JP2002257801A - Ultrasonic type gas analitical sensor - Google Patents

Ultrasonic type gas analitical sensor

Info

Publication number
JP2002257801A
JP2002257801A JP2001111990A JP2001111990A JP2002257801A JP 2002257801 A JP2002257801 A JP 2002257801A JP 2001111990 A JP2001111990 A JP 2001111990A JP 2001111990 A JP2001111990 A JP 2001111990A JP 2002257801 A JP2002257801 A JP 2002257801A
Authority
JP
Japan
Prior art keywords
gas
ultrasonic
tube
measurement
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001111990A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakagawa
雅由 中川
Toshio Ueda
敏夫 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI NEKKEN CO Ltd
Original Assignee
DAIICHI NEKKEN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI NEKKEN CO Ltd filed Critical DAIICHI NEKKEN CO Ltd
Priority to JP2001111990A priority Critical patent/JP2002257801A/en
Publication of JP2002257801A publication Critical patent/JP2002257801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic type gas analytical sensor constructed so that the intensity of sound waves is maintained by avoiding effects of a gas flow rate and preventing ultrasonic waves from being attenuated by diffusion, and the measurement accuracy is improved by reducing interferences by external noises when a composition of the two-component based gas is analyzed with the utilization of an ultrasonic element. SOLUTION: The element 1a for emitting ultrasonic waves and the element 1b for receiving ultrasonic waves are arranged to both ends of a gas passage tube 3, and a tube 4 for reflecting ultrasonic waves which has an inner diameter almost equal to a diameter of an emitting part of the emitting element 1a is inserted via a buffer material 8 into the passage tube. Diffusion holes 5 are set to the reflecting tube 4 in a manner to avoid a gas inlet 7a and a gas outlet 7b and to be distributed uniformly. A temperature sensor is set to a central part of a measurement chamber. The measurement gas is introduced from the gas inlet 7a to flow a gap between the gas passage tube 3 and the ultrasonic reflecting tube 4. A part of the measurement gas is diffused through the diffusion holes 5 to the measurement chamber 6, so that the effects of the flow rate is avoided, ultrasonic waves are prevented from being attenuated, and external noises are prevented from interfering effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、工業用もしくは民生用
に用いられる酸素・窒素あるいは水素・窒素等の2成分
系ガスの組成分析に用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for analyzing the composition of a binary gas such as oxygen / nitrogen or hydrogen / nitrogen used for industrial or commercial purposes.

【0002】[0002]

【従来の技術】ガス中の超音波伝播速度Vは、式1で表
されるごとくガスの分子量M、比熱比γ及び絶対温度T
によって決まる。音速及び温度を測定すれば平均分子量
が求まる。V=γ・R・T/M ……(1)ガス成分
が既知のときは、ガス温度T及び伝播速度Vを測定して
平均分子量Mを求め、平均分子量からガス濃度を演算で
きる。濃度演算式は2分子ガスのa,b混合気体の場合
式2のごとくなる。 ma及びmbはそれぞれaガス及びbガスの分子量を表
す。
2. Description of the Related Art An ultrasonic wave propagation velocity V in a gas is represented by the following equation (1): gas molecular weight M, specific heat ratio γ and absolute temperature T
Depends on The average molecular weight can be determined by measuring the speed of sound and the temperature. V 2 = γ · RT · M (1) When the gas component is known, the average molecular weight M is obtained by measuring the gas temperature T and the propagation velocity V, and the gas concentration can be calculated from the average molecular weight. The concentration calculation equation is as shown in Equation 2 in the case of a mixture gas of a and b of two molecular gases. ma and mb represent the molecular weights of a gas and b gas, respectively.

【0003】[発明が解決しようとする課題]超音波ガ
ス分析センサーでは分子量の差が小さいガスの測定時、
音速の差も僅かになるので測定精度を上げるためには送
受信間の距離を必要とするが、入手が容易な超音波素子
は指向性が鋭くなく超音波の減衰が激しいのでこの防止
策が必要となる。さらに外部雑音の影響を受けしばしば
エラーを発生する。また流体測定時は、測定室内の流速
に直接影響をうけるなどの問題があり、実用例が非常に
少なかった。
[Problems to be Solved by the Invention] In an ultrasonic gas analysis sensor, when measuring a gas having a small difference in molecular weight,
Since the difference in sound speed is also small, a distance between transmission and reception is required to increase the measurement accuracy. Becomes In addition, errors often occur due to the influence of external noise. In addition, during fluid measurement, there is a problem that the flow velocity in the measurement chamber is directly affected, and there are very few practical examples.

【0004】[課題を解決するための手段]本発明は、
前記の課題を解決するため、超音波発信子と受信子を対
向して配置した筒状のガス流路を持つガス流路管内にガ
ス拡散口を設けた超音波反射管を内挿させてなることを
特徴とする。
[Means for solving the problems]
In order to solve the above-mentioned problem, an ultrasonic reflecting tube provided with a gas diffusion port is inserted in a gas flow pipe having a cylindrical gas flow path in which an ultrasonic transmitter and a receiver are arranged to face each other. It is characterized by the following.

【0005】前記超音波反射管を表面の滑らかな金属、
ガラスもしくは硬質プラスチックを材料とすることを特
徴とする。
[0005] The ultrasonic reflecting tube is made of a metal having a smooth surface,
It is characterized by using glass or hard plastic as a material.

【0006】前記超音波反射管のガス拡散孔をガスの流
入・流出時の出入口を避けて、且つ全長・全周にわたっ
て均一に配置することを特徴とする。
The gas diffusion holes of the ultrasonic reflecting tube are arranged so as to avoid the entrance and exit at the time of gas inflow and outflow, and to be arranged uniformly over the entire length and the entire circumference.

【0007】前記超音波反射管の内径を超音波発信子の
外径とほぼ同じ径とすることを特徴とする。
[0007] It is characterized in that the inner diameter of the ultrasonic reflecting tube is substantially the same as the outer diameter of the ultrasonic transmitter.

【0008】前記超音波反射管をガス流路管本体に緩衝
材を介して内挿して保持させることを特徴とする。
The ultrasonic reflecting tube is inserted into and held in the gas flow tube main body via a buffer material.

【0009】[0009]

【作用】ガス流路管内にガス拡散口を設けた超音波反射
管を内挿し、反射管内部で超音波を伝播させることによ
り音波の減衰を防止してサンプルガスの濃度を精度よく
測定することが出来る。又二重管構造により外部からの
雑音の影響を少なく出来る。
[Action] To accurately measure the concentration of a sample gas by inserting an ultrasonic reflection tube having a gas diffusion port in a gas flow tube and transmitting the ultrasonic wave inside the reflection tube to prevent attenuation of the sound wave. Can be done. Further, the influence of external noise can be reduced by the double tube structure.

【0008】前記超音波反射管の材質は、表面が粗い場
合は超音波が乱反射してノイズが大きくなり、又紙、布
などの軟質材料では超音波が吸収されるので表面の滑ら
かな硬質材料を用いる必要がある。
The material of the ultrasonic reflecting tube is such that when the surface is rough, the ultrasonic wave is irregularly reflected and noise is increased, and when a soft material such as paper or cloth absorbs the ultrasonic wave, a hard material having a smooth surface is used. Must be used.

【0009】前記超音波反射管全長にわたって均一に分
布する拡散孔を設け、且つサンプルガスの流入口及び流
出口付近には孔を設けないことにより、サンプルガス
は、拡散によってのみ測定室に侵入し、且つ拡散むらを
生じないので流速の影響を防止するとともに精度のよい
測定が出来る。
By providing diffusion holes uniformly distributed over the entire length of the ultrasonic reflecting tube and not providing holes near the inlet and outlet of the sample gas, the sample gas enters the measurement chamber only by diffusion. In addition, since there is no uneven diffusion, it is possible to prevent the influence of the flow velocity and perform accurate measurement.

【0010】超音波発信面9.6mmの発信子を用い
て、測定室に内径10mmと14mmの反射管を用いて
比較した場合、超音波強度が10倍以上異なる。したが
って前記反射材の内径は発信子より大であって且つ出来
る限り小さいほうがよく、理想的には同径がよい。
[0010] When using a transmitter having an ultrasonic transmission surface of 9.6 mm and using a reflection tube having an inner diameter of 10 mm and a 14 mm inner diameter in the measurement chamber, the ultrasonic intensity differs by a factor of 10 or more. Therefore, the inner diameter of the reflector should be larger and smaller than the transmitter, and ideally the same diameter is better.

【0010】超音波反射管をガス流路管と直接接触して
保持すると超音波が固体内を伝播し、この波の強度が強
いためノイズとなり測定エラーを生じる。ゴムなどの緩
衝材を介して保持することにより固体内伝播を阻止して
ノイズを最小限にできる。
When the ultrasonic reflecting tube is held in direct contact with the gas flow tube, the ultrasonic wave propagates through the solid, and the intensity of the wave is high, causing noise and a measurement error. By holding through a cushioning material such as rubber, propagation in a solid can be prevented and noise can be minimized.

【0011】[実施例]以下図面により本発明を説明す
る。第1図は本発明センサーの構造模式図で、ガス流路
管3の両端に超音波発信用素子1a及び受信用素子2a
を配置し、流路管3内に発信子1aの発信部直径とほぼ
同径の超音波反射管4を緩衝材8を介して内挿してい
る。反射管4には拡散孔5がガス入口7a及び出口7b
を避け、且つ均一に分布するように設けられていて、測
定室6の中央部には温度センサーが装填されている。サ
ンプルガスはガス入口7aから導入されガス流路管3と
超音波反射管4との間隙を流れ、一部が拡散孔5を通っ
て測定室6へ拡散する。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of the structure of the sensor of the present invention, in which the ultrasonic wave transmitting element 1a and the receiving element 2a
The ultrasonic reflecting tube 4 having substantially the same diameter as the transmitting portion of the transmitting element 1 a is inserted into the flow path tube 3 via the buffer material 8. A diffusion hole 5 is formed in the reflection tube 4 by a gas inlet 7a and an outlet 7b.
And a temperature sensor is mounted in the center of the measurement chamber 6. The sample gas is introduced from the gas inlet 7a, flows through the gap between the gas flow tube 3 and the ultrasonic reflecting tube 4, and partly diffuses through the diffusion hole 5 into the measuring chamber 6.

【0012】発信子1aからパルス状で発信した超音波
は測定室内を混合ガスに対応した音速で伝播し、一定時
間後受信子1bで受信される。この時間を測定して、温
度信号とともにマイコンにより演算すれば、式1及び2
によりガス濃度を知ることができる。パルス発信を繰り
返すことにより連続分析が行える。図3に測定回路構成
をブロック図で示す。
The ultrasonic wave transmitted in pulse form from the transmitter 1a propagates in the measuring chamber at a sound speed corresponding to the mixed gas, and is received by the receiver 1b after a predetermined time. If this time is measured and calculated by the microcomputer together with the temperature signal, Equations 1 and 2 are obtained.
, The gas concentration can be known. Continuous analysis can be performed by repeating pulse transmission. FIG. 3 is a block diagram showing the configuration of the measurement circuit.

【0013】超音波反射管4の材質は、金属、ガラスも
しくは硬質プラスチックであることが必要で、紙その他
繊維状の物質ややわらかい物質は超音波が吸収され検出
が困難となるので好ましくない。
The material of the ultrasonic reflecting tube 4 is required to be metal, glass or hard plastic, and paper or other fibrous or soft material is not preferable because ultrasonic waves are absorbed and detection becomes difficult.

【0014】第2図は反射管にあける拡散孔の配置例を
示す。測定室内の気体の乱れは測定値のふらつきをもた
らし、拡散むらは測定精度及び応答速度に影響を与え
る。これらの問題を排除するため拡散孔を全長・全周に
わたって均一に分布させることと、ガス流入口及び流出
口から直接流入あるいは流出することを避けねばならな
い。
FIG. 2 shows an example of the arrangement of diffusion holes in a reflecting tube. Gas turbulence in the measurement chamber causes fluctuations in the measured values, and uneven diffusion affects measurement accuracy and response speed. In order to eliminate these problems, it is necessary to uniformly distribute the diffusion holes over the entire length and circumference, and to avoid direct inflow or outflow from the gas inlet and outlet.

【0015】拡散孔は拡散むら減少のため小口径で多数
配置することが必要であるが、製作コスト面からなるべ
く孔数を少なくすることが望ましく、口径の適切な大き
さは反射管内径及び流量により異なるが、内径10mm
流量0.5〜3Lr/min.の場合は口径2mmを1
0mmピッチで配置して応答速度、測定精度及び流量影
響防止に十分有効である。
Although it is necessary to arrange a large number of diffusion holes with a small diameter in order to reduce uneven diffusion, it is desirable to reduce the number of holes as much as possible from the viewpoint of manufacturing cost. Depends on, but inner diameter 10mm
Flow rate 0.5-3 Lr / min. In case of
Arrangement at a pitch of 0 mm is sufficiently effective for response speed, measurement accuracy, and prevention of flow rate effects.

【0015】超音波は、固体中を短距離ではほとんど減
衰なしに伝播し、強力な音波を受信子に与える。もちろ
ん気体中と音速が異なるので分離して測定が可能である
が、残存音波があるため、パルス周期に影響を与える。
スポンジ材もしくは軟質ゴム材を超音波素子と反射管の
間に介在させることによりこの影響が大幅に低減する。
Ultrasonic waves propagate through a solid body at short distances with almost no attenuation, and give powerful sound waves to a receiver. Of course, since the sound speed is different from that in the gas, measurement can be performed separately, but the residual sound wave affects the pulse cycle.
This effect is significantly reduced by interposing a sponge material or a soft rubber material between the ultrasonic element and the reflecting tube.

【0016】[0016]

【発明の効果】本発明のセンサーでは、ガス流路管内に
拡散孔を均一に分布させた超音波反射管を内挿すること
により、反射管を有しないものと比較して、10倍以上
の強度で超音波を受信できるため、測定精度を大幅に改
善し、且つ流量影響、測定値のふらつきがほとんど無い
実用性の十分な超音波ガス分析計を提供できる。
According to the sensor of the present invention, by inserting an ultrasonic reflecting tube in which diffusion holes are uniformly distributed in a gas flow tube, the sensor is at least 10 times as large as a sensor having no reflecting tube. Since ultrasonic waves can be received at a high intensity, it is possible to provide an ultrasonic gas analyzer that has a sufficiently improved practical use, has substantially improved measurement accuracy, has little influence on flow rate, and has little fluctuation in measured values.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセンサー構造模式図FIG. 1 is a schematic diagram of a sensor structure of the present invention.

【図2】本発明の反射管構造図FIG. 2 is a structural view of a reflecting tube according to the present invention.

【図3】本発明の測定回路ブロック図FIG. 3 is a block diagram of a measurement circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1a 超音波発信子 1b 超音波受信子 2 温度センサー 3 ガス流路管 4 拡散管 5 拡散孔 6 測定室 7a,7b ガス出入口 8 緩衝材 1a Ultrasonic transmitter 1b Ultrasonic receiver 2 Temperature sensor 3 Gas flow pipe 4 Diffusion pipe 5 Diffusion hole 6 Measurement chamber 7a, 7b Gas inlet / outlet 8 Buffer material

Claims (5)

【特許請求の範囲】[The claims] 【請求項1】超音波発信子と受信子を対向して配置し、
ガス温度の測定手段を有した筒状のガス流路を持つ超音
波式ガス分析センサーにおいて、ガス流路管内に拡散孔
を設けた超音波反射管を内挿させてなることを特徴とす
る超音波ガス分析センサー
1. An ultrasonic transmitter and a receiver are arranged facing each other,
An ultrasonic gas analysis sensor having a cylindrical gas flow path having a gas temperature measuring means, wherein an ultrasonic reflection pipe provided with a diffusion hole in a gas flow path pipe is inserted. Sonic gas analysis sensor
【請求項2】前記超音波反射管を滑らかな表面を持つ金
属、ガラスもしくは硬質プラスチックを材料とすること
を特徴とする請求項1記載の分析センサー
2. The analytical sensor according to claim 1, wherein said ultrasonic reflecting tube is made of metal, glass or hard plastic having a smooth surface.
【請求項3】前記超音波反射管のガス拡散孔をガスの出
入口を避けて、且つ均一に配置することを特徴とする請
求項1記載の分析センサー
3. The analysis sensor according to claim 1, wherein the gas diffusion holes of the ultrasonic reflecting tube are arranged uniformly while avoiding a gas inlet / outlet.
【請求項4】前記超音波反射管の内径を超音波発信子の
外径とほぼ同じ径とすることを特徴とする請求項1記載
の分析センサー
4. The analysis sensor according to claim 1, wherein the inner diameter of the ultrasonic reflecting tube is substantially equal to the outer diameter of the ultrasonic transmitter.
【請求項5】前記超音波反射管をガス流路管が直接接触
しないように反射管と流路管との間に緩衝材を介して保
持させることを特徴とする請求項1記載の分析センサー
5. The analysis sensor according to claim 1, wherein the ultrasonic reflecting tube is held between the reflecting tube and the flow tube via a buffer so that the gas flow tube does not directly contact.
JP2001111990A 2001-03-05 2001-03-05 Ultrasonic type gas analitical sensor Pending JP2002257801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111990A JP2002257801A (en) 2001-03-05 2001-03-05 Ultrasonic type gas analitical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111990A JP2002257801A (en) 2001-03-05 2001-03-05 Ultrasonic type gas analitical sensor

Publications (1)

Publication Number Publication Date
JP2002257801A true JP2002257801A (en) 2002-09-11

Family

ID=18963480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111990A Pending JP2002257801A (en) 2001-03-05 2001-03-05 Ultrasonic type gas analitical sensor

Country Status (1)

Country Link
JP (1) JP2002257801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133738A1 (en) 2005-06-17 2006-12-21 Maquet Critical Care Ab Reduction of pressure induced temperature influence on the speed of sound in a gas
CN101949893A (en) * 2005-06-17 2011-01-19 马奎特紧急护理公司 Reducing of the temperature effect that the pressure of the velocity of sound in the gas is caused
EP2280275A2 (en) 2005-06-17 2011-02-02 Maquet Critical Care AB Reduction of pressure induced temperature influence on the speed of sound in a gas
TWI727303B (en) * 2019-04-16 2021-05-11 涂宏彬 Gas analysis apparatus and method using the same
US20210207830A1 (en) * 2018-09-10 2021-07-08 Carrier Corporation Gas monitoring apparatus and method
KR20210104723A (en) 2018-12-26 2021-08-25 닛신보 홀딩스 가부시키 가이샤 gas sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133738A1 (en) 2005-06-17 2006-12-21 Maquet Critical Care Ab Reduction of pressure induced temperature influence on the speed of sound in a gas
CN101949893A (en) * 2005-06-17 2011-01-19 马奎特紧急护理公司 Reducing of the temperature effect that the pressure of the velocity of sound in the gas is caused
EP2280275A2 (en) 2005-06-17 2011-02-02 Maquet Critical Care AB Reduction of pressure induced temperature influence on the speed of sound in a gas
EP2280275A3 (en) * 2005-06-17 2012-09-05 Maquet Critical Care AB Reduction of pressure induced temperature influence on the speed of sound in a gas
EP3045905A1 (en) 2005-06-17 2016-07-20 Maquet Critical Care AB Reduction of pressure induced temperature influence on the speed of sound in a gas
US20210207830A1 (en) * 2018-09-10 2021-07-08 Carrier Corporation Gas monitoring apparatus and method
KR20210104723A (en) 2018-12-26 2021-08-25 닛신보 홀딩스 가부시키 가이샤 gas sensor
TWI727303B (en) * 2019-04-16 2021-05-11 涂宏彬 Gas analysis apparatus and method using the same

Similar Documents

Publication Publication Date Title
CN100422716C (en) Gas sensor
US5351522A (en) Gas sensor
EP2366097B1 (en) Ultrasonic flow meter and method of measuring a flow rate
CN101203750B (en) Method for decreasing temperature influence caused by acoustic velocity pressure in gas
WO2005093380A1 (en) Method and system for calculating the transit time of an ultrasonic pulse
US20230243683A1 (en) Flowmeter and method for meausuring the flow of a fluid
US5583301A (en) Ultrasound air velocity detector for HVAC ducts and method therefor
JP2002257801A (en) Ultrasonic type gas analitical sensor
Taskin et al. Instant gas concentration measurement using ultrasound from exterior of a pipe
US5907099A (en) Ultrasonic device with enhanced acoustic properties for measuring a volume amount of fluid
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
CN213658642U (en) Ultrasonic gas concentration measuring device
US20160161525A1 (en) Apparatus and a method for providing a time measurement
JP2006308401A (en) Corrosive gas analysis sensor
CN108474766A (en) The equipment that acoustics determines the method for dielectric property and determines dielectric property by reflecting element acoustics
JP2004347374A (en) Ultrasonic fluid sensor
JP2002296133A (en) Device and method for measuring pressure inside pipe
JP2004012169A (en) Ultrasonic flow rate measuring apparatus
JP2014077653A (en) Ultrasonic flowmeter
JP3810661B2 (en) Defect detection method for piping
US11054399B2 (en) Inspection method
CN101949893A (en) Reducing of the temperature effect that the pressure of the velocity of sound in the gas is caused
WO2019052182A1 (en) Gas flow metering gas chamber and gas flow meter
JP2003177042A (en) Ultrasonic flowmeter
CN117367510A (en) Double-frequency gas concentration and flow testing method