JP2002261028A - Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device - Google Patents

Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device

Info

Publication number
JP2002261028A
JP2002261028A JP2001058126A JP2001058126A JP2002261028A JP 2002261028 A JP2002261028 A JP 2002261028A JP 2001058126 A JP2001058126 A JP 2001058126A JP 2001058126 A JP2001058126 A JP 2001058126A JP 2002261028 A JP2002261028 A JP 2002261028A
Authority
JP
Japan
Prior art keywords
furnace
semiconductor substrate
gas
substrate
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001058126A
Other languages
Japanese (ja)
Inventor
Mikio Takagi
幹夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FTL KK
Original Assignee
FTL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FTL KK filed Critical FTL KK
Priority to JP2001058126A priority Critical patent/JP2002261028A/en
Publication of JP2002261028A publication Critical patent/JP2002261028A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase thermal stability in a vertical hot wall type, and to stably supply an easily decomposable gas. SOLUTION: A heat shelter plate 14a is provided at the upper section of a furnace (a), a vacuum heat-insulating section (15) is provided at the upper section of the furnace (b), the vacuum heat insulating section (15) is provided at the upper section of the furnace, and a vacuum heat insulating section (17) is provided at the lower section of a substrate transfer tool 16(c). The heat shelter plate 14a is provided at the upper section of a furnace, and the vacuum heat insulating section (17) is provided at the lower section of the substrate transfer tool 16(d), or a vacuum heat insulating section (36a) is provided in a gas guiding pipe that is positioned in the furnace (e).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置製造用
基板載置治具と縦型炉の組合わせ、基板載置治具、及び
半導体装置の製造方法に関するものであり、さらに詳し
く述べるならば、減圧CVD、拡散、アニールなどの加
熱炉内でバッチ処理を行う方法において、炉内温度特性
の均一性に優れており、かつ擬似半導体基板(「ダミー
ウェーハ」と言われることもある)を極力使用しないか
全く使用しない方法に関するものである。さらに、本発
明は易分解性ガスを使用する縦型炉バッチプロセスに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combination of a substrate mounting jig for manufacturing a semiconductor device and a vertical furnace, a substrate mounting jig, and a method of manufacturing a semiconductor device. , Low pressure CVD, diffusion, annealing, etc., in which batch processing is performed in a heating furnace, the uniformity of the temperature characteristics in the furnace is excellent, and a pseudo semiconductor substrate (sometimes called a “dummy wafer”) is used as much as possible. It concerns methods that are not used or not used at all. Further, the present invention relates to a vertical furnace batch process using a readily decomposable gas.

【0002】[0002]

【従来の技術】従来技術を次に述べる順に説明する。 1.縦型加熱炉 2.オゾンを使用しない各種成膜方法 3.オゾンを使用する成膜方法2. Description of the Related Art Prior art will be described in the following order. 1. Vertical heating furnace 2. 2. Various film forming methods without using ozone Film formation method using ozone

【0003】1.縦型加熱炉 二重管型縦型炉は例えば本発明者の発明に係る特許第2
635019号にて公知である。二重管縦型加熱炉で
は、8インチ半導体基板の場合は一般に100〜150枚程度
が700〜900mm長の均熱領域内でバッチ処理され
ている。基板載置治具の上端部及び下端部は均熱長さの
上下限に近いために、温度の安定化を図り、また炉内雰
囲気を安定させるために通常上部に3〜5枚程度、下部
に5〜7枚程度の擬似基板を配列し、この間に製品とな
る半導体基板を挟んで配列する。このような擬似基板が
使用されるのは、縦型加熱炉では対流により上部が高温
になり易いこと、ヒーターからの輻射と炉体から外部へ
の放熱のバランスが炉の上下部で崩れ易いこと、ガスの
流速や濃度分布が炉の上下で不均一になることに起因す
る。擬似基板は、製品基板と同様の熱履歴を受け、さら
に適当な処理周期で入れ替えされるが、この入れ替えは
かなり複雑であるために、例えば特開平11―6787
8号で提案されているようにコンピューターによる自動
化が考えられている。
[0003] 1. Vertical heating furnace The double tube type vertical furnace is, for example, a patent No. 2 according to the inventor's invention.
No. 6,350,019. In the double tube vertical heating furnace, in the case of an 8-inch semiconductor substrate, generally, about 100 to 150 substrates are batch-processed in a soaking region having a length of 700 to 900 mm. Since the upper and lower ends of the substrate mounting jig are close to the upper and lower limits of the soaking length, stabilize the temperature. About 5 to 7 pseudo substrates are arranged, and a semiconductor substrate as a product is interposed therebetween. Such a pseudo substrate is used because, in a vertical heating furnace, the upper part is likely to become hot due to convection, and the balance between the radiation from the heater and the heat radiation from the furnace body to the outside tends to collapse at the upper and lower parts of the furnace. This is because the flow velocity and concentration distribution of the gas become non-uniform above and below the furnace. The pseudo substrate receives the same heat history as the product substrate, and is replaced at an appropriate processing cycle. This replacement is considerably complicated, and for example, Japanese Patent Application Laid-Open No. 11-6787.
As proposed in No. 8, computer automation is being considered.

【0004】特開平11―54448号公報によると、
縦型炉反応管の温度を短時間で均一化するために、ウェ
ーハ保持用ボートの最上部に断熱板を設けることが提案
されている。一般に、バッチ式縦型炉の昇温速度は10
〜80℃/分の範囲であり、一方冷却速度は2〜3℃/
分から20〜30℃/分の範囲であり、反応温度からウ
ェーハ取出しが可能な温度までの冷却時間は通常20〜
40分に及ぶ。このような特性をもつバッチ式縦型炉に
おいて、上記公報のようにウェーハ保持ボートに断熱板
を固定すると、断熱板の熱容量により冷却時間が長くな
り半導体装置製造工程のリードタイムが長くなる。
According to JP-A-11-54448,
In order to equalize the temperature of the vertical furnace reaction tube in a short time, it has been proposed to provide an insulating plate on the top of the wafer holding boat. Generally, the heating rate of a batch type vertical furnace is 10
~ 80 ° C / min, while the cooling rate is 2-3 ° C / min.
Min to 20 to 30 ° C / min, and the cooling time from the reaction temperature to a temperature at which the wafer can be taken out is usually 20 to 30 ° C.
It lasts 40 minutes. In the batch type vertical furnace having such characteristics, when the heat insulating plate is fixed to the wafer holding boat as described in the above publication, the cooling time becomes longer due to the heat capacity of the heat insulating plate, and the lead time of the semiconductor device manufacturing process becomes longer.

【0005】2.オゾンを使用しない成膜方法BPSG膜 BPSG膜のPは微量の重金属を捕獲してMOSデバイスの
汚染を防ぐパッシベーション膜としてデバイスの信頼性
を高める目的で使用される。BPSG(boro phosphosilica
te glass)膜は800〜900℃でリフローされる。BPSG膜
は、約400℃でSiH4,B2H6,PH3,O2を反応ガスとして形
成されていた(例えば特開平3―212958号公
報)。バッチ法では常圧CVDよりステップカバレジが良
好な減圧CVDによりBPSG膜を形成する方法が使用されて
いる(月刊Semiconductor World. 1999.9,p33-38)。BP
SG膜のソースガスはテトラエトキシシラン(TEOS)、ジ
アセテートジベンゼンシリコン(DADBS)、トリメチル
ホスフェート(TMP-ate)、トリメチルホスファイト(T
MP-ite)、トリエチルボレート(TEB)及び酸化剤とし
ての酸素である。TEOS、TMP-ate、TEBなどを別個の供給
源から酸素をキャリヤガスとしてバッチ式横型炉の入口
に導入し、640から680℃で成長が行われ膜厚分布
が±5%のBPSG膜を形成している。ソースガスの導入管
はソースガスの沸点付近もしくはそれより高温に加熱さ
れ、ガスの液化を防止している。上記のソースガスとと
もに導入されるドープガスは分解され易いので、バッチ
処理の場合はB及びP濃度分布が良好ではなかった。BP
SGは溝の埋め込みにも使用されている。このBPSGは3〜8
wt%, P4〜8wt%Bを含有しており、かかる組成のBPS
Gは640〜680℃の条件で成膜される。成長温度は
MOSFETのソース、ドレイン形成後はできるだけ低
いことが望まれている。
[0005] 2. Film formation method without using ozone P of the BPSG film BPSG film is used as a passivation film for capturing a trace amount of heavy metal and preventing contamination of the MOS device for the purpose of improving the reliability of the device. BPSG (boro phosphosilica
The te glass) film is reflowed at 800-900 ° C. The BPSG film was formed at about 400 ° C. using SiH 4 , B 2 H 6 , PH 3 , and O 2 as reaction gases (for example, Japanese Patent Laid-Open No. 3-212958). In the batch method, a method of forming a BPSG film by low-pressure CVD, which has better step coverage than normal pressure CVD, is used (Semiconductor World. 1999.9, p33-38, monthly). BP
The source gas for the SG film is tetraethoxysilane (TEOS), diacetate dibenzene silicon (DADBS), trimethyl phosphate (TMP-ate), and trimethyl phosphite (T
MP-ite), triethyl borate (TEB) and oxygen as oxidizing agent. Introduce TEOS, TMP-ate, TEB, etc. from separate sources as oxygen into the inlet of a batch type horizontal furnace as a carrier gas and grow at 640-680 ° C to form a BPSG film with a film thickness distribution of ± 5%. are doing. The source gas inlet tube is heated to near or above the boiling point of the source gas to prevent liquefaction of the gas. Since the dope gas introduced together with the source gas is easily decomposed, the B and P concentration distributions were not good in the case of batch processing. BP
SG is also used for filling grooves. This BPSG is 3-8
wt%, P4 ~ 8wt% B, BPS of such composition
G is deposited under the conditions of 640 to 680 ° C. It is desired that the growth temperature be as low as possible after forming the source and drain of the MOSFET.

【0006】窒化膜 さらに、他の各種膜の成膜法を挙げる。窒化膜が次の反
応により形成されている。 3SiH2Cl2+4NH3→Si34+6HCl +6H2 …(1) 3SiH4+4NH3→Si3N4+12H2…(2) ジクロールシラン(DCS)を使用する(1)式の反応は68
0〜800℃で、(2)式の反応は520〜700℃で行
われる。(1)又は(2)式のNH3の代わりにN2Oを使用して
SiON膜の形成が行われている。窒化チタン膜の形成が次
の反応により行われている。 TiCl4+NH4→TiN+4HCl…(3)
[0006] nitride film further, include a film formation method of a variety of other films. A nitride film is formed by the following reaction. 3SiH 2 Cl 2 + 4NH 3 → Si 3 N 4 + 6HCl + 6H 2 … (1) 3SiH 4 + 4NH 3 → Si 3 N 4 + 12H 2 … (2) The reaction of formula (1) using dichlorosilane (DCS) 68
The reaction of the formula (2) is carried out at 520 to 700 ° C at 0 to 800 ° C. Using N 2 O instead of NH 3 in formula (1) or (2)
An SiON film is being formed. The formation of a titanium nitride film is performed by the following reaction. TiCl 4 + NH 4 → TiN + 4HCl… (3)

【0007】ポリシリコン膜 SiH4 とPH3 を使用するPドープポリシリコン膜は減圧C
VDによる成長がバッチ式縦型炉で行われている。反応温
度は約530℃であり、成長速度は10〜15オングス
トローム/分であり、減圧CVD法で620℃で成膜する場合
はSiH4の成長速度は80〜100オングストローム/分
である。
The P-doped polysilicon film using the polysilicon films SiH 4 and PH 3 has a reduced pressure C
VD growth is performed in a batch type vertical furnace. The reaction temperature is about 530 ° C., the growth rate is 10 to 15 Å / min, and the growth rate of SiH 4 is 80 to 100 Å / min when the film is formed at 620 ° C. by the low pressure CVD method.

【0008】上記した反応は例えば100〜150枚の
8インチウェーハを縦型炉の700〜900mmの均熱
領域に配置して行われており、例えばSiH4及びPH3ガス
は特許第26305019号公報に示されているように
縦型炉の下部から炉内に導入される。この方法では分解
し易いPH3が早く分解してしまい、下部にセットされた
ウェーハに高濃度のPがドープされる。
The above-mentioned reaction is carried out by, for example, disposing 100 to 150 8-inch wafers in a soaking region of 700 to 900 mm in a vertical furnace. For example, SiH 4 and PH 3 gases are disclosed in Japanese Patent No. 26305019. Is introduced into the furnace from the lower part of the vertical furnace. In this method, PH 3 which is easily decomposed decomposes quickly, and a high concentration of P is doped into the wafer set on the lower side.

【0009】3.オゾンを使用する成膜方法 オゾンを酸化ガスとし、 O3 → O2 + 〔O〕 … (3) の反応により発生する発生期の酸素とTEOSとTEBにより
370〜400℃程度でBPSG膜が形成され、素子分
離の溝の埋め込みやアルミ層間の絶縁にも使用されてい
る(「O3−TEOS法」と言う)。
3. Film formation method using ozone Ozone is used as an oxidizing gas, and O 3 → O 2 + [O] (about 370-400 ° C.) by TEOS and TEB generated during the reaction of (3) A BPSG film is formed by the method described above, and is also used for embedding a trench for element isolation and insulating between aluminum layers (referred to as an “O 3 -TEOS method”).

【0010】O3-TEOS法は現在次のような枚葉式装置で
実施されている。すなわち、A社で製造されている常圧
ベルトコンベア・枚葉式装置、B社の常圧枚葉式設備、
C社の常圧に近い減圧枚葉式装置などである。
The O 3 -TEOS method is currently implemented in the following single-wafer apparatus. That is, a normal-pressure belt conveyor / single-wafer type device manufactured by Company A, a normal-pressure single-wafer type equipment of Company B,
This is a reduced pressure single-wafer type device close to normal pressure of Company C.

【0011】[0011]

【発明が解決しようとする課題】従来は、縦型二重管型
加熱炉は擬似基板の使用を前提としていたために、加熱
炉自体の圧力及び温度特性改良には努力が傾注されてい
たとは言い難く、将来ウェーハが大型化し、また膜厚が
薄膜化するにつれて対応が困難になることが予測され
る。また、ウェーハ保持用ボート最上部に断熱板を固定
すると冷却時間が長くなり生産性の低下を招く。したが
って、本発明は、二重管型縦型加熱炉を使用するバッチ
プロセスにおいてこれらの問題点を克服し、大口径基板
に均一性が優れた膜・層などを形成することを目的とす
る。また、本発明は、さらに易分解性ガスを使用する半
導体装置の製造方法において、組成均一性に優れたバッ
チ処理法を提供することを目的とする。さらに、オゾン
を使用するCVD法ではソースガスが370℃以上で分解し易
くなるためにバッチ処理は困難であった。本発明はこれ
らの問題点を解決することができるバッチ式膜形成方法
を提供することを目的とする。
Conventionally, since a vertical double-tube heating furnace was premised on the use of a pseudo substrate, efforts have been made to improve the pressure and temperature characteristics of the heating furnace itself. It is difficult to say that it will be difficult to cope with a larger wafer and a thinner film in the future. In addition, if the heat insulating plate is fixed to the uppermost portion of the wafer holding boat, the cooling time becomes longer, and the productivity is reduced. Accordingly, an object of the present invention is to overcome these problems in a batch process using a double tube type vertical heating furnace and to form a film / layer with excellent uniformity on a large-diameter substrate. Another object of the present invention is to provide a batch processing method having excellent composition uniformity in a method of manufacturing a semiconductor device using a readily decomposable gas. Furthermore, in the CVD method using ozone, batch processing is difficult because the source gas is easily decomposed at 370 ° C. or higher. An object of the present invention is to provide a batch-type film forming method that can solve these problems.

【0012】[0012]

【課題を解決するための手段】本発明に係る第1は、ダ
ミーウェーハを含むもしくは含まない半導体基板を治具
から取り外し可能に横置きし、かつ上下方向に相互に一
定間隔で配列し、該半導体基板を縦型加熱炉内の均熱か
つ圧力一定領域内にてガスと接触させる基板載置治具
と、縦型加熱炉との組合わせ(以下単に「組合わせ」と
いう)において、炉内上方空間の均熱領域内にて半導体
基板配列領域と対置されかつガス不透過性隔壁により炉
内空間とは隔絶されるが外気とは連通した熱遮蔽部を設
けるとともに、その下部横方向寸法を前記半導体基板の
寸法以上とし、かつ縦方向寸法を前記一定間隔の4倍以
上としたことを特徴とする。本発明に係る第2の組合わ
せは、炉内上方空間の均熱領域内にて半導体基板配列領
域と対置される真空断熱部を設けるとともに、その下部
横方向寸法を前記半導体基板の寸法以上とし、かつ縦方
向寸法を前記一定間隔の4倍以上としたことを特徴とす
る。本発明の第3に係る組合わせは、炉内上方空間の均
熱領域内にて半導体基板配列領域と対置された上部真空
断熱部と、炉内下方空間の均熱空間に少なくとも一部が
位置するように、下部真空断熱部を前記半導体基板配列
領域と対置して設けるとともに、上部及び下部真空断熱
部の寸法を、半導体基板に最も接近する部分での横方向
寸法が半導体基板の寸法以上であり、縦方向の寸法が前
記一定間隔の4倍以上としたことを特徴とする。本発明
に係る第4の組合わせは、炉内上方空間の均熱領域内に
て半導体基板配列領域と対置されかつガス不透過性隔壁
により加熱炉内空間とは隔絶されるが外気とは連通した
熱遮蔽部を設けるとともに、その下部横方向寸法を前記
半導体基板の寸法以上とし、かつ縦方向寸法を前記一定
間隔の4倍以上とし、さらに、炉内下方空間の均熱空間
に少なくとも一部が位置するように下部真空断熱部を前
記半導体基板配列領域と対置して設けるともに、該真空
断熱部の寸法を、半導体基板に最も接近する部分での横
方向寸法が半導体基板の寸法以上であり、縦方向の寸法
が前記一定間隔の4倍以上としたことを特徴とする。本
発明に係る半導体装置製造用基板載置治具は、ダミーウ
ェーハを含むもしくは含まない半導体基板を治具から取
り外し可能に横置きし、かつ上下方向に相互に一定間隔
で配列し、該半導体基板を縦型加熱炉内の均熱かつ圧力
一定領域内にてガスと接触させる基板載置治具におい
て、半導体基板配列領域に最も接近する部分で前記基板
載置治具の下部に真空断熱部を固定するとともに、その
横方向寸法を半導体基板の寸法以上とし、かつ縦方向の
寸法を前記一定間隔の4倍以上としたことを特徴とす
る。本発明に係る半導体装置の製造方法は、縦型加熱炉
内を上下方向に移動する基板載置治具に、ダミーウェー
ハを含むもしくは含まない半導体基板を治具から取り外
し可能に横置きしかつ上下方向に相互に一定間隔で配列
し、前記縦型加熱炉内の均熱かつ圧力一定領域内で半導
体基板とガスを接触させる半導体装置の製造方法におい
て、管周囲に真空断熱部を付設したガス導入管により前
記ガスを前記縦型加熱炉内で案内することを特徴とす
る。以下、本発明の方法を説明する。
According to a first aspect of the present invention, a semiconductor substrate including or not including a dummy wafer is removably laid horizontally from a jig, and arranged at regular intervals in a vertical direction. In a combination of a substrate mounting jig for bringing a semiconductor substrate into contact with a gas in a uniform temperature and pressure constant region in a vertical heating furnace and a vertical heating furnace (hereinafter, simply referred to as “combination”), A heat shield is provided in the heat equalizing area of the upper space, which is opposed to the semiconductor substrate array area and is separated from the furnace space by the gas-impermeable partition wall, but communicates with the outside air. The semiconductor device is characterized in that the size is not less than the size of the semiconductor substrate, and the vertical dimension is not less than four times the fixed interval. The second combination according to the present invention is to provide a vacuum heat insulating portion opposed to the semiconductor substrate array region in the heat equalizing region in the upper space in the furnace, and to set the lower lateral dimension thereof to be equal to or larger than the size of the semiconductor substrate. And the vertical dimension is at least four times the fixed interval. The combination according to the third aspect of the present invention is a combination of an upper vacuum heat insulating portion opposed to the semiconductor substrate arrangement region in the heat equalizing region in the upper space inside the furnace, and at least a part located in the heat equalizing space in the lower space inside the furnace. The lower vacuum heat insulating portion is provided so as to face the semiconductor substrate array region, and the dimensions of the upper and lower vacuum heat insulating portions are set such that the lateral dimension at the portion closest to the semiconductor substrate is equal to or larger than the size of the semiconductor substrate. In this case, the vertical dimension is at least four times the fixed interval. The fourth combination according to the present invention is arranged so as to be opposed to the semiconductor substrate arrangement region in the soaking region in the upper space inside the furnace and to be isolated from the space inside the heating furnace by the gas-impermeable partition but to communicate with the outside air. And a horizontal dimension of the lower portion is equal to or greater than the dimension of the semiconductor substrate, and a vertical dimension is equal to or greater than four times the constant interval. The lower vacuum heat insulating portion is provided so as to be located opposite to the semiconductor substrate array region so that the dimension of the vacuum heat insulating portion is greater than or equal to the size of the semiconductor substrate in the portion closest to the semiconductor substrate. , Characterized in that the vertical dimension is at least four times the fixed interval. A substrate mounting jig for manufacturing a semiconductor device according to the present invention, a semiconductor substrate including or not including a dummy wafer is removably placed horizontally from the jig, and arranged at regular intervals in the vertical direction, In the substrate mounting jig for contacting the gas in the uniform temperature and constant pressure region in the vertical heating furnace, a vacuum heat insulating portion is provided below the substrate mounting jig in a portion closest to the semiconductor substrate arrangement region. The semiconductor device is characterized in that it is fixed, its horizontal dimension is equal to or larger than the dimension of the semiconductor substrate, and its vertical dimension is equal to or more than four times the predetermined interval. The method for manufacturing a semiconductor device according to the present invention is characterized in that a semiconductor substrate including or not including a dummy wafer is removably horizontally placed on a substrate mounting jig moving vertically in a vertical heating furnace and detachably and vertically. In a method for manufacturing a semiconductor device in which a semiconductor substrate and a gas are brought into contact with a semiconductor substrate in a uniform temperature and pressure constant region in the vertical heating furnace and arranged at a constant interval from each other in a direction, a vacuum heat insulating portion is provided around a tube. The gas is guided in the vertical heating furnace by a pipe. Hereinafter, the method of the present invention will be described.

【0013】本発明において、半導体製造用基板載置治
具とは、ウェーハを加熱炉内に装入し、炉内で所定位置
に保持し、処理後炉内から取出し、かつ該治具自体から
取り外すことを可能にする、それ自体は公知の治具であ
って、例えば本出願人の特開平8−45861号(図3
〜5)で示されたものを使用することができる。本発明
においてダミーウェーハとはデバイスを作る半導体基板
と同じ寸法・材質の半導体基板であって、加熱炉内の温
度及び/又は圧力の過渡現象や何らかの炉況不良を吸収
し、前者への影響を少なくするためにウェーハとともに
出し入れされる、それ自身周知ものである。ダミーウェ
ーハの設置位置は通常最上及び/又は最下位置である。
以下の説明では、ダミーウェーハとデバイスになるウェ
ーハを「ウェーハ」と総称する。本発明において均熱領
域とは当業界において一般的に使用されている意味であ
る(半導体製造装置用語辞典(第4版)日刊工業新聞社1
997年11月20日発行、第197頁、「均熱長」参照)。また
本発明において、圧力一定領域とは、反応管壁近傍やウ
ェーハ表面近傍などを除いた空間の一定位置で縦方向に
圧力を測定して一定圧力の領域である。なお、実測に代
えて、シミュレーションソフトウェアでほとんど誤差が
ない値を求めることができる。より実際的には均熱領域
で測定した膜厚が製品として許容される誤差を含む一定
値であるウェーハ配列領域は圧力一定領域と言うことが
できる。
In the present invention, the substrate mounting jig for semiconductor manufacturing means that a wafer is loaded into a heating furnace, held at a predetermined position in the furnace, taken out of the furnace after processing, and removed from the jig itself. It is a known jig which can be removed, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-45861 of the present applicant (FIG. 3).
5) can be used. In the present invention, the dummy wafer is a semiconductor substrate having the same size and material as the semiconductor substrate forming the device, and absorbs the transient phenomena of the temperature and / or pressure in the heating furnace and some faults in the furnace condition, and reduces the influence on the former. It is well known per se, which is taken in and out with the wafer to reduce it. The installation position of the dummy wafer is usually the uppermost and / or lowermost position.
In the following description, a dummy wafer and a wafer serving as a device are collectively referred to as a “wafer”. In the present invention, the soaking area is a meaning generally used in the art (Semiconductor Manufacturing Equipment Glossary (4th edition) Nikkan Kogyo Shimbun 1
Published on November 20, 997, p. 197, see "soaking length"). In the present invention, the constant pressure region is a region where the pressure is measured in a vertical direction at a constant position in a space excluding the vicinity of the reaction tube wall, the vicinity of the wafer surface, and the like, and the constant pressure. Instead of the actual measurement, a value with almost no error can be obtained by simulation software. More practically, a wafer arrangement region in which the film thickness measured in the soaking region is a constant value including an error allowed as a product can be called a constant pressure region.

【0014】通常ウェーハは均熱領域のほぼ全長に配列
される。即ち、最大150枚の8インチウェーハを約5
mm間隔で配列することができる加熱炉で50枚のウェ
ーハを処理する場合は、15mm間隔で配列する。しか
しながら、均熱領域の一部に50枚のウェーハを配列す
ることも可能である。後者の方法では、例えば50枚の
ウェーハを5mm間隔で均熱炉領域の上部に片寄せ約5
00mmの下部均熱領域には適当な枚数の石英板をウェ
ーハ載置治具に支持して、ウェーハと同様に加熱冷却す
ることができる。この場合は下部真空断熱部は必要では
ない。
Usually, the wafers are arranged over substantially the entire length of the soaking area. That is, a maximum of 150 8-inch wafers is reduced to about 5
When processing 50 wafers in a heating furnace that can be arranged at an interval of mm, the wafers are arranged at an interval of 15 mm. However, it is also possible to arrange 50 wafers in a part of the soaking area. In the latter method, for example, 50 wafers are offset by about 5 mm at an interval of 5 mm above the soaking furnace area.
An appropriate number of quartz plates are supported on a wafer mounting jig in the lower heat equalizing area of 00 mm, and can be heated and cooled in the same manner as a wafer. In this case, no lower vacuum insulation is needed.

【0015】本発明の第1の組合わせにおいては、最上
位置のウェーハの上方に設ける熱遮蔽部は、当該ウェー
ハから上方への輻射を防げて蓄熱を行うと同時に、外気
との温度差により放熱を行なうことにより炉内の温度均
一性を高める。反応温度での十分な耐熱性とガス不透過
性を有しかつウェーハ汚染しない石英などの物質からな
る隔壁により炉内空間と熱遮蔽部内空間と隔離する。熱
遮蔽部の下部は横方向の寸法がウェーハとほぼ同じ寸法
又はより寸法が大きい円板形状であり、さらに、縦方向
の寸法がウェーハ配列間隔の4倍以上である。熱遮蔽部
内に存在する空気はSiに対して室温での比熱が1.2
9倍であるために、Siが前記凹部空間に配列されてい
るのと近似的には同じである。このために熱的安定性が
向上し、ダミーウェーハの使用枚数を削除するかあるい
はダミーウェーハを使用しなくともよくなる。熱遮蔽部
が上記寸法を下回わると炉内温度均一性を高める効果が
少なくなる。また熱遮蔽用隔壁を炉内に定置する方法は
特に限定されない。好ましくは熱遮蔽用隔壁は二重管の
外管上端に気密に連設させ、外管に保持することが好ま
しい。
In the first combination according to the present invention, the heat shield provided above the uppermost wafer prevents heat from radiating upward from the wafer and stores heat, and at the same time dissipates heat due to a temperature difference from outside air. Is performed to increase the temperature uniformity in the furnace. The space in the furnace and the space in the heat shield are separated by a partition made of a material such as quartz having sufficient heat resistance at the reaction temperature and gas impermeability and not contaminating the wafer. The lower portion of the heat shield has a disk shape having a horizontal dimension substantially the same as or larger than the wafer, and a vertical dimension that is four times or more the wafer arrangement interval. The air present in the heat shield has a specific heat of 1.2 at room temperature with respect to Si.
Since it is 9 times, it is approximately the same as Si is arranged in the concave space. For this reason, the thermal stability is improved, and the number of used dummy wafers can be eliminated or the dummy wafer need not be used. When the heat shielding portion is smaller than the above-mentioned size, the effect of improving the furnace temperature uniformity is reduced. In addition, the method for fixing the heat shielding partition in the furnace is not particularly limited. Preferably, the heat shielding partition is airtightly connected to the upper end of the outer tube of the double tube, and is preferably held by the outer tube.

【0016】本発明の第2及び第3の組合わせにおいて
設けられた真空断熱部において、真空は、好ましくは1
-3torr以下の圧力である。ところで、真空は断熱材よ
り比熱が極めて小さいために熱負荷が軽く、冷却に際し
て降温し易いので、基板載置治具を炉から抜き出した後
にウェーハ取出しまでの時間が短かく、かつ半導体の汚
染物質を発生しないと言う利点がある。よって、半導体
を汚染する物質を含むことがある断熱材は全く使用しな
いことが好ましいが、反応温度が低い場合は断熱材の薄
膜を真空断熱部の内壁に貼着してもよい。
In the vacuum insulation provided in the second and third combinations of the present invention, the vacuum is
The pressure is below 0 -3 torr. By the way, since vacuum has a very low specific heat compared to the heat insulating material, the heat load is light, and the temperature is easy to be lowered during cooling. There is an advantage that it does not occur. Therefore, it is preferable not to use any heat insulating material that may contain a substance that contaminates the semiconductor. However, when the reaction temperature is low, a thin film of the heat insulating material may be attached to the inner wall of the vacuum heat insulating unit.

【0017】本発明に係る第2の組合わせの上部真空断
熱部は炉内に常設され、ウェーハの出入れに関係なく一
定位置にある。したがって上部真空断熱部が反応温度に
加熱された後にウェーハが治具により炉内に装入され
る。
The second combination of the upper vacuum insulation section according to the present invention is permanently installed in the furnace and is located at a fixed position regardless of whether a wafer is inserted or removed. Therefore, the wafer is charged into the furnace by the jig after the upper vacuum heat insulating portion is heated to the reaction temperature.

【0018】本発明の第2の組合わせにおける真空断熱
部の平面的広がりはウェーハと最も接近する部分でウェ
ーハの寸法以上であり、かつ真空断熱部の縦方向の寸法
はウェーハ配列間隔の4倍以上として、真空のもつ断熱
効果を十分に確保する必要がある。なお、真空断熱部と
ウェーハの間隔をウェーハ配列間隔をほぼ等しくする
と、断熱部の外部隔壁の熱伝導率をもつダミーウェーハ
が設けられたと熱的には等価になる。
In the second combination according to the present invention, the planar expansion of the vacuum heat insulating portion is equal to or larger than the size of the wafer at the portion closest to the wafer, and the vertical size of the vacuum heat insulating portion is four times the wafer arrangement interval. As described above, it is necessary to sufficiently secure the heat insulating effect of the vacuum. When the space between the vacuum heat insulating portion and the wafer is substantially equal to the wafer arrangement space, it is thermally equivalent to the provision of a dummy wafer having the thermal conductivity of the outer partition wall of the heat insulating portion.

【0019】本発明に係る上部真空断熱部の構造はウェ
ーハと同じ形状寸法の底板とこの全周縁から上方に伸び
た延長部とを用い、これらの底板、垂直延長部及びその
他の部材により内側空間を囲繞して内部に真空空間を作
ることができる。さらに、上記垂直延長部を用いずに底
板を外管内壁まで水平に伸ばして内部空間を作ることも
できる。
The structure of the upper vacuum heat insulating portion according to the present invention uses a bottom plate having the same shape and size as the wafer and an extension extending upward from the entire periphery thereof, and the bottom plate, the vertical extension and other members are used to form an inner space. Can create a vacuum space inside. Further, the internal space can be created by extending the bottom plate horizontally to the inner wall of the outer tube without using the vertical extension.

【0020】一方、本発明に係る第3の組合わせの下部
真空断熱部はウェーハ載置治具の下部に固定されて治具
とともに炉内に移動され、室温近傍から反応温度、例え
ば、520〜620℃に昇温される。この昇温時間は通
常10〜30分程度であり、その後反応を行う。縦型加
熱炉では対流により上部の温度が上昇するとともに安定
化するのに対して、下部は温度変化が起こり易いので、
下部真空断熱部は昇温後に下部の温度特性を安定化する
効果を有する。本発明に係る下部真空断熱部の好ましい
構造は、ウェーハと同じ形状寸法の天井板とこの全周縁
から下方に伸びた延長部及び底板を気密に接合したもの
である。より好ましくは、延長部を垂直に延長させる
と、内側には直径がウェーハとほぼ等しい空間が形成さ
れる。この凹部空間の寸法は第2の組合わせに関して説
明したとおりである。
On the other hand, the lower vacuum heat insulating part of the third combination according to the present invention is fixed to the lower part of the wafer mounting jig and is moved together with the jig into the furnace. The temperature is raised to 620 ° C. The heating time is usually about 10 to 30 minutes, and then the reaction is performed. In a vertical heating furnace, the temperature in the upper part rises and becomes stable due to convection, whereas the temperature in the lower part tends to change.
The lower vacuum heat insulating portion has an effect of stabilizing the temperature characteristics of the lower portion after the temperature is raised. A preferred structure of the lower vacuum heat insulating portion according to the present invention is a structure in which a ceiling plate having the same shape and size as the wafer, an extension extending downward from the entire peripheral edge thereof, and a bottom plate are hermetically bonded. More preferably, when the extension is vertically extended, a space is formed inside having a diameter substantially equal to that of the wafer. The dimensions of the concave space are as described for the second combination.

【0021】上述のような諸条件を満たす方法により、
ダミーウェーハを全く使用しないかあるいは使用枚数を
上部で1枚以下、下部で2枚以下に削減することができ
る。さらに、大径ウェーハ及び/又は薄膜成長にも容易
に適合することができる。
By a method satisfying the above conditions,
It is possible to use no dummy wafer or reduce the number of used wafers to one or less at the top and two or less at the bottom. In addition, it can be easily adapted to large diameter wafer and / or thin film growth.

【0022】さらに、本発明の第1〜第4の組合わせに
おいて、ウェーハ装置治具の最上及び/又は最下位置
に、ガスと実質的に反応しない石英などからなり、ウェ
ーハと同じ大きさの1枚もしくは2枚の板(以下「整風
板」と言う)をウェーハに対してかつ相互に前記一定間
隔で常設することにより、炉内の圧力に関する均一性を
さらに高めることができる。なお、従来のダミ−ウェー
ハも圧力やガス流を均一化する作用をもっていたがガス
と反応するため処理の都度交換が必要であり、また炉内
の温度特性が優れていないので、多くの枚数が必要であ
った。しかし、本発明では整風板は交換の必要がない。
Further, in the first to fourth combinations of the present invention, the uppermost and / or lowermost positions of the wafer apparatus jig are made of quartz or the like which does not substantially react with gas and have the same size as the wafer. By providing one or two plates (hereinafter referred to as "air conditioning plates") to the wafer and at regular intervals with respect to each other, the uniformity of the pressure in the furnace can be further improved. Conventional dummy wafers also have the function of equalizing the pressure and gas flow, but they need to be replaced each time they are processed because they react with the gas, and because the temperature characteristics in the furnace are not excellent, many wafers can be produced. Was needed. However, in the present invention, the air conditioning plate does not need to be replaced.

【0023】本発明に係る基板載置治具は第2の組合わ
せの縦型加熱を除いたものであり、加熱炉自体は公知の
ものであってよい。
The substrate mounting jig according to the present invention does not include the vertical heating of the second combination, and the heating furnace itself may be a known one.

【0024】本発明に係る半導体製造装置の製造方法に
おいては真空断熱囲繞部を加熱炉内に延在するガス導入
管に設けて伝導による熱伝導を排除して易分解性ガスの
分解を阻止してバッチ処理を可能にする。本発明の方法
におけるガス使用法としては (イ)易分解性ガスと難分解性ガスを個別に導入する;
(ロ)易分解性ガスと難分解性ガスの混合ガスを導入す
る;(ハ)易分解性ガスと難分解性ガスの一方のみを使
用する;(二)(イ)と(ロ)を併用するなどがある。
これらの使用法において、少なくとも易分解性ガスを流
すガス導入管を真空断熱する。ガス導入管の態様として
は、バッチ処理を行うために複数のウェーハのそれぞれ
の配置高さ近傍まで1本の管でガスを案内し、その後横
方向にガスを炉内に噴出することが好ましい。具体的に
は、例えば100枚のウェーハを処理する場合は縦方向
に20〜10箇所の噴出口を設けて、3〜5枚のウェー
ハにつき1個の噴出口からガスを供給する。この具体的
態様において、ガス導入管の構造としては、ガス供給源
から加熱炉までの配管は特に真空断熱する必要はなく、
炉内を縦方向に延びかつ上記した20〜30箇所の噴出
口を設けた管を真空断熱する必要がある。また、噴出口
が管壁を穿設して形成されたものと、管壁から噴出口が
突出したものがあるが、後者の場合は突出部も真空断熱
することが好ましい。但し突出部を真空断熱することは
機械加工上困難であるから、噴出口は管壁を穿設して形
成したものが好ましい。さらに、炉全体と管の構造が複
雑になるが、ガス供給源から加熱炉までの配管を炉の外
で縦方向に延長し、続いてこの延長部から20〜30本
のガス導入管を分岐させて炉内に突入させ、突入部を真
空断熱してもよい。真空断熱部の厚さはガス導入管の内
径とほぼ等しいかあるいはそれ以上であることが好まし
い。ガス導入管内には反射板を設けることにより、炉内
からの熱を反射し、ガスの分解をさらに阻止することが
好ましい。反射板は真空空間に同心管状に設けることが
好ましい。本発明の方法は一重管炉もしくは公知の二重
管炉でも実施可能であり、かつ第1〜第4の組合わせで
も実施することができる。
In the method for manufacturing a semiconductor manufacturing apparatus according to the present invention, a vacuum heat insulating surrounding portion is provided in a gas introduction pipe extending into a heating furnace to eliminate heat conduction by conduction and prevent decomposition of easily decomposable gas. To enable batch processing. The method of using gas in the method of the present invention includes: (a) separately introducing a readily decomposable gas and a hardly decomposable gas;
(B) Introduce a mixed gas of a readily decomposable gas and a hardly decomposable gas; (c) Use only one of the easily decomposable gas and the hardly decomposable gas; (2) Use both (a) and (b) And so on.
In these uses, at least the gas introduction pipe through which the easily decomposable gas flows is vacuum-insulated. As a mode of the gas introduction pipe, it is preferable that the gas be guided by a single pipe to the vicinity of the arrangement height of the plurality of wafers in order to perform batch processing, and then the gas be ejected laterally into the furnace. Specifically, for example, when processing 100 wafers, 20 to 10 ejection ports are provided in the vertical direction, and gas is supplied from one ejection port for every 3 to 5 wafers. In this specific embodiment, as the structure of the gas introduction pipe, the pipe from the gas supply source to the heating furnace does not need to be particularly vacuum-insulated,
It is necessary to vacuum insulate a tube extending in the furnace in the vertical direction and having the above-described 20 to 30 jet ports. In addition, there are an outlet formed by piercing a tube wall and an outlet formed by projecting from a tube wall. In the latter case, it is preferable that the protrusion is also vacuum-insulated. However, since it is difficult to vacuum insulate the protrusion from the viewpoint of machining, it is preferable that the jet port is formed by forming a pipe wall. Further, the entire furnace and the structure of the pipe become complicated, but the pipe from the gas supply source to the heating furnace is extended vertically outside the furnace, and then 20 to 30 gas introduction pipes are branched from this extension. Then, it may be made to enter the furnace, and the entry portion may be vacuum-insulated. It is preferable that the thickness of the vacuum heat insulating part is substantially equal to or larger than the inner diameter of the gas introduction pipe. It is preferable that a reflection plate is provided in the gas introduction pipe to reflect heat from inside the furnace and further prevent the decomposition of the gas. The reflecting plate is preferably provided concentrically in a vacuum space. The method of the present invention can be carried out in a single tube furnace or a known double tube furnace, and can also be carried out in the first to fourth combinations.

【0025】本発明に係る方法で使用する管周囲に真空
断熱部を付設したガス導入管は分解し易いガスを管出口
直前まで1本の管で安定して搬送できるために、前記
(1)式により分解し易いNH3を反応ガスとしてSi3N4
を形成するときも有効である。この場合50枚の8イン
チウェーハ上に成長する窒化膜の膜圧を±1.0%以内
におさめることができる。さらに段落0007で説明し
たPドープポリシコンの成膜の際にPH3を安定して搬送で
きるためにP濃度の均一化に有効である。前記バッチ処
理(但し、反応温度530℃、膜圧2000オングスト
ローム)において、膜圧を±2〜3%以内におさめるこ
とができる。
The gas inlet pipe provided with a vacuum heat insulating part around the pipe used in the method according to the present invention is capable of stably transporting easily decomposed gas to a pipe just before the pipe outlet by one pipe. It is also effective when forming a Si 3 N 4 film using NH 3, which is easily decomposed by the formula, as a reaction gas. In this case, the film pressure of the nitride film grown on 50 8-inch wafers can be kept within ± 1.0%. Further, PH 3 can be stably transported during the formation of the P-doped polysilicon described in paragraph 0007, which is effective in making the P concentration uniform. In the batch processing (provided that the reaction temperature is 530 ° C. and the film pressure is 2000 angstroms), the film pressure can be kept within ± 2 to 3%.

【0026】本発明に係る管周囲に真空断熱部を付設し
たガス導入管は従来の二重管式縦型炉で使用することが
できる。段落0007で説明したPドープポリシコンの
成膜する場合、通常の方法でPH3の一部を反応管の下部
から導入し、残部のPH3を本発明のガス導入管により中
央より上部に導入すると、上部ウェーハのP濃度も上げ
ることができる。例えば、8インチウェーハ100枚の
バッチ処理においてP濃度分布を±2〜3%以内におさ
めることができる。以下、図面を参照し本発明の実施例
を説明する。
The gas introduction pipe according to the present invention having a vacuum heat insulating portion provided around the pipe can be used in a conventional double tube type vertical furnace. When forming a P-doped polysilicon film described in paragraph 0007, a part of PH 3 is introduced from the lower part of the reaction tube by a usual method, and the remaining PH 3 is introduced from the center to the upper part by the gas introduction tube of the present invention. Then, the P concentration of the upper wafer can be increased. For example, in batch processing of 100 8-inch wafers, the P concentration distribution can be kept within ± 2 to 3%. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0027】[0027]

【実施例】図1の左半分は減圧CVDを行う縦型二重管
式加熱炉を示し、第4の組合わせを具体化している。ま
た二つのグラフの内左側のグラフは炉の中心軸に沿った
温度分布を、右側のグラフはP−P'線上の炉内圧力を
示す。図中、1は加熱炉、2は耐火・断熱材からなる炉
体、3は6ゾーンに分割された抵抗体を図示されない保
持部材により炉体2に固定したヒーター、5は内管、6
は外管、7は反応ガスもしくはパージガスの入口、8は
易分解性反応ガス導入管、8aは上下方向に多数形成さ
れたガス噴出口、9は外管と内管の間の環状排気通路、
10は反応ガス出口、23は回転軸、24は底板、25
はシールリング、26はOリングであり、それぞれ公知
のものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The left half of FIG. 1 shows a vertical double-tube heating furnace for performing low-pressure CVD, and embodies a fourth combination. The left graph of the two graphs shows the temperature distribution along the central axis of the furnace, and the right graph shows the furnace pressure on the line PP ′. In the drawing, 1 is a heating furnace, 2 is a furnace body made of refractory and heat insulating material, 3 is a heater in which a resistor divided into 6 zones is fixed to the furnace body 2 by a holding member (not shown), 5 is an inner tube, 6
Is an outer tube, 7 is an inlet of a reaction gas or a purge gas, 8 is a readily decomposable reaction gas introduction tube, 8a is a large number of gas outlets formed in the vertical direction, 9 is an annular exhaust passage between the outer tube and the inner tube,
10 is a reaction gas outlet, 23 is a rotating shaft, 24 is a bottom plate, 25
Is a seal ring and 26 is an O-ring, each of which is known.

【0028】反応ガス導入管8は炉内に、行き止まり先
端まで伸びており、途中に形成された複数個のガス噴出
口8aからフォスフィン(PH3) 等の分解し易い反応ガ
スの給送に使用されるものであり、一方反応ガス導入管
7は炉の下部に設けられシラン(SiH4)などの分解し難
い反応ガスの給送に使用されるものである。また、13
は厚さの図示を省略して模式的に表わされたウェーハで
あり、これらは例えば本出願人の特開平8−45861
号公報(図3〜5)に示された治具により、一定間隔で配
列されている。また、最上位置のウェーハ13は内管5
の上端より下方の一定圧力領域に位置している。
The reaction gas introduction pipe 8 extends into the furnace to a dead end, and is used to feed easily decomposed reaction gas such as phosphine (PH 3 ) from a plurality of gas outlets 8a formed in the middle. On the other hand, a reaction gas introduction pipe 7 is provided at the lower part of the furnace and is used for feeding a reaction gas such as silane (SiH 4 ) which is difficult to decompose. Also, 13
Are wafers which are schematically represented by omitting the illustration of their thickness. These are, for example, disclosed in Japanese Patent Application Laid-Open No. 8-45861 of the present applicant.
They are arranged at regular intervals by jigs shown in Japanese Patent Application Laid-Open Publication No. H10 (FIGS. 3 to 5). The uppermost wafer 13 is the inner tube 5
Is located in a constant pressure region below the upper end of.

【0029】11は最上位置のウェーハ13より上方に
おいて基板載置治具に固定された整風板であり、また1
4aは加熱炉の上部に定置された、石英からなる熱遮蔽
板である。これら11,14は、例えば12インチウェ
ーハ13を処理する場合は12インチの直径を有する。
熱遮蔽板14aと整風板11の間隔及び整風板11と最
上位置のウェーハ13の間隔はウェーハ配列間隔と同じ
である。なお、整風板11は厚さを示し、ウェーハ13
は厚さを示していないので、11相互間の間隔は11と
13の間隔は不揃いこれは厚さ(非)図示による作図技
法によるに過ぎない。このような配列構造では最上位置
のウェーハ13から上方への輻射は整風板11と熱遮蔽
板14aが妨げ、整風板11と熱遮蔽板14aはウェー
ハと同様に加熱冷却される。さらに、横方向反応ガス流
がウェーハ13と整風板11の間及び整風板11と熱遮
蔽板14aの間の二個所で追加される。これら作用が総
合された結果最上位置のウェーハ13上に成長する膜厚
の均一性が良好になる。
Numeral 11 denotes a baffle plate fixed to a substrate mounting jig above the uppermost wafer 13.
Reference numeral 4a is a heat shield plate made of quartz and fixed at the upper part of the heating furnace. These 11 and 14 have a diameter of 12 inches when processing a 12-inch wafer 13, for example.
The space between the heat shield plate 14a and the air conditioner 11 and the space between the air conditioner 11 and the uppermost wafer 13 are the same as the wafer arrangement space. The air conditioning plate 11 indicates the thickness, and the wafer 13
Does not show the thickness, so the spacing between 11 is uneven and the spacing between 11 and 13 is only due to the drawing technique according to the thickness (not shown). In such an array structure, the upward radiation from the uppermost wafer 13 is blocked by the air conditioning plate 11 and the heat shielding plate 14a, and the air conditioning plate 11 and the heat shielding plate 14a are heated and cooled similarly to the wafer. In addition, lateral reactant gas flows are added at two locations between the wafer 13 and the air conditioner 11 and between the air conditioner 11 and the heat shield 14a. As a result of combining these actions, the uniformity of the film thickness grown on the uppermost wafer 13 is improved.

【0030】本発明に係る熱遮蔽板14aは、外管6の
上端を延長して外管6と熱遮蔽板14aを一体の気密構
成としている。外管6に付設された天井部14の側壁部
14aは垂直に延在する。なお、14cは14a、14
b、6と一体の湾曲部である。この内部空間14dは外
管6とヒーター3の間の間隙を介して外気と連通してお
り、また、凹状であり、この径はウェーハ13とほぼ同
じである。内部空間14dは均熱領域に位置し、かつ圧
力は外気と平衝する一定圧となっている。したがって、
整風板11、熱遮蔽板14a及び内部空間14dは従来
のダミーウェーハの機能をもつが、これら14a、14
dは定置されており、また整風板11はSiより製作され
ていない。したがって、デバイスを作るウェーハと同一
材質からなりかつデバイスを作るウェーハとともに上下
する従来のダミーウェーハの欠点を免れることができ
る。
In the heat shield plate 14a according to the present invention, the upper end of the outer tube 6 is extended so that the outer tube 6 and the heat shield plate 14a are integrally airtight. The side wall 14a of the ceiling 14 attached to the outer tube 6 extends vertically. 14c is 14a, 14
This is a curved portion integrated with b and 6. The internal space 14d communicates with the outside air through a gap between the outer tube 6 and the heater 3, and has a concave shape, and has a diameter substantially equal to that of the wafer 13. The internal space 14d is located in the heat equalizing region, and the pressure is a constant pressure that strikes against the outside air. Therefore,
The air conditioning plate 11, the heat shielding plate 14a and the internal space 14d have the function of a conventional dummy wafer.
d is fixed, and the air conditioner 11 is not made of Si. Therefore, the drawbacks of the conventional dummy wafer, which is made of the same material as the wafer forming the device and moves up and down together with the wafer forming the device, can be avoided.

【0031】16は基板移載治具の下部に固定された真
空断熱部であって、内部を真空空間17とするように石
英板を溶接して組立られている。真空断熱部16の上部
側壁16bの外径はウェーハ13の外径と等しくかつ、
その上面16aはウェーハと同じ円形であるために、内
部の真空空間17は擬似的にウェーハが一定間隔で積重
ねられたものとなっている。さらに、真空空間17内に
アルミニウム又は金からなる反射板18、19を脚柱2
0a,bで支えることにより、ヒーター3からの輻射熱を
炉内に反射させ、以って加熱炉下部の均熱特性を良好に
している。
Reference numeral 16 denotes a vacuum heat insulating portion fixed to a lower portion of the substrate transfer jig, which is assembled by welding a quartz plate so that the inside is a vacuum space 17. The outer diameter of the upper side wall 16b of the vacuum heat insulating part 16 is equal to the outer diameter of the wafer 13, and
Since the upper surface 16a has the same circular shape as the wafer, the internal vacuum space 17 is formed by artificially stacking wafers at regular intervals. Further, reflecting plates 18 and 19 made of aluminum or gold are placed in the vacuum space 17 by the pillars 2.
By supporting at 0a and b, the radiant heat from the heater 3 is reflected into the furnace, thereby improving the uniform heating characteristics of the lower part of the heating furnace.

【0032】次に、炉内の圧力分布を説明する。真空断
熱部16の上面16aより若干上方の位置P1と熱遮蔽
板14aより若干下方の位置P2との間に一定圧力領域
が存在する。位置P1より下方では入口7から流入する
反応ガス又はパージガスの影響によりガス圧は高くな
る。一方P2と内管5の上端の間より若干下方位置P3
は圧力が低下し、P3から湾曲部14cまででは圧力が
さらに急降下する。
Next, the pressure distribution in the furnace will be described. Constant pressure region between slightly and position P 2 lower than slightly above the upper surface 16a of the vacuum adiabatic portion 16 above the position P 1 and the heat shielding plate 14a is present. Gas pressure due to the influence of the reaction gas or purge gas flows from the inlet 7 is lower than the position P 1 is high. Meanwhile P 2 slightly pressure in the lower position P 3 from between the upper end of the inner tube 5 is lowered, the pressure further descent is from P 3 to the curved portion 14c.

【0033】図2は、図1とは上部が異なる構造の縦型
二重管式加熱炉を示し、本発明の第3の組合わせを具体
化したものである。すなわち、外管6の上部延長部を円
天井構造6aとし、この6aと14が気密に接続して、
内部に真空空間15が形成されている。この真空空間1
5は全体が断熱機能をもっており、擬似的に数枚のウェ
ーハが整風板11及びウェーハ13の上方に等間隔で積
重ねられた真空空間14dを画成するように、石英板を
凹状に変形させている(14b)。
FIG. 2 shows a vertical double-pipe heating furnace having a structure different from that of FIG. 1 and embodies the third combination of the present invention. That is, the upper extension of the outer tube 6 is a circular ceiling structure 6a, and these 6a and 14 are airtightly connected.
A vacuum space 15 is formed inside. This vacuum space 1
Numeral 5 has a heat insulating function as a whole, and the quartz plate is deformed into a concave shape so that several wafers simulate a vacuum space 14d stacked at equal intervals above the air conditioning plate 11 and the wafer 13. (14b).

【0034】図3,4は本発明に係る第3の組合わせの
具体化例を示しており、図1と同じ部分は同じ参照符号
を付している。主な相違構造を述べると、内管5の内側
窪み部5a(図4)を縦方向に延在する反応ガス導入管
8から噴出口8aを経てウェーハ13に対してCVD反
応ガスを平行に流し、その後内管5の管壁に穿設された
吸気口5aから平行に排気通路9内に吸引する;上部の
真空断熱部15は炉の上部空間全体を占め、内管5は上
端が真空断熱部15の底部に気密に接合されている。ま
たパージガス導入管29を炉の下端部に設けている。こ
れらの図に示された装置において、通常の真空断熱され
ていないガス導入管(図示せず)を併設することができ
る。この装置においてO3をガス導入管8から、TEOSを通
常のガス導入管から搬送することによりO3−TEOS法を実
施することができる。
FIGS. 3 and 4 show an embodiment of the third combination according to the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals. The main difference is that the CVD reaction gas flows in parallel to the wafer 13 from the reaction gas introduction pipe 8 extending in the longitudinal direction through the inner recess 5a (FIG. 4) of the inner pipe 5 through the ejection port 8a. Then, the air is sucked into the exhaust passage 9 in parallel from the suction port 5a formed in the pipe wall of the inner pipe 5; the upper vacuum insulation section 15 occupies the entire upper space of the furnace, and the upper end of the inner pipe 5 is vacuum-insulated. It is airtightly joined to the bottom of the part 15. Further, a purge gas introduction pipe 29 is provided at the lower end of the furnace. In the devices shown in these figures, a gas introduction pipe (not shown) which is not normally vacuum-insulated can be provided. The O 3 in the apparatus through the gas inlet tube 8, it is possible to implement O 3 -TEOS method by conveying the TEOS from the normal of the gas inlet tube.

【0035】図5は図4の組合わせをアニールに使用す
るように変形した実施例を示す。N2,Arなどのアニー
ルガスを導入する反応ガス導入管8を底部石英板14b
の直下で開口させ、また底部石英板14bと整風板11
の間隔をウェーハ配列間隔が6倍以下の上部空間30と
している。このため上部空間30はその上方にある真空
空間15により温度変動に対して安定になり、さらに多
量のアニールガスが上部空間30にて均一ガス流に転換
される。したがって、アニールの均一性が高められる。
なお、縦型炉は一重管型である。
FIG. 5 shows an embodiment modified to use the combination of FIG. 4 for annealing. The reaction gas introduction pipe 8 for introducing an annealing gas such as N 2 or Ar is connected to the bottom quartz plate 14b.
And the bottom quartz plate 14b and the air conditioning plate 11
Is the upper space 30 in which the wafer arrangement interval is six times or less. For this reason, the upper space 30 is stabilized against temperature fluctuations by the vacuum space 15 above it, and a larger amount of annealing gas is converted into a uniform gas flow in the upper space 30. Therefore, the uniformity of annealing is improved.
The vertical furnace is a single tube type.

【0036】図6は反応ガス導入管8の外周部を真空断
熱して、管内を流れるPH3、O3などの易分解性ガスの分
解を阻止する本発明に係る半導体装置の製造方法の実施
例を示す図面である。図中、真空断熱構造35を構成す
る管36は、反応ガス導入管8の下半分ではその全周を
囲み、上半分では噴出口8a以外の部分を囲んでいる。
36aは中空部に相当し、真空空間である。図6に示す
反応ガス導入管8は下部が全周で真空断熱され、上部の
みに噴出口8aが開口しているので、(図示されない)
上部が全周で真空断熱され、下部のみに噴出口8aが開
口する別の反応ガス導入管と組合わせて使用することに
より、ウェーハ全体に分解し易いガスを未分解状態で供
給することができる。
FIG. 6 shows a method of manufacturing a semiconductor device according to the present invention in which the outer peripheral portion of the reaction gas introduction pipe 8 is vacuum-insulated to prevent decomposition of easily decomposable gases such as PH 3 and O 3 flowing in the pipe. It is a drawing showing an example. In the figure, a tube 36 constituting the vacuum heat insulating structure 35 surrounds the entire periphery in the lower half of the reaction gas introduction tube 8, and surrounds the portion other than the ejection port 8a in the upper half.
36a corresponds to a hollow portion and is a vacuum space. The reaction gas introduction pipe 8 shown in FIG. 6 is vacuum-insulated at the lower part all around, and the outlet 8a is opened only at the upper part (not shown).
By using in combination with another reaction gas introduction pipe whose upper part is vacuum-insulated all around and whose ejection port 8a is opened only at the lower part, a gas which can be easily decomposed to the whole wafer can be supplied in an undecomposed state. .

【0037】図7は、図6の変形を示し、噴出口8aも
真空断熱構造35とし、かつ管36の内部に反射板37
を全長で配設することにより断熱構造をさらに高めてい
る。この構造によると、O3+TEOSによるSiO2
の形成をバッチ方式で行うことができる。
FIG. 7 shows a modification of FIG. 6, in which the jet port 8a is also a vacuum heat insulating structure 35, and the reflector 37 is provided inside the tube 36.
The heat insulation structure is further enhanced by arranging the entire length. According to this structure, the formation of the SiO 2 film by O 3 + TEOS can be performed by a batch method.

【0038】図7の実施例により、1〜5%のO3を含
有する常温の酸素ガスを500〜1000mL/分の流
量で流すと、370℃以下でガス導入管より炉内に放出
することができる。TEOSとO3による反応は0.5
〜3Torr、400℃の条件で25〜50枚のウェー
ハ上に行うことができる。なお、これらの膜形成におい
ては、反射板37としてAl,Ti,Mo.W,Auな
どの板もしくは箔を使用することができる。本発明の方
法は第1〜第4の組合わせと同時に実施する必要がない
ことは勿論である。
According to the embodiment of FIG. 7, when a normal-temperature oxygen gas containing 1 to 5% O 3 flows at a flow rate of 500 to 1000 mL / min, the oxygen gas is discharged from the gas inlet tube into the furnace at 370 ° C. or lower. Can be. The reaction between TEOS and O 3 is 0.5
It can be performed on 25 to 50 wafers under the conditions of 3 Torr and 400 ° C. In forming these films, a plate or foil of Al, Ti, Mo. W, Au, or the like can be used as the reflection plate 37. Of course, the method of the present invention need not be performed simultaneously with the first to fourth combinations.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る第1
〜5の組合わせ及び基板載置治具方法では縦型加熱炉の
温度安定性が改良されるので、大口径ウェーハ及び/又
は薄膜化に対応することができる。また本発明に係る方
法は分解し易いガスを使用してバッチ処理が可能にな
る。よって本発明は半導体装置の生産に貢献するところ
が大である。
As described above, the first embodiment according to the present invention is described.
Since the temperature stability of the vertical heating furnace is improved by the combination of Nos. 1 to 5 and the substrate mounting jig method, it is possible to cope with a large-diameter wafer and / or thinning. Further, the method according to the present invention enables batch processing using a gas which is easily decomposed. Therefore, the present invention greatly contributes to the production of semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る第4の組合わせの一実施例を示
す図である。
FIG. 1 is a diagram illustrating an example of a fourth combination according to the present invention.

【図2】 本発明に係る第3の組合わせの実施例を示す
図である。
FIG. 2 is a diagram showing an example of a third combination according to the present invention.

【図3】 本発明に係る第3の組合わせの別の実施例を
示す図面である。
FIG. 3 is a drawing showing another embodiment of the third combination according to the present invention.

【図4】 図3におけるA−A'矢視図(但し炉体、ヒ
ーターは図示省略)である。
4 is a view taken in the direction of arrows AA ′ in FIG. 3 (however, a furnace body and a heater are not shown).

【図5】 本発明の第3の組合わせのさらに別の実施例
を示す反応ガス導入管の図面である。
FIG. 5 is a drawing of a reaction gas introduction pipe showing still another embodiment of the third combination of the present invention.

【図6】 本発明に係る反応ガス導入管の図面である。FIG. 6 is a drawing of a reaction gas introduction pipe according to the present invention.

【図7】 図6とは別の実施例を示す反応ガス導入管の
図面である。
FIG. 7 is a drawing of a reaction gas introduction pipe showing another embodiment different from FIG. 6;

【符号の説明】[Explanation of symbols]

1―加熱炉 2―炉体 3―ヒーター 4−二重管構造 5―内管 6―外管 7―反応ガスもしくはパージガス入口、 8―反応ガス導入管 9―環状排気通路、 10―反応ガス出口 14、16―断熱部 Reference Signs List 1-heating furnace 2-furnace body 3-heater 4-double pipe structure 5-inner pipe 6-outer pipe 7-reaction gas or purge gas inlet, 8-reaction gas introduction pipe 9-annular exhaust passage, 10-reaction gas outlet 14, 16-thermal insulation

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/22 511 H01L 21/22 511J 21/31 21/31 B 21/324 21/324 G Fターム(参考) 4K030 CA04 CA12 GA02 JA01 JA03 KA04 KA05 KA12 KA23 5F045 AA06 AA20 AB03 AB32 AB33 AB35 AC01 AC07 AC11 AC12 AC19 DP19 EC01 EC02 EC07 EK06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/22 511 H01L 21/22 511J 21/31 21/31 B 21/324 21/324 G F term ( 4K030 CA04 CA12 GA02 JA01 JA03 KA04 KA05 KA12 KA23 5F045 AA06 AA20 AB03 AB32 AB33 AB35 AC01 AC07 AC11 AC12 AC19 DP19 EC01 EC02 EC07 EK06

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 ダミーウェーハを含むもしくは含まない
半導体基板を治具から取り外し可能に横置きし、かつ上
下方向に相互に一定間隔で配列し、かつ該半導体基板を
縦型加熱炉内の均熱かつ圧力一定領域内にてガスと接触
させる基板載置治具と、縦型加熱炉との組合わせにおい
て、炉内上方空間の均熱領域内にて半導体基板配列領域
と対置されかつガス不透過性隔壁により炉内空間とは隔
絶されるが外気とは連通した熱遮蔽部を設けるととも
に、その下部横方向寸法を前記半導体基板の寸法以上と
し、かつ縦方向寸法を前記一定間隔の4倍以上としたこ
とを特徴とする半導体装置製造用基板載置治具と縦型加
熱炉の組合わせ。
1. A semiconductor substrate, including or not including a dummy wafer, is removably laid horizontally from a jig and arranged at regular intervals in a vertical direction, and the semiconductor substrate is heated in a vertical heating furnace. In a combination of a substrate mounting jig for contacting a gas in a constant pressure region and a vertical heating furnace, the substrate placement jig is opposed to the semiconductor substrate arrangement region in a soaking region in a space above the furnace and is gas impermeable. A heat shielding portion is provided that is isolated from the furnace space by the conductive partition but communicates with the outside air, and its lower horizontal dimension is equal to or greater than the semiconductor substrate dimension, and its vertical dimension is equal to or greater than four times the constant interval. A combination of a substrate mounting jig for manufacturing a semiconductor device and a vertical heating furnace.
【請求項2】 前記縦型加熱炉が二重管型であり、かつ
該二重管外管の上端を延長して前記ガス不透過性隔壁を
形成したことを特徴とする請求項1記載の半導体装置製
造用基板載置治具と縦型炉の組合わせ。
2. The gas-impermeable partition according to claim 1, wherein the vertical heating furnace is of a double tube type, and the upper end of the double tube outer tube is extended to form the gas impermeable partition. Combination of substrate mounting jig for semiconductor device manufacturing and vertical furnace.
【請求項3】 前記半導体基板配列領域の最上部にて、
前記半導体基板と同じ寸法を有しかつ前記ガスに対して
実質的に非反応性円板を基板載置治具に固定したことを
特徴とする請求項1又は2記載の半導体装置製造用基板
載置治具と縦型加熱炉の組合わせ。
3. At the top of the semiconductor substrate array region,
3. The substrate mounting device according to claim 1, wherein a disk having the same size as the semiconductor substrate and substantially non-reactive with respect to the gas is fixed to a substrate mounting jig. Combination of mounting jig and vertical heating furnace.
【請求項4】 ダミーウェーハを含むもしくは含まない
半導体基板を治具から取り外し可能に横置きし、かつ上
下方向に相互に一定間隔で配列し、かつ該半導体基板を
縦型加熱炉内の均熱かつ圧力一定領域内にてガスと接触
させる基板載置治具と、縦型加熱炉との組合わせにおい
て、炉内上方空間の均熱領域内にて半導体基板配列領域
と対置される真空断熱部を設けるとともに、その下部横
方向寸法を前記半導体基板の寸法以上とし、かつ縦方向
寸法を前記一定間隔の4倍以上としたことを特徴とする
半導体装置製造用基板載置治具と縦型加熱炉の組合わ
せ。
4. A semiconductor substrate including or not including a dummy wafer is removably laid horizontally from a jig, and is arranged at regular intervals in a vertical direction, and the semiconductor substrates are uniformly heated in a vertical heating furnace. In addition, in a combination of a substrate mounting jig which is brought into contact with a gas in a constant pressure region and a vertical heating furnace, a vacuum heat insulating portion opposed to the semiconductor substrate arrangement region in a soaking region in a space above the furnace. A substrate mounting jig for manufacturing a semiconductor device, wherein the horizontal dimension of the lower portion is equal to or greater than the dimension of the semiconductor substrate, and the vertical dimension is equal to or greater than four times the constant interval. Furnace combinations.
【請求項5】 ダミーウェーハを含むもしくは含まない
半導体基板を治具から取り外し可能に横置きし、かつ上
下方向に相互に一定間隔で配列し、該半導体基板を縦型
加熱炉内の均熱かつ圧力一定領域内にてガスと接触させ
る基板載置治具と、縦型加熱炉との組合わせにおいて、
炉内上方空間の均熱領域内にて半導体基板配列領域と対
置された上部真空断熱部を設け、炉内下方空間の均熱空
間に少なくとも一部が位置するように、下部真空断熱部
を前記半導体基板配列領域と対置して設けるとともに、
該上部及び下部真空断熱部の寸法を、半導体基板に最も
接近する部分での横方向寸法が半導体基板の寸法以上で
あり、縦方向の寸法が前記一定間隔の4倍以上としたこ
とを特徴とする半導体装置製造用基板載置治具と縦型加
熱炉の組合わせ。
5. A semiconductor substrate including or not including a dummy wafer is removably laid horizontally from a jig, and arranged at regular intervals in a vertical direction, and the semiconductor substrate is uniformly heated in a vertical heating furnace. In a combination of a substrate mounting jig that is brought into contact with a gas within a constant pressure area and a vertical heating furnace,
Providing an upper vacuum heat insulating portion opposed to the semiconductor substrate array region in the heat equalizing region of the furnace upper space, and the lower vacuum heat insulating portion such that at least a portion is located in the heat equalizing space of the furnace lower space. Along with providing the semiconductor substrate arrangement region,
The dimensions of the upper and lower vacuum insulation portions are such that the lateral dimension at the portion closest to the semiconductor substrate is equal to or greater than the dimension of the semiconductor substrate, and the vertical dimension is equal to or greater than four times the constant interval. Combination of substrate mounting jig for semiconductor device manufacturing and vertical heating furnace.
【請求項6】 ダミーウェーハを含むもしくは含まない
半導体基板を治具から取り外し可能に横置きし、かつ上
下方向に相互に一定間隔で配列し、該半導体基板を縦型
加熱炉内の均熱かつ圧力一定領域内にてガスと接触させ
る基板載置治具と、縦型加熱炉との組合わせにおいて、
炉内上方空間の均熱領域内にて半導体基板配列領域と対
置されかつガス不透過性隔壁により加熱炉内空間とは隔
絶されるが外気とは連通した熱遮蔽部を設け、さらに、
炉内下方空間の均熱空間に少なくとも一部が位置するよ
うに下部真空断熱部を前記半導体基板配列領域と対置し
て設けるともに、該熱遮蔽部及び下部真空断熱部の寸法
を、半導体基板に最も接近する部分での横方向寸法が半
導体基板の寸法以上であり、縦方向の寸法が前記一定間
隔の4倍以上としたことを特徴とする半導体装置製造用
基板載置治具と縦型加熱炉の組合わせ。
6. A semiconductor substrate including or not including a dummy wafer is laid horizontally so as to be detachable from a jig, and arranged at predetermined intervals in a vertical direction, and the semiconductor substrate is uniformly heated in a vertical heating furnace. In a combination of a substrate mounting jig that is brought into contact with a gas within a constant pressure area and a vertical heating furnace,
A heat shielding portion which is opposed to the semiconductor substrate array region in the heat equalizing region of the upper space in the furnace and is separated from the space in the heating furnace by the gas impermeable partition but is communicated with the outside air,
A lower vacuum heat insulating portion is provided so as to face at least a part of the heat sink space in the furnace lower space so as to face the semiconductor substrate array region, and the dimensions of the heat shield portion and the lower vacuum heat insulating portion are set to the semiconductor substrate. A substrate mounting jig for manufacturing a semiconductor device, wherein a horizontal dimension at a closest portion is equal to or greater than a dimension of the semiconductor substrate, and a vertical dimension is equal to or greater than four times the predetermined interval. Furnace combinations.
【請求項7】 前記下部真空断熱部内に反射板を設けた
ことを特徴とする請求項5又は6記載の半導体装置製造
用基板載置治具と縦型加熱炉の組合わせ。
7. A combination of a substrate mounting jig for manufacturing a semiconductor device and a vertical heating furnace according to claim 5, wherein a reflection plate is provided in the lower vacuum heat insulating portion.
【請求項8】 前記基板載置治具の最上部もしくは最下
部の一方もしくは両方において、前記半導体基板配列領
域に最も接近する位置で、前記半導体基板と同じ大きさ
を有しかつ前記ガスに対して実質的に非反応性円板を基
板載置治具に固定したことを特徴とする請求項4から7
までの何れか1項記載の半導体装置製造用基板載置治具
と縦型炉の組合わせ。
8. One or both of an uppermost portion and a lowermost portion of the substrate mounting jig, at a position closest to the semiconductor substrate arrangement region, having the same size as the semiconductor substrate, and The substantially non-reactive disk is fixed to the substrate mounting jig by means of the above method.
A combination of the substrate mounting jig for manufacturing a semiconductor device according to any one of the above and a vertical furnace.
【請求項9】 ダミーウェーハを含むもしくは含まない
半導体基板を治具から取り外し可能に横置きし、かつ上
下方向に相互に一定間隔で配列し、該半導体基板を縦型
加熱炉内の均熱かつ圧力一定領域内にてガスと接触させ
る基板載置治具において、半導体基板配列領域に最も接
近する部分で前記基板載置治具の下部に真空断熱部を固
定するとともに、その横方向寸法を半導体基板の寸法以
上とし、かつ縦方向の寸法を前記一定間隔の4倍以上と
したことを特徴とする半導体装置の製造用基板載置治
具。
9. A semiconductor substrate including or not including a dummy wafer is removably laid horizontally from a jig, and arranged at regular intervals in a vertical direction, and the semiconductor substrate is uniformly heated in a vertical heating furnace. In a substrate mounting jig which is brought into contact with gas in a constant pressure area, a vacuum heat insulating portion is fixed below the substrate mounting jig at a portion closest to the semiconductor substrate arrangement area, and its lateral dimension is set to A substrate mounting jig for manufacturing a semiconductor device, wherein the jig has a dimension equal to or greater than a dimension of a substrate and a dimension in a vertical direction is equal to or greater than four times the predetermined interval.
【請求項10】 前記真空断熱部内に反射板を設けたこ
とを特徴とする請求項9記載の半導体装置の製造用基板
載置治具。
10. The substrate mounting jig for manufacturing a semiconductor device according to claim 9, wherein a reflecting plate is provided inside said vacuum heat insulating portion.
【請求項11】 前期基板載置治具の最上部もしくは最
下部の一方もしくは両方において、前記半導体基板配列
領域に最も接近する位置で、該半導体基板と同じ大きさ
を有しかつ前記ガスに対して実質的に非反応性円板を固
定したことを特徴とする請求項9又は10項記載の半導
体装置の製造用基板載置治具。
11. The semiconductor device according to claim 1, wherein at one or both of an uppermost portion and a lowermost portion of the substrate mounting jig, at a position closest to the semiconductor substrate arrangement region, the substrate mounting jig has the same size as the semiconductor substrate, The substrate mounting jig for manufacturing a semiconductor device according to claim 9, wherein a substantially non-reactive disk is fixed by using the jig.
【請求項12】 縦型加熱炉内を上下方向に移動する基
板載置治具に、ダミーウェーハを含むもしくは含まない
半導体基板を治具から取り外し可能に横置きしかつ上下
方向に相互に一定間隔で配列し、前記縦型加熱炉内の均
熱かつ圧力一定領域内で半導体基板とガスを接触させる
半導体装置の製造方法において、管周囲に真空断熱部を
付設したガス導入管により前記ガスを前記縦型加熱炉内
で案内することを特徴とする半導体装置の製造方法。
12. A semiconductor wafer including or not including a dummy wafer is removably placed laterally on a substrate mounting jig which moves vertically in a vertical heating furnace from the jig and has a predetermined interval in the vertical direction. In a method of manufacturing a semiconductor device in which a gas is brought into contact with a semiconductor substrate in a uniform temperature and constant pressure region in the vertical heating furnace, the gas is supplied by a gas introduction pipe provided with a vacuum heat insulating portion around the pipe. A method for manufacturing a semiconductor device, wherein the semiconductor device is guided in a vertical heating furnace.
【請求項13】 前記ガス導入管を縦型炉内を縦方向に
延在させ、かつ最上位置の半導体基板より上方でガスを
噴出することを特徴とする請求項12記載の半導体装置
の製造方法。
13. The method for manufacturing a semiconductor device according to claim 12, wherein the gas introduction pipe extends in the vertical furnace in a vertical direction, and the gas is jetted above the uppermost semiconductor substrate. .
【請求項14】 前記ガス導入管内に反射板を設けたこ
とを特徴とする請求項12又は13記載の半導体装置の
製造方法。
14. The method for manufacturing a semiconductor device according to claim 12, wherein a reflection plate is provided in the gas introduction pipe.
JP2001058126A 2001-03-02 2001-03-02 Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device Pending JP2002261028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058126A JP2002261028A (en) 2001-03-02 2001-03-02 Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058126A JP2002261028A (en) 2001-03-02 2001-03-02 Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2002261028A true JP2002261028A (en) 2002-09-13

Family

ID=18917900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058126A Pending JP2002261028A (en) 2001-03-02 2001-03-02 Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2002261028A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032890A (en) * 2007-07-26 2009-02-12 Hitachi Kokusai Electric Inc Substrate processing system
JP2009076689A (en) * 2007-09-20 2009-04-09 Tokyo Electron Ltd Substrate treatment device, and substrate mounting base used for it
KR101205424B1 (en) * 2010-12-27 2012-11-28 국제엘렉트릭코리아 주식회사 CVD FOR THE GROWTH OF GaN-BASED LED
CN102953049A (en) * 2011-08-25 2013-03-06 沈阳金研机床工具有限公司 Device for chemical vapor deposition coating
US9422624B2 (en) 2014-01-24 2016-08-23 Tokyo Electron Limited Heat treatment method
WO2021152705A1 (en) * 2020-01-28 2021-08-05 株式会社Kokusai Electric Substrate treatment device, method for producing semiconductor device, and program
CN113465393A (en) * 2021-05-31 2021-10-01 河北恒博新材料科技股份有限公司 Novel IGZO atmosphere preheats fritting furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032890A (en) * 2007-07-26 2009-02-12 Hitachi Kokusai Electric Inc Substrate processing system
JP2009076689A (en) * 2007-09-20 2009-04-09 Tokyo Electron Ltd Substrate treatment device, and substrate mounting base used for it
KR101205424B1 (en) * 2010-12-27 2012-11-28 국제엘렉트릭코리아 주식회사 CVD FOR THE GROWTH OF GaN-BASED LED
CN102953049A (en) * 2011-08-25 2013-03-06 沈阳金研机床工具有限公司 Device for chemical vapor deposition coating
US9422624B2 (en) 2014-01-24 2016-08-23 Tokyo Electron Limited Heat treatment method
WO2021152705A1 (en) * 2020-01-28 2021-08-05 株式会社Kokusai Electric Substrate treatment device, method for producing semiconductor device, and program
JP7308299B2 (en) 2020-01-28 2023-07-13 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, program, and reaction tube
CN113465393A (en) * 2021-05-31 2021-10-01 河北恒博新材料科技股份有限公司 Novel IGZO atmosphere preheats fritting furnace

Similar Documents

Publication Publication Date Title
KR100797929B1 (en) A method of forming a silicon nitride layer on a semiconductor wafer
US8216378B2 (en) Reaction tube and heat processing apparatus for a semiconductor process
JP3252960B2 (en) Semiconductor thin film deposition equipment for atomic layer epitaxy process
US6902622B2 (en) Systems and methods for epitaxially depositing films on a semiconductor substrate
US6204194B1 (en) Method and apparatus for producing a semiconductor device
US9039411B2 (en) Thermal treatment apparatus
JP2009500864A (en) Uniform batch film deposition process and film produced accordingly
JP5562409B2 (en) Semiconductor device manufacturing method, substrate manufacturing method, and substrate processing apparatus
WO2004015742A2 (en) High rate deposition in a batch reactor
US20100151682A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JPH06318551A (en) Formation of thin film and its apparatus
WO2007018139A1 (en) Method of manufacturing semiconductor device and substrate treating device
US20130125819A1 (en) Chemical gas deposition reactor
TW201827640A (en) Temporal atomic layer deposition processing chamber
JP4979578B2 (en) Nanocrystalline silicon deposition using a single wafer chamber
JP2002261028A (en) Combination of substrate placement tool for semiconductor device manufacture and vertical furnace, substrate placement tool, and manufacturing method of semiconductor device
JP2010239142A (en) Heat treatment apparatus, and heat treatment method
JPH09125251A (en) Film forming device
JP3904497B2 (en) Manufacturing method of semiconductor device
JP4553263B2 (en) Heat treatment apparatus and heat treatment method
TW578215B (en) Method to produce components or its inter-products, vacuum-processing equipment and ultra-high-vacuum CVD-reactor
US20050263073A1 (en) Furnace for heating a wafer and chemical vapor deposition apparatus having the same
JP4115331B2 (en) Substrate processing equipment
JP2006093411A (en) Board processor
US20240141484A1 (en) Substrate processing apparatus, substrate processing method, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050428