa of the Periodic Table such as Ti, Cr, Nitride or carbide of group IIIb or IVb element of Si periodic table as amorphous phase Or a cam ring, a cam follower and a cam shim that use the above-mentioned sliding member. Eighth aspect of the present invention is to provide a method of manufacturing a sliding member according to the eighth aspect, wherein the coating is formed by bringing a substrate into contact with a metal vapor or a reactive gas by a PVD method. Solve the problem.
【0007】[0007]
【実施の形態】金属の窒化物または金属の炭化物または
金属の炭窒化物よりなる結晶相および非晶質相の混合組
織よりなる被膜においては被膜の破壊で重要な転位の移
動は結晶相内で起こる。転位が結晶粒界に移動したとし
ても結晶粒界が非晶質相であるため転位の移動がそこで
阻止される。したがって硬度(強度)が上昇する。その
他の破壊に関わる重要な要素としてはクラックの発生が
挙げられるが、本発明ではクラックの発生は非晶質相で
起こると考えられ、その大きさは結晶粒界のため限定さ
れる。このようにして高硬度(高強度)の被膜が得ら
れ、この被膜を基材上に被覆してなる摺動部材は上記課
題を解決できる。好ましくは結晶相および非晶質相の混
合組織よりなる被膜において、結晶相の割合が5%から
95%で、残部を非晶質相とする被膜とすることにより
上記課題を解決できる。結晶相が5%未満では非晶質相
が多すぎてクラックが大きくなりすぎ硬度が低下する。
また、結晶相が95%より大きいと結晶相の塑性変形が
容易に起こり、十分な硬度(強度)が得られない。結晶
相の割合としてより好ましくは10%から70%であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS In a film composed of a mixed structure of a crystalline phase and an amorphous phase composed of a metal nitride or a metal carbide or a metal carbonitride, the movement of dislocations which is important in the destruction of the film is caused within the crystalline phase. Occur. Even if the dislocations move to the grain boundaries, the dislocations are stopped there because the grain boundaries are in an amorphous phase. Therefore, the hardness (strength) increases. Other important factors related to fracture include crack generation. However, in the present invention, crack generation is considered to occur in an amorphous phase, and the size is limited by crystal grain boundaries. In this way, a coating having high hardness (high strength) is obtained, and a sliding member formed by coating this coating on a base material can solve the above-mentioned problem. Preferably, in a film having a mixed structure of a crystalline phase and an amorphous phase, the above problem can be solved by forming a film in which the proportion of the crystalline phase is 5% to 95% and the remainder is an amorphous phase. If the crystal phase is less than 5%, the amount of the amorphous phase is too large, the crack becomes too large, and the hardness is lowered.
On the other hand, if the crystal phase is larger than 95%, plastic deformation of the crystal phase easily occurs, and sufficient hardness (strength) cannot be obtained. The ratio of the crystal phase is more preferably 10% to 70%.
【0008】さらに好ましくは結晶相の粒径を1nm〜
100nmの大きさに制限することにより、転位の結晶
粒内発生をできるだけ抑え、結晶粒微細化による硬度上
昇により上記課題を解決できる。結晶粒径が1nm未満
であると結晶粒界が長くなりクラックがはいりやすく、
かえって硬度が向上しない。また、結晶粒径が100n
mより大きいと結晶相が塑性変形しやすくなり、十分な
硬度(強度)が得られない。結晶粒径のより好ましい範
囲は1〜10nmである。[0008] More preferably, the grain size of the crystal phase is from 1 nm to
By limiting the size to 100 nm, the generation of dislocations in the crystal grains can be suppressed as much as possible, and the above problem can be solved by increasing the hardness due to the refinement of the crystal grains. If the crystal grain size is less than 1 nm, the crystal grain boundaries become longer and cracks are more likely to enter,
On the contrary, the hardness does not improve. Further, the crystal grain size is 100 n.
If it is larger than m, the crystal phase is likely to be plastically deformed, and sufficient hardness (strength) cannot be obtained. A more preferable range of the crystal grain size is 1 to 10 nm.
【0009】さらに好ましくはヌープ硬度を規定するの
がよい。好ましくは被膜硬度をヌープ硬度2000から
8000までの硬度に制限することにより摺動部材とし
てより効果的となる。より好ましくはヌープ硬度300
0から8000である。It is more preferable to define Knoop hardness. Preferably, the hardness of the coating is limited to a Knoop hardness of 2000 to 8000, so that the sliding member becomes more effective. More preferably Knoop hardness 300
0 to 8000.
【0010】以上のものを具現化するにあたって好まし
くは結晶相としてTi,Cr等周期律表第IVa,Va,VIa属元
素の窒化物または炭化物または炭窒化物とし、非晶質相
としてSi等周期律表第IVb属元素の窒化物または炭化物
または炭窒化物とする。In realizing the above, preferably, the crystalline phase is a nitride, carbide or carbonitride of an element belonging to Group IVa, Va, VIa of the periodic table of Ti, Cr, etc. A nitride, carbide, or carbonitride of a Group IVb element in the Table.
【0011】より好ましくは結晶相としてCrの窒化物ま
たは炭化物または炭窒化物、非晶質相としてSiの窒化物
または炭化物または炭窒化物を選択すれば効果的であ
る。It is more effective to select a nitride, carbide or carbonitride of Cr as the crystal phase and a nitride, carbide or carbonitride of Si as the amorphous phase.
【0012】これらの被膜は自動車エンジン用摺動部
材、特にピストンリング、カム・シムのシムに適用する
と効果が顕著に現われる。When these coatings are applied to a sliding member for an automobile engine, particularly to a shim of a piston ring or a cam shim, the effect is remarkably exhibited.
【0013】これらの被膜の作製方法については、PVD
法、好ましくは減圧された窒素ガス雰囲気中あるいはメ
タン等炭化水素ガス雰囲気中で金属クロムまたは金属チ
タンまたはシリコン等を混合した金属蒸気の蒸着過程で
結晶相である金属の窒化物または金属の炭化物または金
属の炭窒化物、非晶質相である金属の窒化物または金属
の炭化物または金属の炭窒化物の混合組織を生成させる
ことにより形成できる。Regarding the method of producing these coatings, PVD
Metal nitride or metal carbide which is a crystalline phase in the vapor deposition process of metal vapor mixed with metal chromium or metal titanium or silicon, preferably in a reduced pressure nitrogen gas atmosphere or a hydrocarbon gas atmosphere such as methane. It can be formed by forming a mixed structure of a metal carbonitride, a metal nitride which is an amorphous phase, a metal carbide or a metal carbonitride.
【0014】以下に本発明の実施例を示すが、本発明は
それらによりなんら束縛されるものではない。Examples of the present invention will be described below, but the present invention is not limited to them.
【0015】[0015]
【実施例1】金属の窒化物として、Crの窒化物とSiの窒
化物を選び、Cr-Siの混合金属を用い、PVD法の1種であ
るイオンプレーティング法にて成膜した。具体的にはCr
とSiを混合したターゲットを用意し、アーク式イオンプ
レーティング法にて以下の条件で成膜した。Example 1 A nitride of Cr and a nitride of Si were selected as metal nitrides, and a mixed metal of Cr-Si was used to form a film by an ion plating method, which is a kind of PVD method. Specifically, Cr
A target in which Si and Si were mixed was prepared, and a film was formed under the following conditions by an arc ion plating method.
【0016】アーク電流:150A バイアス電圧:100V N2圧力:2.66PaArc current: 150 A Bias voltage: 100 V N 2 Pressure: 2.66 Pa
【0017】その結果、Crの窒化物が結晶相、Siの窒化
物が非晶質相の複合被膜を得ることができた。この被膜
をボールオンディスク試験のディスク試験片であるステ
ンレス製円板あるいはクロムモリブデン鋼製円板に約3
μmの膜厚でコーティングし、アルミナ製ボールにより
ボールオンディスク摩擦摩耗試験を実施した(図1参
照)。摩擦摩耗試験条件を表1に示す。As a result, it was possible to obtain a composite film in which the nitride of Cr was a crystalline phase and the nitride of Si was an amorphous phase. This coating was applied to a disk made of stainless steel or a disk made of chromium molybdenum steel, which was a disk test piece of a ball-on-disk test, for about 3 minutes.
Coating was performed with a thickness of μm, and a ball-on-disk friction and wear test was performed using alumina balls (see FIG. 1). Table 1 shows the friction and wear test conditions.
【0018】[0018]
【表1】 [Table 1]
【0019】比較材として、クロムめっき材、TiNコー
ティング材、CrNコーティング材、被膜のないクロムモ
リブデン鋼を用意し、ピストンリング用試験にはクロム
めっきを100とし、シム用試験にはクロムモリブデン鋼
を100としてそれぞれ表2、表3に結果を示した。As a comparative material, a chromium plating material, a TiN coating material, a CrN coating material, and a chromium molybdenum steel having no coating were prepared. A chrome plating was set to 100 for a test for a piston ring, and a chromium molybdenum steel was set for a test for a shim. The results are shown in Tables 2 and 3, respectively, assuming 100.
【0020】[0020]
【表2】 [Table 2]
【0021】[0021]
【表3】 [Table 3]
【0022】クロムめっきに対し、TiN、CrNは摩耗量が
1/2以下に低減していることがわかる。それに対し、
本発明品はさらに摩耗量が低減しクロムめっき、クロム
モリブデン鋼に対し1/5以下となっていることがわか
る。燃料直接噴射やEGR(排ガス再循環)が適用された
ときの過酷な条件としては現状であるクロムめっきおよ
びクロムモリブデン鋼の5倍以上に過酷な条件というこ
とが言われているので本摩擦試験において相対摩耗量が
それぞれ10、17であり、本実施例は条件を満足する
ことがわかった。It can be seen that the wear amount of TiN and CrN is reduced to less than 1/2 compared to chromium plating. For it,
It can be seen that the wear amount of the product of the present invention is further reduced to 1/5 or less of chromium plating and chromium molybdenum steel. It is said that the severe conditions when direct fuel injection and EGR (exhaust gas recirculation) are applied are those that are five times more severe than the current conditions of chromium plating and chromium molybdenum steel. The relative wear amounts were 10 and 17, respectively, and it was found that this example satisfied the conditions.
【0023】本発明品の被膜のX線回折を実施した。結
果を図2に示す。CrNのピークのみ観察され、Si3N4のピ
ークはみられず、CrNの結晶相及びSi-Nの非晶質相の複
合被膜であると考えられる。これは透過電子顕微鏡によ
る観察でも裏付けられCrNについては格子像が観察され
たが、Siの窒化部には格子像は観察されなかった。X-ray diffraction of the coating of the product of the present invention was performed. The results are shown in FIG. Peak of CrN was observed only peaks the Si 3 N 4 was not observed, believed to be composite coating of an amorphous phase of the crystalline phase and Si-N of CrN. This was confirmed by observation with a transmission electron microscope, and a lattice image was observed for CrN, but no lattice image was observed for the nitrided portion of Si.
【0024】また、ターゲットのCr、Siの混合割合を適
当に変え、結晶相、非晶質相の割合を変えてみた。その
ときの結晶相の割合と相対摩耗量の関係を表4に示す。
その結果、結晶相の割合が3%であると、相対摩耗量が
30以上と大きく、本発明が解決しようとする課題であ
る、環境保全および省エネルギーの観点から重要な、自
動車排気ガス中のCO2、NOx低減及び燃費向上のための燃
料直接噴射やEGR(排ガス再循環)が適用されたときの
過酷な条件では十分な耐久性は望めない。また、結晶相
を増加して6%とすると相対摩耗量は18以下となり、
上記過酷な条件での耐久性が得られる。一方、結晶相の
割合が94%では、相対摩耗量は17であり、上記過酷
な条件での耐久性は得られるが、さらに結晶相の割合を
増加して98%とすると相対摩耗量が50以上となり、
耐久性が悪化する。上述した結晶相/非晶質相の割合と
被膜硬度(強度)の関係の説明にもあるように、結晶相
/非晶質相の割合が適当になったときに上記過酷な条件
での耐久性が得られることから、結晶相の割合を5%か
ら95%とした。Further, the mixing ratio of Cr and Si of the target was appropriately changed, and the ratio of the crystalline phase and the amorphous phase was changed. Table 4 shows the relationship between the ratio of the crystal phase and the relative wear at that time.
As a result, when the proportion of the crystal phase is 3%, the relative wear amount is as large as 30 or more, which is a problem to be solved by the present invention, which is important from the viewpoint of environmental protection and energy saving. 2, direct fuel injection and EGR (exhaust gas recirculation) for of the nO x reduction and fuel efficiency is improved can not be expected sufficiently durable under severe conditions when applied. Further, when the crystal phase is increased to 6%, the relative wear amount becomes 18 or less,
Durability under the above severe conditions is obtained. On the other hand, when the proportion of the crystal phase is 94%, the relative wear amount is 17, and the durability under the above severe conditions can be obtained. However, when the proportion of the crystal phase is further increased to 98%, the relative wear amount becomes 50%. Above
The durability deteriorates. As described in the relationship between the ratio of the crystal phase / amorphous phase and the hardness (strength) of the coating film, when the ratio of the crystal phase / amorphous phase becomes appropriate, the endurance under the above-mentioned severe conditions is obtained. Therefore, the ratio of the crystal phase is set to 5% to 95% from the viewpoint of obtaining the property.
【0025】[0025]
【表4】 [Table 4]
【0026】より細かく結晶相の割合を検討したとこ
ろ、表4に示すように結晶相の割合が9%であると相対
摩耗量が17であるが、結晶相の割合が12%とすると
相対摩耗量は11以下となる。また、結晶相の割合が6
5%であると相対摩耗量が10と低いが、結晶相の割合
が72%とすると相対摩耗量は16以上となる。このこ
とからより好ましくは結晶相の割合が10%から70%
とした。When the ratio of the crystal phase was examined more finely, as shown in Table 4, when the ratio of the crystal phase was 9%, the relative wear amount was 17, but when the ratio of the crystal phase was 12%, the relative wear amount was 17. The amount will be 11 or less. Further, the ratio of the crystal phase is 6
When it is 5%, the relative wear amount is as low as 10, but when the ratio of the crystal phase is 72%, the relative wear amount is 16 or more. From this, it is more preferable that the ratio of the crystal phase is 10% to 70%.
And
【0027】次に成膜条件を適当に変え、被膜の結晶相
の粒径を変えてみた。そのときの結晶粒径と相対摩耗量
の関係を表5に示す。その結果結晶粒径が0.6nmでは
相対摩耗量が30以上と大きく上記過酷な条件では十分
な耐久性が期待できない。結晶粒径を大きくし、1.5
nmとすると相対摩耗量11以下となり、上記過酷な条件
でも耐久性が十分となる。一方、結晶粒径を大きくし、
95nmでは相対摩耗量19以下であり、上記過酷な条件
でも耐久性が十分であるが、さらに大きくし、108nm
とすると相対摩耗量50以上となり、耐久性は不十分と
なる。これらの結果、結晶粒径の好ましい範囲としては
1nmから100nmとした。Next, the film forming conditions were appropriately changed, and the particle size of the crystal phase of the film was changed. Table 5 shows the relationship between the crystal grain size and the relative wear at that time. As a result, when the crystal grain size is 0.6 nm, the relative wear amount is as large as 30 or more, and sufficient durability cannot be expected under the above severe conditions. Increase the crystal grain size, 1.5
If it is set to nm, the relative wear amount will be 11 or less, and the durability will be sufficient even under the above severe conditions. On the other hand, by increasing the crystal grain size,
At 95 nm, the relative wear amount is 19 or less, and the durability is sufficient even under the above severe conditions.
In this case, the relative wear amount becomes 50 or more, and the durability becomes insufficient. As a result, the preferred range of the crystal grain size was 1 nm to 100 nm.
【0028】より細かく結晶粒径を検討したところ、表
5に示すように結晶粒径が8nmであると相対摩耗量が1
1以下であるが、結晶粒径が12nmであると相対摩耗量
は17以上となる。このことからより好ましくは結晶粒
径が1nmから10nmとした。The crystal grain size was examined more finely. As shown in Table 5, when the crystal grain size was 8 nm, the relative wear amount was 1
Although it is 1 or less, the relative wear amount becomes 17 or more when the crystal grain size is 12 nm. For this reason, the crystal grain size is more preferably set to 1 nm to 10 nm.
【0029】[0029]
【表5】 [Table 5]
【0030】さらに成膜条件等を変え、被膜のヌープ硬
度を変えた。そのときの被膜のヌープ硬度と相対摩耗量
の関係を表6に示す。その結果、被膜のヌープ硬度が1
600では相対摩耗量が40と大きく上記過酷な条件で
は耐久性が不十分である。さらに硬度を上げ、2500
とすると相対摩耗量が17と低下し、上記過酷な条件で
も十分な耐久性が得られる。一方硬度をさらに上げ、7
500とすると相対摩耗量が12以下となり、上記過酷
な条件でも耐久性があるが、さらに硬度を上昇し、86
00とすると前述したように脆くなり、相対摩耗量がか
えって増加し40以上となり、上記過酷な条件では耐久
性が十分ではない。これらの結果、好ましいヌープ硬度
の範囲としては2000から8000とした。Further, the Knoop hardness of the film was changed by changing the film forming conditions and the like. Table 6 shows the relationship between the Knoop hardness of the coating and the relative wear at that time. As a result, the Knoop hardness of the coating is 1
In the case of 600, the relative wear amount is as large as 40, and the durability is insufficient under the above severe conditions. Further increase the hardness 2500
In this case, the relative wear amount is reduced to 17, and sufficient durability can be obtained even under the above severe conditions. On the other hand, the hardness was further increased,
If it is set to 500, the relative wear amount becomes 12 or less, and the durability is maintained even under the above-mentioned severe conditions.
If it is set to 00, it becomes brittle as described above, and the relative abrasion increases instead to 40 or more, and the durability is not sufficient under the above severe conditions. As a result, the preferable range of the Knoop hardness was 2,000 to 8,000.
【0031】[0031]
【表6】 [Table 6]
【0032】より細かく硬度を検討したところ、表6に
示すようにヌープ硬度が3500であると相対摩耗量が
13以下である。このことからより好ましいヌープ硬度
の範囲は3000から8000とした。When the hardness was examined in more detail, as shown in Table 6, when the Knoop hardness was 3500, the relative wear amount was 13 or less. For this reason, the more preferable range of the Knoop hardness is 3000 to 8000.
【0033】[0033]
【実施例2】金属の窒化物として、Tiの窒化物とSiの窒
化物を選び、PVD法の1種であるイオンプレーティング
法にて成膜した。その結果、Tiの窒化物が結晶相、Siの
窒化物が非晶質相の複合被膜を得ることができた。この
被膜を実施例1と同様にボールオンディスク試験のディ
スク試験片であるステンレス製円板あるいはクロムモリ
ブデン鋼製円板に約3μmの膜厚でコーティングし、ア
ルミナ製ボールによりボールオンディスク摩擦摩耗試験
を実施した(図1参照)。摩擦摩耗試験条件を表1に示
す。また、クロムめっきを100として表した摩耗試験結
果を表2、クロムモリブデン鋼を100として表した摩耗
試験結果を表3に示す。Example 2 Ti nitride and Si nitride were selected as metal nitrides, and a film was formed by an ion plating method which is a kind of PVD method. As a result, a composite film in which the nitride of Ti was in the crystalline phase and the nitride of Si was in the amorphous phase was obtained. This film was coated on a stainless steel disk or a chromium molybdenum steel disk as a disk test piece of a ball-on-disk test in a thickness of about 3 μm in the same manner as in Example 1, and a ball-on-disk friction and wear test was performed using an alumina ball. (See FIG. 1). Table 1 shows the friction and wear test conditions. Table 2 shows the results of the wear test in which chromium plating is expressed as 100, and Table 3 shows the results of the wear test in which chromium molybdenum steel is expressed as 100.
【0034】本発明品の摩耗量はクロムめっき、クロム
モリブデン鋼に対し1/5以下となっていることがわか
る。燃料直接噴射やEGR(排ガス再循環)が適用された
ときの過酷な条件としては現状であるクロムめっきの5
倍以上に過酷な条件ということが言われているので本摩
擦試験において相対摩耗量それぞれ12、10であり、
本実施例は条件を満足することがわかった。It can be seen that the wear amount of the product of the present invention is 1/5 or less of the chromium plating and chromium molybdenum steel. The most severe conditions when direct fuel injection or EGR (exhaust gas recirculation) are applied
It is said that the conditions are more than twice as severe, so in this friction test, the relative wear amount was 12, 10, respectively.
This example was found to satisfy the conditions.
【0035】[0035]
【実施例3】金属の炭窒化物として、Tiの炭窒化物とSi
の窒化物を選び、PVD法の1種であるイオンプレーティ
ング法にて成膜した。その結果、TiCNが結晶相、Siの窒
化物が非晶質相の複合被膜を得ることができた。この被
膜を実施例1と同手法同条件にて摩擦試験を実施した。
その結果を表2、表3に示す。本実施例は相対摩耗量そ
れぞれ15、12であり、本実施例はそれぞれ現状の5
倍以上の耐摩耗性を示し、条件を満足することがわかっ
た。Embodiment 3 As metal carbonitrides, Ti carbonitride and Si
And a film was formed by an ion plating method, which is a kind of PVD method. As a result, a composite coating having a crystalline phase of TiCN and an amorphous phase of Si nitride was obtained. This film was subjected to a friction test under the same conditions and conditions as in Example 1.
The results are shown in Tables 2 and 3. In this embodiment, the relative wear amounts are 15 and 12, respectively.
The abrasion resistance was more than doubled and it was found that the condition was satisfied.
【0036】[0036]
【実施例4】金属の炭窒化物として、Crの炭窒化物とSi
の窒化物を選び、PVD法の1種であるイオンプレーティ
ング法にてCrSiCN被膜を成膜した。その結果、CrCNが結
晶相、Siの窒化物が非晶質相の複合被膜を得ることがで
きた。この被膜を実施例1と同手法同条件にて摩擦試験
を実施した。その結果を表2、表3に示す。本実施例は
相対摩耗量それぞれ11、12であり、本実施例はそれ
ぞれ現状の5倍以上の耐摩耗性を示し、条件を満足する
ことがわかった。Embodiment 4 As metal carbonitrides, Cr carbonitrides and Si
Was selected, and a CrSiCN film was formed by an ion plating method, which is a kind of PVD method. As a result, a composite film having a crystalline phase of CrCN and an amorphous phase of Si nitride was obtained. This film was subjected to a friction test under the same conditions and conditions as in Example 1. The results are shown in Tables 2 and 3. In this example, the relative abrasion amounts were 11 and 12, respectively. This example shows that the abrasion resistance is 5 times or more of the present condition and satisfies the conditions.
【0037】[0037]
【発明の効果】本発明により従来のクロムめっき、TiN
やCrN被膜では耐久性が不十分である、自動車排気ガス
中のCO2、NOx低減のための燃料直接噴射やEGR(排ガス
再循環)等が適用された場合の過酷な摩耗条件でも従来
エンジン以上の寿命が得られる被膜を得ることができ
る。According to the present invention, conventional chromium plating, TiN
The conventional engine is not suitable for severe wear conditions when direct fuel injection or EGR (exhaust gas recirculation) is applied to reduce CO 2 and NO x in automobile exhaust gas, where the durability is insufficient with CO2 or CrN coating. It is possible to obtain a film having the above life.
【図1】図1は摩擦摩耗試験方法を示す図である。FIG. 1 is a view showing a friction and wear test method.
【図2】図2は本発明の実施例と従来からあるCrN被膜
のX線回折結果を比較して示した図である。FIG. 2 is a diagram showing a comparison between X-ray diffraction results of an embodiment of the present invention and a conventional CrN coating.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01L 1/16 F01L 1/16 F16J 9/26 F16J 9/26 C (72)発明者 聶 朝胤 大阪府枚方市津田山手2丁目8番1号 株 式会社イオン工学研究所内 (72)発明者 岩本信也 大阪府枚方市津田山手2丁目8番1号 株 式会社イオン工学研究所内 Fターム(参考) 3G016 BB02 BB05 EA00 EA24 FA21 GA02 3J044 AA02 BA01 BB06 BB20 BB28 BB30 BB35 BB36 BC06 DA09 4K029 AA02 BA54 BA55 BA56 BA57 BA58 BA60 BB08 BB10 BC02 BD04 CA04 DD06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01L 1/16 F01L 1/16 F16J 9/26 F16J 9/26 C (72) Inventor Nie Asane, Osaka 2-8-1, Tsuda Yamate, Hirakata City, Japan Ion Engineering Laboratory Co., Ltd. (72) Inventor Shinya Iwamoto 2-8-1, Tsuda Yamate, Hirakata City, Osaka Prefecture F-Term, Ion Engineering Laboratory Co., Ltd. 3G016 BB02 BB05 EA00 EA24 FA21 GA02 3J044 AA02 BA01 BB06 BB20 BB28 BB30 BB35 BB36 BC06 DA09 4K029 AA02 BA54 BA55 BA56 BA57 BA58 BA60 BB08 BB10 BC02 BD04 CA04 DD06
Claims (8)
属の炭窒化物よりなる結晶相および非晶質相の混合組織
よりなる被膜を基材上に被覆してなる摺動部材。1. A sliding member comprising a base material coated with a coating made of a mixed structure of a crystalline phase and an amorphous phase made of a metal nitride, a metal carbide, or a metal carbonitride.
で、残部を非晶質相であることを特徴とする請求項1に
記載の摺動部材。2. The coating according to claim 1, wherein the proportion of the crystalline phase is 5% to 95%.
The sliding member according to claim 1, wherein the remainder is an amorphous phase.
mの大きさであることを特徴とする請求項1または2に
記載の摺動部材。3. The particle size of the crystal phase of the coating is from 1 nm to 100 n.
The sliding member according to claim 1, wherein the size of the sliding member is m.
0までの硬度であることを特徴とする請求項1ないし3
の何れかに記載の摺動部材。4. The coating has a Knoop hardness of 2000 to 800.
4. Hardness up to 0.
The sliding member according to any one of the above.
a,VIa属元素の窒化物または炭化物または炭窒化物、非
晶質相がSi等周期律表第IIIb、IVb属元素の窒化物また
は炭化物または炭窒化物であることを特徴とする請求項
1ないし4何れかに記載の摺動部材。5. The film of the coating is composed of Ti, Cr, etc.
2. A nitride, carbide or carbonitride of an element belonging to group a, VIa, and the amorphous phase is a nitride, carbide or carbonitride of an element belonging to group IIIb or IVb of the Si periodic table. 5. The sliding member according to any one of claims 4 to 4.
材を用いたことを特徴とするピストンリング。6. A piston ring using the sliding member according to claim 1.
材を用いたことを特徴とするカム・シムのシム。7. A shim of a cam shim using the sliding member according to claim 1.
動部材において前記被膜を、PVD法により金属蒸気、
反応ガスと基材を接触させることにより形成することを
特徴とする摺動部材の製造方法。8. The sliding member according to claim 1, wherein the coating is formed by metal vapor deposition by PVD.
A method for producing a sliding member, wherein the sliding member is formed by contacting a reaction gas with a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001064998A JP2002266697A (en) | 2001-03-08 | 2001-03-08 | Slide member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001064998A JP2002266697A (en) | 2001-03-08 | 2001-03-08 | Slide member and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002266697A true JP2002266697A (en) | 2002-09-18 |
Family
ID=18923731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001064998A Pending JP2002266697A (en) | 2001-03-08 | 2001-03-08 | Slide member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002266697A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007162574A (en) * | 2005-12-14 | 2007-06-28 | Riken Corp | Piston ring |
US7294416B2 (en) | 2003-03-25 | 2007-11-13 | Kobe Steel, Ltd. | Hard film |
EP1876345A1 (en) * | 2006-07-06 | 2008-01-09 | Teikoku Piston Ring Co., Ltd. | Piston ring for internal combustion engines |
US20120148866A1 (en) * | 2010-12-13 | 2012-06-14 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for making the same |
US20120164459A1 (en) * | 2010-12-23 | 2012-06-28 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for making the same |
CN102534480A (en) * | 2010-12-23 | 2012-07-04 | 鸿富锦精密工业(深圳)有限公司 | Coating piece and preparation method thereof |
WO2021153425A1 (en) | 2020-01-27 | 2021-08-05 | 株式会社リケン | Piston ring, and method for manufacturing same |
WO2022131057A1 (en) * | 2020-12-17 | 2022-06-23 | 株式会社リケン | Film, and piston ring |
-
2001
- 2001-03-08 JP JP2001064998A patent/JP2002266697A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7294416B2 (en) | 2003-03-25 | 2007-11-13 | Kobe Steel, Ltd. | Hard film |
US7758974B2 (en) | 2003-03-25 | 2010-07-20 | Kobe Steel, Ltd. | Hard film |
JP2007162574A (en) * | 2005-12-14 | 2007-06-28 | Riken Corp | Piston ring |
EP1876345A1 (en) * | 2006-07-06 | 2008-01-09 | Teikoku Piston Ring Co., Ltd. | Piston ring for internal combustion engines |
JP2008014228A (en) * | 2006-07-06 | 2008-01-24 | Teikoku Piston Ring Co Ltd | Piston ring for internal-combustion engine |
US8592031B2 (en) * | 2010-12-13 | 2013-11-26 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Coated article and method for making the same |
US20120148866A1 (en) * | 2010-12-13 | 2012-06-14 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for making the same |
US20120164459A1 (en) * | 2010-12-23 | 2012-06-28 | Hon Hai Precision Industry Co., Ltd. | Coated article and method for making the same |
CN102534480A (en) * | 2010-12-23 | 2012-07-04 | 鸿富锦精密工业(深圳)有限公司 | Coating piece and preparation method thereof |
US8592032B2 (en) * | 2010-12-23 | 2013-11-26 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Coated article and method for making the same |
US8709593B2 (en) * | 2010-12-23 | 2014-04-29 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Coated article and method for making the same |
WO2021153425A1 (en) | 2020-01-27 | 2021-08-05 | 株式会社リケン | Piston ring, and method for manufacturing same |
WO2022131057A1 (en) * | 2020-12-17 | 2022-06-23 | 株式会社リケン | Film, and piston ring |
JP2022096269A (en) * | 2020-12-17 | 2022-06-29 | 株式会社リケン | Coating and piston ring |
JP7402790B2 (en) | 2020-12-17 | 2023-12-21 | 株式会社リケン | Coating and piston rings |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101703962B1 (en) | Sliding element, in particular piston ring, and combination of a sliding element with mating running element | |
JP3885375B2 (en) | piston ring | |
JP6062357B2 (en) | piston ring | |
JP3355306B2 (en) | piston ring | |
JP2000120869A (en) | Sliding member and its manufacture | |
EP2162561B1 (en) | Piston ring with a sulphonitriding treatment | |
JP7508747B2 (en) | piston ring | |
WO2016002810A1 (en) | Piston ring | |
JP2002266697A (en) | Slide member and manufacturing method thereof | |
WO2015082538A1 (en) | Piston ring | |
JP4901207B2 (en) | piston ring | |
JP2010168603A (en) | WEAR-RESISTANT CrN FILM | |
US9777239B2 (en) | Element comprising at least one sliding surface having a coating for use in an internal combustion engine or a compressor | |
JP2006057674A (en) | Sliding member and piston ring | |
US6726216B2 (en) | Piston ring with oxide-nitride composite layer | |
JP2005320947A (en) | Sliding member and method of manufacturing sliding member | |
JP6784869B2 (en) | piston ring | |
JP5473890B2 (en) | piston ring | |
JP2004060873A (en) | Piston ring and its manufacturing method | |
JP2005061389A (en) | Piston ring for internal combustion engine | |
JP4374160B2 (en) | piston ring | |
JP2004107771A (en) | Hard coated film excellent in adhesion and its forming process | |
JPH112323A (en) | Piston ring | |
US20230083774A1 (en) | Piston ring, and method for manufacturing same | |
JP2004176848A (en) | Combination of amorphous hard carbon coated member and ferrous member |