JP2014077653A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2014077653A
JP2014077653A JP2012224067A JP2012224067A JP2014077653A JP 2014077653 A JP2014077653 A JP 2014077653A JP 2012224067 A JP2012224067 A JP 2012224067A JP 2012224067 A JP2012224067 A JP 2012224067A JP 2014077653 A JP2014077653 A JP 2014077653A
Authority
JP
Japan
Prior art keywords
ultrasonic
tube
pulse signal
frp
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012224067A
Other languages
Japanese (ja)
Other versions
JP5155490B1 (en
Inventor
Takashi Abe
貴史 阿部
Toshiaki Kobayashi
俊朗 小林
Yuji Takahashi
祐二 高橋
Masaki Takamoto
正樹 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2012224067A priority Critical patent/JP5155490B1/en
Application granted granted Critical
Publication of JP5155490B1 publication Critical patent/JP5155490B1/en
Priority to CN201320503631.6U priority patent/CN203551014U/en
Publication of JP2014077653A publication Critical patent/JP2014077653A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately detect an ultrasonic pulse signal which propagates fluid flowing in a pipe body by reducing an ultrasonic wave pulse signal propagating the pipe body in a pipe axial direction using FRP for the pipe body.SOLUTION: Ultrasonic wave transmitter/receivers 2a, 2b so provided as to be paired are fixed at a position along the outside of the upstream side and the downstream side of a tube body 1 in which a fluid to be measured flows. FRP (fiber-reinforced resin) is used for the tube body 1, and the arrangement direction of the fiber is a direction orthogonal to a tube axis of the tube body 1, that is, a circumferential direction. With the adoption of this tube body 1 made of FRP, the propagation from one of the ultrasonic wave transmitter/receivers 2a, 2b to the other one of the ultrasonic wave transmitters/receivers 2a, 2b shown by a dotted line via the tube body 1 is prevented to no small extent due to the arrangement direction of the fiber, and the ultrasonic pulse signal having propagated in the fluid shown by a solid line can be received with a high S/N ratio.

Description

本発明は、管体にFRPを用い、管体内を流れる流体の流量を測定する超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid flowing through a tubular body using FRP for the tubular body.

流体が流れる管体外部の上流側と下流側に対となる超音波送受信器を配置し、管体の外側から管壁を貫通して超音波パルス信号を流体の流れ内に発信し、超音波パルス信号が上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間の差から流体の流速を求め、この流速に管体の断面積を乗じて管路内を流れる流量を測定する時間差方式の超音波流量計が多く実用化されている。   A pair of ultrasonic transmitters / receivers are arranged on the upstream side and downstream side of the outside of the tube through which the fluid flows, and an ultrasonic pulse signal is transmitted into the fluid flow through the tube wall from the outside of the tube. The flow velocity of the fluid is calculated from the difference between the time that the pulse signal propagates from the upstream side to the downstream side and the time that the pulse signal propagates from the downstream side to the upstream side, and this flow rate is multiplied by the cross-sectional area of the pipe to measure the flow rate in the pipe. Many time difference type ultrasonic flowmeters have been put to practical use.

この方法は電子回路技術の進歩に伴って高精度化が進んでいるが、更に高精度化を実現するには、超音波パルス信号の伝搬時間差をより正確に求める必要があり、伝搬する超音波パルス信号を高いS/Nで検出することが重要となる。   This method has been improved with the advancement of electronic circuit technology, but to achieve higher accuracy, it is necessary to more accurately determine the propagation time difference of the ultrasonic pulse signal. It is important to detect the pulse signal with a high S / N.

しかし、超音波流量計の管体上に設置された一方の超音波送受信器から発信された超音波パルス信号の一部は、管体中を伝搬し他方の超音波送受信器で受信され、流体中を伝わってきた超音波パルス信号と重畳して受信される。しかし、これらの信号は周波数が同じであるために、フィルタで分離することが極めて困難である。   However, a part of the ultrasonic pulse signal transmitted from one ultrasonic transmitter / receiver installed on the pipe of the ultrasonic flowmeter propagates through the pipe and is received by the other ultrasonic transmitter / receiver. It is received by superimposing it with the ultrasonic pulse signal that has passed through. However, since these signals have the same frequency, it is very difficult to separate them with a filter.

一方、流体が流れる管体内に超音波パルス信号を発射して、流体中に含まれる塵や気泡などの異物から反射される超音波パルス信号のドップラ周波数を検出して、管体内の流量を測定する例えば特許文献1に記載のドップラ式の超音波流量計が知られている。   On the other hand, an ultrasonic pulse signal is emitted into the pipe through which the fluid flows, and the Doppler frequency of the ultrasonic pulse signal reflected from foreign matter such as dust and bubbles contained in the fluid is detected to measure the flow rate in the pipe. For example, a Doppler type ultrasonic flow meter described in Patent Document 1 is known.

このドップラ式の超音波流量計においては、超音波パルス信号が容易に伝搬する材質の管体を用いても、管体を伝搬する超音波パルス信号と測定に利用するドップラ検出信号の分離が容易である。また、管体の材質が超音波パルス信号を良好に伝搬するものであっても、ドップラ式の場合には流量測定にさほど大きな障害とはならない。   In this Doppler type ultrasonic flowmeter, even if a tube made of a material that easily propagates an ultrasonic pulse signal is used, it is easy to separate the ultrasonic pulse signal that propagates through the tube from the Doppler detection signal used for measurement. It is. Further, even if the material of the tubular body propagates the ultrasonic pulse signal satisfactorily, in the case of the Doppler type, it does not become a great obstacle to the flow rate measurement.

引用文献1には、このドップラ式の超音波流量計の管体に、FRP(fiber reforced plastic:繊維強化樹脂)を使用することが記載されているが、上述のようにドップラ式の超音波流量計では管体の材質が問題となることは殆どなく、本発明のような目的のためにFRPが使用されているわけではない。   Cited Document 1 describes that FRP (fiber reinforced plastic) is used for the tube of the Doppler type ultrasonic flowmeter. As described above, the Doppler type ultrasonic flow rate is used. In the meter, the material of the tube is hardly a problem, and FRP is not used for the purpose as in the present invention.

一方で、FRPに混入されている繊維の配列方向によって超音波パルス信号の音速や伝搬に極めて強い異方性があることが特許文献2などに開示されており、超音波パルス信号の音速や伝搬の減衰はFRP中の繊維の配列方向、周波数によって大きな差異がある。例えば、繊維の配列方向に沿った音速は、繊維に直交する方向に対して、周波数にもよるが概ね5倍程度大きくなる。   On the other hand, Patent Document 2 discloses that there is extremely strong anisotropy in the sound speed and propagation of the ultrasonic pulse signal depending on the arrangement direction of the fibers mixed in the FRP, and the sound speed and propagation of the ultrasonic pulse signal are disclosed. There is a large difference in the attenuation of the fiber depending on the direction and frequency of the fibers in the FRP. For example, the speed of sound along the direction in which the fibers are arranged is approximately five times greater than the direction perpendicular to the fibers, although depending on the frequency.

図6はFRPの繊維の配列方向の違いによる周波数を横軸とする減衰特性のグラフ図である。実線で示す繊維の配列方向に対し直交する方向への超音波パルス信号の大きさは、点線で示す配列方向への信号に比較して十分大きな減衰が生ずる。その原因は、FRP中の超音波の音速には繊維の各配列方向に対するヤング率と材料の密度、減衰には繊維の各配列方向に対する散乱と材料の粘性による吸収が関与しているからである。   FIG. 6 is a graph of attenuation characteristics with the horizontal axis representing the frequency due to the difference in FRP fiber arrangement direction. The magnitude of the ultrasonic pulse signal in the direction orthogonal to the fiber arrangement direction indicated by the solid line is sufficiently attenuated compared to the signal in the arrangement direction indicated by the dotted line. This is because the acoustic velocity of ultrasonic waves in the FRP is related to Young's modulus and material density in each fiber array direction, and attenuation is related to scattering due to the fiber array direction and absorption due to the viscosity of the material. .

FRPは航空機や自動車などの材料として多用されており、超音波による探傷技術などの非破壊検査が適用されている。このような検査では経験的に超音波の周波数に比例して伝搬が減衰することが知られており、通常は減衰が始まる100kHz以上の周波数の超音波が利用されることはまれである。即ち、検査のために超音波を如何に良好にFRP内を伝搬させることができるかが大きな関心事であり、超音波検査には伝搬の減衰が繊維の配列方向に殆ど影響されない100kHz以下の周波数が利用されている。   FRP is widely used as a material for aircraft and automobiles, and nondestructive inspection such as ultrasonic flaw detection technology is applied. In such examinations, it is empirically known that propagation is attenuated in proportion to the frequency of the ultrasonic wave, and an ultrasonic wave having a frequency of 100 kHz or higher where attenuation usually starts is rarely used. That is, how well ultrasonic waves can be propagated in the FRP for inspection is a major concern, and ultrasonic inspection has a frequency of 100 kHz or less where attenuation of propagation is hardly affected by the fiber arrangement direction. Is being used.

特開2005−156401号公報JP 2005-156401 A 特開平7−284198号公報Japanese Patent Laid-Open No. 7-284198

従来の金属管や通常の合成樹脂管の管体を用いた時間差方式の超音波流量計において、管体中を直接伝搬する超音波パルス信号が外乱となって、測定のための流体中を伝搬する信号のS/Nを悪くしているので、管体中を伝搬する超音波パルス信号を抑制することが必要となっている。   In a time-difference type ultrasonic flowmeter using a conventional metal tube or normal plastic tube, the ultrasonic pulse signal that propagates directly through the tube becomes a disturbance and propagates through the fluid for measurement. Since the S / N of the signal to be deteriorated is deteriorated, it is necessary to suppress the ultrasonic pulse signal propagating in the tubular body.

また、管体内外から管体に伝搬してくる振動に測定周波数が含まれている場合も、同様の理由で測定精度を悪化させる一因となっており、超音波流量計の精度向上のためにはこれらの解決が課題となっている。このため、回路技術上の改善がなされているが、なお十分な解決策とはなっていない。   In addition, when the measurement frequency is included in the vibration propagating from the inside of the tube to the tube, it is one factor that deteriorates the measurement accuracy for the same reason. However, these solutions have become issues. For this reason, circuit technology has been improved, but it is still not a sufficient solution.

本発明の目的は、上述の課題を解消し、管体にFRPを用いて管体を管軸方向に伝搬する超音波パルス信号を減衰させ、管体内の流体を伝搬する超音波パルス信号を精度良く検出できる超音波流量計を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems, attenuate the ultrasonic pulse signal propagating through the tube in the tube axis direction by using FRP for the tube, and accurately detect the ultrasonic pulse signal propagating through the fluid in the tube. It is to provide an ultrasonic flowmeter that can be detected well.

上記目的を達成するための本発明に係る超音波流量計は、管体内を流れる流体の上流側と下流側の管体の外側に対となる超音波送受信器を配置し、前記一方の超音波送受信器から流体中に超音波パルス信号を発射し、前記他方の超音波送受信器で受信することを交互に繰り返し、前記超音波パルス信号が前記流体の流れに順行して伝搬する時間と流れに逆行して伝搬する時間差から前記管体内の前記流体の速度を求め、前記管体内を流れる流量を測定する時間差方式の超音波流量計において、前記管体の全部又は一部を音響伝搬特性に異方性を有するFRPにより構成すると共に、前記超音波パルス信号が前記管体中を管軸方向に伝搬し難いように前記FRPの繊維の配列方向を選定したことを特徴とする。   In order to achieve the above object, an ultrasonic flowmeter according to the present invention has a pair of ultrasonic transmitters / receivers arranged on the upstream side and the downstream side of a fluid flowing through a pipe, and the one ultrasonic wave Time and flow in which an ultrasonic pulse signal is emitted from a transmitter / receiver into a fluid and received by the other ultrasonic transmitter / receiver alternately, and the ultrasonic pulse signal propagates forward to the fluid flow. In a time difference type ultrasonic flowmeter that determines the velocity of the fluid in the tube from the time difference propagating backward to the tube, and measures the flow rate flowing through the tube, all or part of the tube has acoustic propagation characteristics. The FRP fiber arrangement direction is selected so that the ultrasonic pulse signal hardly propagates in the tube axis direction in the tube axis direction, and is configured by an anisotropic FRP.

本発明に係る超音波流量計は、管体にFRPを使用して、その音響伝搬特性の異方性により管体中を管軸方向に伝搬する超音波パルス信号を抑制するので、本来の流体中を伝搬する超音波パルス信号を精度良く求めることができる。   Since the ultrasonic flowmeter according to the present invention uses FRP for the tube body and suppresses the ultrasonic pulse signal propagating in the tube axis direction through the tube body due to the anisotropy of its acoustic propagation characteristics, An ultrasonic pulse signal propagating therethrough can be obtained with high accuracy.

即ち、FRPの音響伝搬特性の異方性を利用し、管体を構成する繊維の配列方向を管軸と略直交する方向となるようにして、管体中を伝搬する超音波パルス信号を大きく抑制することが可能となる。   That is, by utilizing the anisotropy of the acoustic propagation characteristics of FRP, the ultrasonic pulse signal propagating in the pipe body is increased by making the arrangement direction of the fibers constituting the pipe body substantially perpendicular to the pipe axis. It becomes possible to suppress.

実施例1の超音波流量計の構成図である。1 is a configuration diagram of an ultrasonic flow meter of Example 1. FIG. FRPから成る管体の繊維配列方向の説明図である。It is explanatory drawing of the fiber arrangement direction of the pipe body which consists of FRP. FRPの繊維配列方向に沿った場合と配列方向に直交する方向の場合の超音波パルス信号の伝搬特性のグラフ図である。It is a graph of the propagation characteristic of the ultrasonic pulse signal in the case of being along the fiber arrangement direction of FRP and the direction orthogonal to the arrangement direction. FRP製の管体とステンレス製の管体との管体内の水を伝搬して受信された超音波パルス信号の伝搬特性のグラフ図である。It is a graph figure of the propagation characteristic of the ultrasonic pulse signal received by propagating the water in the pipe body made of FRP and the stainless steel pipe body. 実施例2の超音波流量計の構成図である。6 is a configuration diagram of an ultrasonic flow meter of Example 2. FIG. FRPの繊維配列方向の違いによる周波数ごとの減衰特性のグラフ図である。It is a graph of the attenuation characteristic for every frequency by the difference in the fiber arrangement | positioning direction of FRP.

以下に図1〜図5に図示の実施例を基に本発明の詳細を説明する。   Details of the present invention will be described below based on the embodiment shown in FIGS.

図1は実施例1の超音波流量計の構成図である。この超音波流量計は管体1の径が比較的小さい場合に使用される所謂V型と呼ばれる超音波伝搬方式を採用している。測定すべき流体が流れる管体1の上流側及び下流側の外側に沿った位置に、一対の超音波送受信器2a、2bが固定されている。   FIG. 1 is a configuration diagram of the ultrasonic flowmeter according to the first embodiment. This ultrasonic flowmeter employs a so-called V-shaped ultrasonic propagation method used when the diameter of the tube 1 is relatively small. A pair of ultrasonic transceivers 2a and 2b are fixed at positions along the upstream and downstream sides of the tube 1 through which the fluid to be measured flows.

特に、管体1にはFRP(繊維強化樹脂)が使用され、図2に示すようにその繊維Fの配列方向は管体1の管軸Cと直交する方向、つまり円周方向とされている。   In particular, FRP (fiber reinforced resin) is used for the tube body 1, and the arrangement direction of the fibers F is a direction orthogonal to the tube axis C of the tube body 1, as shown in FIG. .

実施例1の時間差方式の超音波流量計では、管体1中を流体が流れている状態で超音波送受信器2a、2bから交互に超音波パルス信号が送信され、管体1内の流体を横切り管体1の反対側の管壁でV字状に反射され、他方の超音波送受信器2b、2aで受信される。そして、流体の流れに順行した場合と逆行した場合との超音波パルス信号の伝搬時間差Δtを計測する。この時間差Δtは流体の流速Vに相当するので、管体1の断面積Sを乗ずることにより、流量QはQ=S・Δtとして得られる。   In the time difference type ultrasonic flow meter of the first embodiment, ultrasonic pulse signals are alternately transmitted from the ultrasonic transmitters / receivers 2a and 2b in a state where the fluid flows in the tube 1, and the fluid in the tube 1 is transferred. It is reflected in a V shape on the tube wall on the opposite side of the transverse tube 1 and received by the other ultrasonic transceivers 2b and 2a. Then, the propagation time difference Δt of the ultrasonic pulse signal between the case where the flow is forward and the case where the flow is reversed is measured. Since this time difference Δt corresponds to the flow velocity V of the fluid, the flow rate Q is obtained as Q = S · Δt by multiplying by the cross-sectional area S of the tube 1.

このようなFRP製の管体1の採用により、一方の超音波送受信器2a、2bから他方の超音波送受信器2b、2aへの管体1を介した点線で示す伝搬は、FRPの繊維の配列によって少なからず阻止され、実線で示す流体中を伝搬した超音波パルス信号は高いS/Nで受信することが可能になる。   By adopting such an FRP tube 1, the propagation indicated by the dotted line through the tube 1 from one ultrasonic transceiver 2 a, 2 b to the other ultrasonic transceiver 2 b, 2 a The ultrasonic pulse signal that is blocked by the arrangement and propagated in the fluid indicated by the solid line can be received with high S / N.

図3はFRPから成る管体1とステンレス製の管体1を用いた場合の超音波周波数と受信信号のS/Nの関係を実測したグラフ図を示す。実線はFRPの繊維の配列方向と直交する方向に超音波パルス信号の管体1を伝搬した場合であり、点線はステンレス製の管体1を伝搬した場合である。   FIG. 3 is a graph showing an actual measurement of the relationship between the ultrasonic frequency and the S / N of the received signal when the tube body 1 made of FRP and the stainless steel tube body 1 are used. The solid line represents the case where the ultrasonic pulse signal tube 1 propagates in the direction orthogonal to the FRP fiber arrangement direction, and the dotted line represents the case where the stainless steel tube 1 propagates.

このことから、FRP製の管体1の場合はステンレス製の管体1の場合よりも、管体1中を管軸方向に伝搬する超音波パルス信号は少なく、受信信号のS/Nが大きいことが分かる。また、このグラフ図から明らかなように、FRP製の管体1を用いた超音波流量計には500kHz〜3MHzの周波数を用いることが好ましく、特に1〜1.5MHzでS/Nの良好な信号が得られる。   Therefore, in the case of the FRP tube 1, the ultrasonic pulse signal propagates in the tube axis direction in the tube 1 less than in the case of the stainless tube 1, and the S / N of the received signal is large. I understand that. Further, as is apparent from this graph, it is preferable to use a frequency of 500 kHz to 3 MHz for the ultrasonic flowmeter using the FRP tube 1, and particularly, a good S / N at 1 to 1.5 MHz. A signal is obtained.

図4(a)はFRPの繊維配列方向を管軸Cと直交する方向とした管体1に超音波送受信器2a、2bを取り付け、これらの超音波送受信器2a、2bで得られた超音波パルス信号の伝搬特性のグラフ図である。また、(b)はステンレス製の管体1の場合の同じグラフ図である。   FIG. 4A shows the ultrasonic wave obtained by attaching the ultrasonic transmitters / receivers 2a and 2b to the tube body 1 in which the fiber arrangement direction of the FRP is set to the direction orthogonal to the tube axis C. It is a graph of the propagation characteristic of a pulse signal. Moreover, (b) is the same graph in the case of the tubular body 1 made of stainless steel.

(a)に示すFRPによる管体1においては、超音波パルス信号を受信していない場合には、殆ど外部からの外乱ノイズを検知することなく、管体1内の流体を伝搬した超音波パルス信号が得られ、超音波パルス信号も整然と並んだ波形が得られるので、信号処理が容易となる。   In the tubular body 1 by FRP shown in (a), when an ultrasonic pulse signal is not received, the ultrasonic pulse propagated through the fluid in the tubular body 1 without detecting external disturbance noise. Since a signal is obtained and a waveform in which ultrasonic pulse signals are arranged in an orderly manner is obtained, signal processing becomes easy.

一方、(b)に示すステンレス製の管体1においては、管体1を伝搬した超音波信号が本来必要な管体1の流体を伝搬する超音波パルス信号よりも先に到達しており、得られた超音波パルス信号は、管体1内の流体を経た信号と、外部からの雑音と、管体1中を伝搬した信号とが合成されたものとなっており、本来の信号の抽出がなかなか困難となる。   On the other hand, in the stainless steel tubular body 1 shown in (b), the ultrasonic signal propagated through the tubular body 1 reaches earlier than the ultrasonic pulse signal propagated through the fluid of the originally necessary tubular body 1, The obtained ultrasonic pulse signal is a combination of a signal that has passed through the fluid in the tube 1, noise from the outside, and a signal that has propagated through the tube 1. It becomes difficult.

FRP製の管体1はステンレス製の管体1に比較して、流体中を伝搬した超音波パルス信号を最大で40dB(100倍)程度良好なS/Nで受信することができる。このことからも、繊維の配列方向を管軸と直交する方向としたFRP製の管体1は、管体1中を伝搬する超音波パルス信号の伝搬を抑制することが分かる。   The FRP tube 1 can receive an ultrasonic pulse signal that has propagated through the fluid at a maximum S / N of about 40 dB (100 times) better than the stainless tube 1. Also from this, it can be seen that the FRP tube 1 having the fiber arrangement direction orthogonal to the tube axis suppresses the propagation of the ultrasonic pulse signal propagating through the tube 1.

このように、FRPの繊維の配列方向を適切に選定して管体1の材料として使用し、かつ望ましくは利用する超音波の周波数を500kHz以上とすることによって、計算によれば雑音となる超音波パルス信号が管体1を伝搬する強度を10cm当たりで1/30以下に低減することになる。   In this way, by appropriately selecting the FRP fiber arrangement direction and using it as the material of the tube body 1, and preferably setting the frequency of the ultrasonic wave to be used to be 500 kHz or more, the calculation results in noise that is superfluous. The intensity at which the acoustic pulse signal propagates through the tube body 1 is reduced to 1/30 or less per 10 cm.

図5は実施例2の超音波流量計の構成図であり、径が比較的大きい管体1の場合に使用する構成であり、超音波送受信器2a、2bは管体1の外側の反対側に管軸方向に沿って配置され、所謂I型の超音波パルス信号の経路を示している。   FIG. 5 is a configuration diagram of the ultrasonic flowmeter according to the second embodiment, and is a configuration used in the case of the tube body 1 having a relatively large diameter. The path of the so-called I-type ultrasonic pulse signal is shown in FIG.

この実施例2においても、管体1はFRPで製作され、繊維の配列方向は管体1の管軸方向と直交しているので、実施例1と同様に管体1中を円周方向に進む超音波パルス信号はあっても、その管軸方向に進行する超音波パルス信号は少ない。   Also in the second embodiment, the tube body 1 is made of FRP, and the arrangement direction of the fibers is orthogonal to the tube axis direction of the tube body 1. Even though there is an ultrasonic pulse signal that travels, there are few ultrasonic pulse signals that travel in the tube axis direction.

また実施例1、2において、管体1を炭素繊維を用いたCFRP(炭素繊維強化樹脂)とすると、管体1は導電性を有することになり、静電対策が容易となり、管体1、超音波送受信器2a、2bを金属体により覆えば、防爆安全構造の実現も可能で、石油類を流体とする測定も容易となる。   In Examples 1 and 2, if the tube 1 is made of CFRP (carbon fiber reinforced resin) using carbon fiber, the tube 1 has conductivity, facilitating countermeasures against static electricity, If the ultrasonic transceivers 2a and 2b are covered with a metal body, an explosion-proof safety structure can be realized, and measurement using petroleum as a fluid becomes easy.

なお、FRPを管路の一部に使用するために、流量を測定し得る回路部をも含めた流量計ユニットを管路の途中に挿入したり、この流量計ユニットにおける管体1のみをFRPとしてもよい。   In order to use FRP for a part of the pipe line, a flow meter unit including a circuit part capable of measuring the flow rate is inserted in the middle of the pipe line, or only the pipe body 1 in this flow meter unit is FRP. It is good.

なお、流体の性質によってはFRPを侵食させる場合もあるので、FRPから成る管体1の内側をコーティングしたり、肉薄の金属管を配することも可能である
更に、超音波送受信器2a、2b間の管体1の一部のみにFRPから成る短円筒形の筒を挿入したり、管体1の途中又は管体1の外側にFRPを配置しこのFRPに超音波送受信器2a、2bを設けて、超音波パルス信号の伝搬を阻止する性能を有することになるので、その効果は無視できない。
Depending on the nature of the fluid, FRP may be eroded, so it is possible to coat the inside of the tube 1 made of FRP, or to provide a thin metal tube. Further, the ultrasonic transceivers 2a, 2b A short cylindrical tube made of FRP is inserted into only a part of the tube body 1 between them, or an FRP is arranged in the middle of the tube body 1 or outside the tube body 1 and the ultrasonic transceivers 2a and 2b are connected to the FRP The effect of preventing the propagation of the ultrasonic pulse signal is not negligible.

上述の実施例においては、FRPの繊維の配列方向を管体1の円周方向に配列することを説明したが、必ずしも正確に円周方向ではなくとも、管体1を管軸方向に伝搬する超音波パルス信号を効果的に阻止できればよい。また、繊維の配列方向がランダム、或いは複数枚のFRPを重ねた場合であっても、配列方向が平均して円周方向を向いていれば効果がある。   In the above-described embodiment, it has been described that the arrangement direction of the FRP fibers is arranged in the circumferential direction of the tube body 1, but the tube body 1 propagates in the tube axis direction even if it is not necessarily in the circumferential direction. What is necessary is that the ultrasonic pulse signal can be effectively blocked. Further, even when the fiber arrangement direction is random or when a plurality of FRPs are stacked, it is effective if the arrangement direction averages and faces the circumferential direction.

1 管体
2a、2b 超音波送受信器
1 Tubing 2a, 2b Ultrasonic transceiver

Claims (5)

管体内を流れる流体の上流側と下流側の管体の外側に対となる超音波送受信器を配置し、前記一方の超音波送受信器から流体中に超音波パルス信号を発射し、前記他方の超音波送受信器で受信することを交互に繰り返し、前記超音波パルス信号が前記流体の流れに順行して伝搬する時間と流れに逆行して伝搬する時間差から前記管体内の前記流体の速度を求め、前記管体内を流れる流量を測定する時間差方式の超音波流量計において、前記管体の全部又は一部を音響伝搬特性に異方性を有するFRPにより構成すると共に、前記超音波パルス信号が前記管体中を管軸方向に伝搬し難いように前記FRPの繊維の配列方向を選定したことを特徴とする超音波流量計。   A pair of ultrasonic transmitters / receivers is arranged outside the upstream and downstream pipes of the fluid flowing through the pipe, and an ultrasonic pulse signal is emitted from the one ultrasonic transmitter / receiver into the fluid. Reception by the ultrasonic transceiver is repeated alternately, and the velocity of the fluid in the tube is determined from the time difference in which the ultrasonic pulse signal propagates forward to the fluid flow and the time to propagate backward to the flow. In the time difference type ultrasonic flowmeter for measuring the flow rate flowing through the tubular body, all or a part of the tubular body is constituted by FRP having anisotropy in acoustic propagation characteristics, and the ultrasonic pulse signal is An ultrasonic flowmeter, wherein an arrangement direction of the fibers of the FRP is selected so that it is difficult to propagate in the tube body in the tube axis direction. 前記FRPの繊維の配列方向は前記管体の略円周方向としたことを特徴とする請求項1に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the FRP fibers are arranged in a substantially circumferential direction of the tubular body. 前記超音波パルス信号は500kHz〜3MHzの周波数を用いることを特徴とする請求項1又は2に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the ultrasonic pulse signal uses a frequency of 500 kHz to 3 MHz. 前記超音波パルス信号は1〜1.5MHzの周波数としたことを特徴とする請求項3に記載の超音波流量計。   The ultrasonic flowmeter according to claim 3, wherein the ultrasonic pulse signal has a frequency of 1 to 1.5 MHz. 前記管体、前記超音波送受信器を金属体により覆い防爆安全構造にしたことを特徴とする請求項1〜4の何れか1つの請求項に記載の超音波流量計。   The ultrasonic flowmeter according to any one of claims 1 to 4, wherein the tubular body and the ultrasonic transceiver are covered with a metal body to form an explosion-proof safety structure.
JP2012224067A 2012-10-09 2012-10-09 Ultrasonic flow meter Expired - Fee Related JP5155490B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012224067A JP5155490B1 (en) 2012-10-09 2012-10-09 Ultrasonic flow meter
CN201320503631.6U CN203551014U (en) 2012-10-09 2013-08-16 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224067A JP5155490B1 (en) 2012-10-09 2012-10-09 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP5155490B1 JP5155490B1 (en) 2013-03-06
JP2014077653A true JP2014077653A (en) 2014-05-01

Family

ID=48013510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224067A Expired - Fee Related JP5155490B1 (en) 2012-10-09 2012-10-09 Ultrasonic flow meter

Country Status (2)

Country Link
JP (1) JP5155490B1 (en)
CN (1) CN203551014U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898369B1 (en) * 2015-11-16 2016-04-06 東京計装株式会社 Ultrasonic flow meter
WO2017021813A3 (en) * 2015-07-23 2017-04-06 Mahmoud Meribout System and method for real-time flow measurement in pipelines using thz imaging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201405713D0 (en) 2014-03-31 2014-05-14 Flow Technologies Ltd M Fluid sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250644A (en) * 2001-02-26 2002-09-06 Kazumasa Onishi Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter
JP2005156401A (en) * 2003-11-27 2005-06-16 Fuji Electric Systems Co Ltd Clamp-on type doppler type ultrasonic flow velocity distribution meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021813A3 (en) * 2015-07-23 2017-04-06 Mahmoud Meribout System and method for real-time flow measurement in pipelines using thz imaging
US10996091B2 (en) 2015-07-23 2021-05-04 Khalifa University of Science and Technology System and method for real-time flow measurement in pipelines using THz imaging
JP5898369B1 (en) * 2015-11-16 2016-04-06 東京計装株式会社 Ultrasonic flow meter

Also Published As

Publication number Publication date
CN203551014U (en) 2014-04-16
JP5155490B1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5629265B2 (en) Ultrasonic flow meter
RU2637381C2 (en) Ultrasonic waveguide
JP2015232519A (en) Clamp-on type ultrasonic flow meter and flow measurement method
US20150323374A1 (en) Ultrasonic flow meter and ultrasound absorbing body fault evaluating method
JP5046330B2 (en) Ultrasonic flowmeter and ultrasonic transducer unit
JP5155490B1 (en) Ultrasonic flow meter
JP6582855B2 (en) Flow rate measuring device and flow rate measuring method
WO2014148081A1 (en) Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JP2017116458A (en) Ultrasonic flowmeter
CN110506198B (en) Ultrasonic flow rate measuring device
JP6207428B2 (en) Ultrasonic sound velocity measuring device and ultrasonic sound velocity measuring method
US20150355004A1 (en) Ultrasonic flowmeter and ultrasonic flowmeter attaching method
US20230243682A1 (en) Ultrasonic flow measurement
JP6348409B2 (en) Ultrasonic flow meter, flow measurement method, and ultrasonic flow meter kit for ultrasonic absorber
JP2007033115A (en) Detection part of ultrasonic flowmeter
JP2008014829A (en) Ultrasonic flowmeter
RU2375682C1 (en) Ultrasonic flowmetre sensor
JP2005180988A (en) Ultrasonic flowmeter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP2020056639A (en) Pressure measuring device
JP4296947B2 (en) Ultrasonic transceiver unit of Doppler type ultrasonic flow velocity distribution meter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP2010181321A (en) Ultrasonic flowmeter
JP3368305B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees