JP2002250644A - Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter - Google Patents

Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter

Info

Publication number
JP2002250644A
JP2002250644A JP2001102088A JP2001102088A JP2002250644A JP 2002250644 A JP2002250644 A JP 2002250644A JP 2001102088 A JP2001102088 A JP 2001102088A JP 2001102088 A JP2001102088 A JP 2001102088A JP 2002250644 A JP2002250644 A JP 2002250644A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow tube
ultrasonic wave
clamp
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001102088A
Other languages
Japanese (ja)
Inventor
Kazumasa Onishi
一正 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001102088A priority Critical patent/JP2002250644A/en
Publication of JP2002250644A publication Critical patent/JP2002250644A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the performance of an ultrasound transmitter/receiver for a clamp-on type ultrasonic flowmeter by enhancing its directivity in ultrasound transmission/reception and its sensitivity with respect to ultrasound, by conrolling the acoustic vibration of an ultrasound propagating object of the transmitter/receiver, and by sharpening the directivity and reducing the ultrasound loss in propagation paths. SOLUTION: The ultrasound propagating object of the ultrasound transmitter/ receiver is made of a carbon-fiber composite material, and the carbon fibers thereof are oriented in a direction perpendicular to the propagation path of ultrasound. On the surface of the propagating object in contact with a flow tube, two or more projections are provided along the axial direction of the flow tube. The difference between neighboring two projections in the lengths of ultrasound propagation paths within the propagating object including the projections is set equal to one wavelength of the ultrasonic vibration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体が流れる超音
波の伝播時間差から流体の流速または流量を計測する超
音波流量計、特に既設の流管の外側に密着して超音波送
受波器を取り付け流管内の流体の流速を計測するクラン
プオン形における超音波送受波器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring the flow velocity or flow rate of a fluid from the propagation time difference of an ultrasonic wave flowing through the fluid, and more particularly, to an ultrasonic transducer which is in close contact with an existing flow tube. The present invention relates to a clamp-on type ultrasonic transducer for measuring the flow velocity of a fluid in an attached flow tube.

【0002】[0002]

【従来の技術】図14は,クランプオン形超音波流量計
の原理図を示す断面図である。流体5が流れる流管4の
外側に超音波を伝播する例えばPTFE(ポリテトラフ
ルオルエチレン)のような等方性物体より成る斜角楔形
状の超音波伝播物体3a,3bを接着し、これと流管壁
を介して超音波を流体中に送り込む。2個の超音波振動
子2a,2bは超音波の送信器でもあり受信器でもあ
る。このとき、超音波が送信器から受信器に到達する時
間は流れの方向によって異なる。流れと同じ方向へ超音
波が発射された超音波はいわば流れに乗って進むので時
間は短くなる。流れに逆らって発射された超音波は遅く
進むので時間は長くなる。したがって、図のT−T
より流速がわかる。
2. Description of the Related Art FIG. 14 is a sectional view showing the principle of a clamp-on type ultrasonic flowmeter. The oblique wedge-shaped ultrasonic wave propagating objects 3a and 3b made of an isotropic object such as PTFE (polytetrafluoroethylene) for propagating ultrasonic waves are adhered to the outside of the flow tube 4 through which the fluid 5 flows. And ultrasonic waves into the fluid through the flow tube wall. The two ultrasonic transducers 2a and 2b are both transmitters and receivers of ultrasonic waves. At this time, the time for the ultrasonic wave to reach the receiver from the transmitter differs depending on the direction of the flow. Ultrasonic waves emitted in the same direction as the flow travel on the flow, so to speak, the time is shortened. Ultrasounds launched against the flow travel slowly and take longer. Thus, in FIG. T 2 -T 1
You can see the flow velocity more.

【0003】図14のクランプオン形超音波流量計の検
出部において2aと2bは超音波振動子であり3aと3
bは流管4の中の流体5と超音波振動子とを音響的に結
合する斜角楔形状の超音波伝播物体であり、超音波振動
子2a,2bと斜角楔形状の超音波伝播物体3a,3b
は音響的に結合して超音波送受波器1a,1bを構成し
ている。
In the detecting section of the clamp-on type ultrasonic flow meter shown in FIG. 14, reference numerals 2a and 2b denote ultrasonic vibrators and 3a and 3b.
b denotes an oblique wedge-shaped ultrasonic wave propagating object for acoustically coupling the fluid 5 in the flow tube 4 and the ultrasonic vibrator, and the ultrasonic vibrators 2a and 2b and the oblique wedge-shaped ultrasonic wave propagation Objects 3a, 3b
Are acoustically coupled to form the ultrasonic transducers 1a and 1b.

【0004】超音波流量計検出部の上流側超音波送受波
器1aの超音波振動子2aに励起パルスを印加して励振
すると超音波が射出され、射出された超音波は斜角楔形
状の超音波伝播物体3aを経て流管4から流管内の流体
5へと伝播する。そうして、流管内の流体5へと伝播し
た音波は流管4の対向面に到着し、斜角楔形状の超音波
伝播物体3bに案内されて受波モードとなっている超音
波送受波器1bに導かれて超音波振動子2bで受信され
る。このような流管4の中心軸に対向して2個の超音波
送受波器1a,1bが位置している構成を超音波の伝播
経路を表現してZ型という。
When an excitation pulse is applied to the ultrasonic transducer 2a of the ultrasonic transducer 1a on the upstream side of the ultrasonic flow meter detecting section to excite it, an ultrasonic wave is emitted, and the emitted ultrasonic wave has an oblique wedge shape. The light propagates from the flow tube 4 to the fluid 5 in the flow tube via the ultrasonic wave propagating object 3a. Then, the sound wave propagated to the fluid 5 in the flow tube arrives at the opposing surface of the flow tube 4, and is guided by the oblique wedge-shaped ultrasonic wave propagating object 3b to be in the wave receiving mode. Guided by the ultrasonic transducer 2b and received by the ultrasonic transducer 2b. Such a configuration in which the two ultrasonic transducers 1a and 1b are located opposite to the central axis of the flow tube 4 expresses a propagation path of the ultrasonic wave and is called a Z-shape.

【0005】そしてこのようなクランプオン型超音波流
量計は、半導体設備および化学プラント設備において
水、薬液などが流れる既設の流管に密着して取り付けら
れ、その流量を測定する。
[0005] Such a clamp-on type ultrasonic flowmeter is attached in close contact with an existing flow pipe through which water, a chemical solution or the like flows in semiconductor equipment and chemical plant equipment, and measures the flow rate.

【0006】超音波振動子2から放射される超音波は、
ある広がりと指向性をもった弾性波の波束であるが、超
音波の発射元と受信器をその中心に位置する点と見な
し、波面の伝播経路をこれら両点を通る音線として扱う
のが一般的である。その際、伝播媒質中の音速が不連続
に変化する場所では、波動伝播にかかわる反射と屈折の
法則が成り立っており、このようなモデルを一般的に点
音源モデルという。この点音源モデルのもとに超音波送
受波器間の超音波伝播経路を示している。
The ultrasonic wave radiated from the ultrasonic transducer 2 is
Although it is a wave packet of elastic waves with a certain spread and directivity, it is assumed that the source of the ultrasonic wave and the receiver are regarded as points located at the center, and the propagation path of the wavefront is treated as a sound ray passing through these two points General. At that time, in a place where the speed of sound changes discontinuously in the propagation medium, the law of reflection and refraction related to wave propagation is established, and such a model is generally called a point sound source model. The ultrasonic propagation path between the ultrasonic transducers is shown based on this point sound source model.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
超音波送受波器を構成する斜角楔形状の超音波伝播物体
が等方性材料であるので超音波振動子が励起する超音波
により斜角楔形状の超音波伝播物体の形状による多くの
振動モードが励起されてしまう。このため、所望の超音
波を伝播する振動モードだけに超音波が変換されないた
め伝播すべき超音波が小さくなるという問題点がある。
また不要な振動モードが流体の流れる流管に伝播し、さ
らに受信側の超音波送受波器に入り信号成分と混同して
しまい測定誤差の原因となる問題点がある。さらに超音
波の送受信において、超音波伝播経路により位相差が生
じ、検出波形がそれぞれを合成するのでどの信号が目的
の信号であるか不明になったり、不明瞭になるという問
題点がある。また、受信側の超音波送受波器内で超音波
の信号の位相が逆である振動成分がある場合などは検出
レベルまで低下してしまうという問題点がある。
However, since the oblique wedge-shaped ultrasonic wave propagating object constituting the above-described ultrasonic transducer is an isotropic material, the oblique angle is generated by the ultrasonic wave excited by the ultrasonic vibrator. Many vibration modes due to the shape of the wedge-shaped ultrasonic wave propagating object are excited. For this reason, there is a problem that the ultrasonic wave to be propagated becomes small because the ultrasonic wave is not converted into only the vibration mode that propagates the desired ultrasonic wave.
In addition, there is a problem that an unnecessary vibration mode propagates to the flow tube through which the fluid flows, and further enters the ultrasonic transducer on the receiving side and is confused with a signal component, which causes a measurement error. Furthermore, in transmission and reception of ultrasonic waves, there is a problem that a phase difference occurs due to the ultrasonic wave propagation path and the detected waveforms are synthesized, so that it becomes unclear or unclear which signal is the target signal. In addition, when there is a vibration component in which the phase of the ultrasonic signal is opposite in the ultrasonic transmitter / receiver on the receiving side, there is a problem that the detection level is lowered.

【0008】本発明の目的は上述の問題点を解消し、高
精度なクランプオン形超音波流量計を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems and to provide a highly accurate clamp-on type ultrasonic flowmeter.

【0009】[0009]

【課題を解決するための手段】超音波振動子と超音波伝
播物体とによって構成した超音波送受波器を1対または
1対以上を流体が流れる流管の外周に位置させ、流体の
流れ方向および逆方向に超音波を伝播させることにより
流体の流量を測定する超音波流量計において、超音波伝
播物体の流管に接する面に流管の軸方向に2つ以上の突
起を有していること。流管の軸方向に沿っての前記2つ
以上の突起の間隔が1対以上の超音波送受波器で同一あ
ること。2つ以上の突起の隣り合う突起において突起を
含む超音波伝播物体内での超音波伝送距離の差が超音波
振動の1波長の整数倍であること。超音波伝送物体が繊
維に規則性を持たせて配向させているこ繊維複合材料で
あること。その繊維複合材料が炭素繊維複合材料にする
ことである。
Means for Solving the Problems One or a pair of ultrasonic transducers constituted by an ultrasonic transducer and an ultrasonic wave propagating object are positioned on the outer periphery of a flow tube through which a fluid flows, and the flow direction of the fluid is changed. In an ultrasonic flowmeter that measures the flow rate of a fluid by transmitting ultrasonic waves in the opposite direction, two or more projections are provided in the axial direction of the flow tube on the surface of the ultrasonic wave propagating object that is in contact with the flow tube. thing. The distance between the two or more projections along the axial direction of the flow tube is the same for one or more pairs of ultrasonic transducers. The difference between the ultrasonic transmission distances in the ultrasonic wave propagating object including the protrusions between two or more protrusions is an integral multiple of one wavelength of the ultrasonic vibration. A fiber composite material in which the ultrasonic transmission object is oriented so that the fibers have regularity. The fiber composite material is to be a carbon fiber composite material.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態に基づいて詳
細に説明する。図1は第1の実施の形態を示す実施例の
斜視図である。1は超音波送受波器であり超音波振動子
2と斜角楔形状の超音波伝播物体3で構成されいる。そ
の斜角楔形状の超音波伝播物体3の材質はCFRP(炭
素繊維複合材料)である。超音波振動子2はチタン酸ジ
ルコン酸鉛を主成分とする圧電セラミックスであり、板
厚方向に分極されている。
Embodiments of the present invention will be described in detail. FIG. 1 is a perspective view of an example showing the first embodiment. Reference numeral 1 denotes an ultrasonic transducer, which comprises an ultrasonic transducer 2 and an oblique wedge-shaped ultrasonic wave propagating object 3. The material of the ultrasonic wave propagating object 3 having the oblique wedge shape is CFRP (carbon fiber composite material). The ultrasonic vibrator 2 is a piezoelectric ceramic mainly composed of lead zirconate titanate, and is polarized in the thickness direction.

【0011】次にCFRPの炭素繊維配向方向と形状に
ついて説明する。CFRP中の炭素繊維6は超音波振動
子2の面と平行に配向している。つまり、超音波伝播経
路に垂直に配向している。斜角楔形状の超音波伝播物体
3は1つの面を超音波振動子2と平行な面とし、この面
で超音波振動子2とエポキシ樹脂で接着されている。そ
して流管4と接する面には6個の突起があり、それぞれ
の突起の先端を結ぶ線はPFA(テトラフルオロエチレ
ンパーフルオロアルキルビニルエーテル共重合体)製の
流管4の中心軸に対して平行である。かつ流管に平行に
図示しない締め付けベルトにより強く押さえつけられて
いる。
Next, the orientation and shape of the carbon fiber of CFRP will be described. The carbon fibers 6 in the CFRP are oriented parallel to the plane of the ultrasonic transducer 2. That is, they are oriented perpendicular to the ultrasonic wave propagation path. The oblique wedge-shaped ultrasonic wave propagating object 3 has one surface parallel to the ultrasonic vibrator 2 and is bonded to the ultrasonic vibrator 2 with epoxy resin on this surface. The surface in contact with the flow tube 4 has six protrusions, and the line connecting the tips of the protrusions is parallel to the central axis of the flow tube 4 made of PFA (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer). It is. And it is strongly pressed down by a fastening belt (not shown) in parallel with the flow tube.

【0012】次に突起の形状について説明する。図2に
示す突起7は流管4の中心軸に対して突起7の中心線が
90度の角度を持っているが、この他の角度でももちろ
ん良い。さらに図3に示すように流れ方向と直交する方
向に超音波伝播物体3に設けた突起7を等間隔に分割す
ることもできる。
Next, the shape of the projection will be described. In the projection 7 shown in FIG. 2, the center line of the projection 7 has an angle of 90 degrees with respect to the central axis of the flow tube 4, but other angles may of course be used. Further, as shown in FIG. 3, the projections 7 provided on the ultrasonic wave propagating object 3 can be divided at equal intervals in a direction orthogonal to the flow direction.

【0013】このように構成した超音波送受波器1は超
音波振動子2の振動がCFRP中に伝播されるが、特開
平7−284198で詳細に述べられているようにCF
RP中の炭素繊維6方向の振動が抑制されるので炭素繊
維6の方向を超音波振動子2の面に平行に配向させるこ
とでほぼ所望の超音波だけが伝播するような振動モード
にすることができる。また、超音波は炭素繊維の方向と
直交する方向に伝播するので、同じ炭素繊維に到達する
炭素繊維の方向と直交するから伝播してくる超音波の位
相は同じになる。
In the ultrasonic transducer 1 constructed as described above, the vibration of the ultrasonic transducer 2 is propagated in the CFRP, but as described in detail in JP-A-7-284198.
Since the vibration in the direction of the carbon fiber 6 in the RP is suppressed, the direction of the carbon fiber 6 is oriented in parallel with the surface of the ultrasonic vibrator 2 so that a vibration mode in which almost desired ultrasonic wave propagates can be obtained. Can be. Further, since the ultrasonic wave propagates in a direction orthogonal to the direction of the carbon fiber, the phase of the ultrasonic wave propagating from the direction orthogonal to the direction of the carbon fiber reaching the same carbon fiber becomes the same.

【0014】また、斜角楔形状の超音波伝播物体3の流
管4に接する面に突起7を設け、これを流管4対して強
く押しつけると突起7の中心線とPFA製の流管4の接
触面とは垂直に接する。この状態を図4に示す。また、
突起7の中心線とPFA製の流管4の中心軸が直交して
いなくても図5に示すように突起7先端の中心軸とPF
A製の流管4の接触面は垂直になる。従って突起7から
PFA製の流管4への入射角はゼロであるため反射と屈
折の法則による反射はない。ただし、物質のインピーダ
ンス差による反射はもちろん存在するが、突起7の効果
により超音波を反射することなく効率よく伝播できる。
Further, a projection 7 is provided on the surface of the ultrasonic wave propagating object 3 having an oblique wedge shape which is in contact with the flow tube 4, and is strongly pressed against the flow tube 4. Is perpendicular to the contact surface. This state is shown in FIG. Also,
Even if the center line of the projection 7 is not orthogonal to the center axis of the flow tube 4 made of PFA, as shown in FIG.
The contact surface of the flow tube 4 made of A is vertical. Therefore, since the angle of incidence from the projection 7 to the flow tube 4 made of PFA is zero, there is no reflection based on the law of reflection and refraction. However, although the reflection due to the impedance difference of the substance exists, the ultrasonic wave can be efficiently propagated without being reflected by the effect of the projection 7.

【0015】また、斜め入射でないためPFA製の流管
4中で不要な横振動などに変換される恐れがない。この
結果、PFA製の流管4中で不要な横振動が受信側の超
音波送受波器1に伝達されてしまい必要な流体5を通過
した超音波と共に検出されてしまいS/N比が悪くなる
問題点も解決できる。
Further, since the light is not obliquely incident, there is no possibility that the light is converted into unnecessary lateral vibration in the flow tube 4 made of PFA. As a result, unnecessary lateral vibrations are transmitted to the ultrasonic transducer 1 on the receiving side in the flow tube 4 made of PFA, and are detected together with the ultrasonic waves passing through the necessary fluid 5, so that the S / N ratio is poor. Some problems can be solved.

【0016】さらに図6で示すように1対の超音波送受
信器1a,1bが同一であり、斜角楔形状の超音波伝播
物体3の突起7も、もちろん同一であるので超音波の経
路と突起の間隔が一致するので効率的に超音波を送受信
できる。
Further, as shown in FIG. 6, the pair of ultrasonic transmitters / receivers 1a and 1b are the same, and the projections 7 of the ultrasonic wave propagating object 3 having the oblique angle wedge are of course the same. Since the intervals between the projections match, ultrasonic waves can be transmitted and received efficiently.

【0017】図7に示すように超音波伝播経路において
超音波送受信器1を構成する超音波振動子2と超音波伝
播物体3の界面からの隣り合う突起7a,7b先端まで
の距離の差(L2からL1を減じた長さ)を超音波伝播
物体3の超音波振動の1波長の長さとすることで突起7
先端の超音波振動の位相は同じになるので強く励起する
ことができる。
As shown in FIG. 7, the difference between the distances from the interface between the ultrasonic vibrator 2 and the ultrasonic wave propagating object 3 constituting the ultrasonic transceiver 1 in the ultrasonic wave propagation path to the tips of the adjacent projections 7a and 7b ( The length obtained by subtracting L1 from L2) is set to be the length of one wavelength of the ultrasonic vibration of the ultrasonic wave propagating object 3 so that the protrusion 7
Since the phases of the ultrasonic vibrations at the tip are the same, strong excitation can be achieved.

【0018】したがって、不要な振動モードは、極力押
さえられてしまうので結局単一振動モードを得ることが
できる。また超音波送受信器1を構成する超音波振動子
2と超音波伝播物体3の界面からの隣り合う突起7a,
7b先端までの距離の差を超音波伝播物体3における超
音波振動の1波長の整数倍にしても同様なことが可能で
ある。
Therefore, unnecessary vibration modes are suppressed as much as possible, so that a single vibration mode can be finally obtained. In addition, adjacent projections 7a from the interface between the ultrasonic transducer 2 and the ultrasonic wave propagating object 3 which constitute the ultrasonic transmitter / receiver 1,
The same can be achieved by setting the difference in the distance to the tip 7b to be an integral multiple of one wavelength of the ultrasonic vibration in the ultrasonic wave propagating object 3.

【0019】図8は第1の実施の形態による超音波送受
信器1の寸法図であり、使用している単位はミリメート
ルである。
FIG. 8 is a dimensional diagram of the ultrasonic transceiver 1 according to the first embodiment, and the unit used is millimeter.

【0020】図9は本発明による超音波送受信器1a,
1bを用いたV型のクランプオン形超音波流量計を構成
した断面図である。V型のクランプオン形超音波流量計
は、流管4の片側だけに位置させることができるので現
場では好評な構成である。ここで超音波送受信器1a,
1bの斜角楔形状の超音波伝送物体3a,3bは材料が
CFRP6a,6bで、流管4の材料がPFA製であ
る。図4、図5を用いて説明したように突起7と流管4
は垂直に接するので本発明の構成では超音波振動子2
a,2bからPFA製の流管4まで超音波は屈折するこ
となく直進する特徴が現れている。
FIG. 9 shows an ultrasonic transceiver 1a according to the present invention.
It is sectional drawing which comprised the V-type clamp-on type ultrasonic flowmeter using 1b. The V-shaped clamp-on type ultrasonic flowmeter is a popular configuration in the field because it can be positioned on only one side of the flow tube 4. Here, the ultrasonic transceiver 1a,
The ultrasonic transmission objects 3a and 3b of the oblique angle wedge shape 1b are made of CFRP 6a and 6b, and the material of the flow tube 4 is made of PFA. As described with reference to FIG. 4 and FIG.
Are perpendicular to each other, so that the ultrasonic vibrator 2
The characteristic that the ultrasonic wave goes straight without refraction from a, 2b to the flow tube 4 made of PFA appears.

【0021】図10は、第2の実施の形態を示す実施例
の斜視図である。超音波伝播物体3は第1の実施の形態
と同じくCFRPであるが、超音波振動子2の面に垂直
な方向とCFRP中の炭素繊維6の方向が平行でない。
このような構成にするとCFRP中の炭素繊維6の方向
と直交する振動を強く励起することができる。また突起
7間に平坦部がある。このような構成にすると更に実施
の第1の形態で詳しく述べたようなS/N比の高い超音
波送受信器を設計する自由度が大きくなる利点がある。
上記の突起7中の炭素繊維6と直交する方向に超音波振
動を強く励起することができるので突起の形状を機械加
工が容易な図10の形状にできる利点がある。ここでは
突起7を超音波伝播物体3と同一材料で構成している
が、もちろん突起7の炭素繊維方向だけを変えたり、突
起の材料を異ならせてもよい。
FIG. 10 is a perspective view of an example showing the second embodiment. The ultrasonic wave propagating object 3 is CFRP as in the first embodiment, but the direction perpendicular to the surface of the ultrasonic transducer 2 and the direction of the carbon fibers 6 in the CFRP are not parallel.
With such a configuration, vibration orthogonal to the direction of the carbon fibers 6 in the CFRP can be strongly excited. There is a flat portion between the projections 7. This configuration has the advantage that the degree of freedom in designing an ultrasonic transceiver having a high S / N ratio as described in detail in the first embodiment is increased.
Since the ultrasonic vibration can be strongly excited in the direction perpendicular to the carbon fibers 6 in the protrusions 7, there is an advantage that the shape of the protrusions can be changed to the shape shown in FIG. Here, the projection 7 is made of the same material as the ultrasonic wave propagating object 3. However, it is needless to say that only the carbon fiber direction of the projection 7 may be changed or the material of the projection may be made different.

【0022】図11は、第2の実施の形態で示した超音
波送受信器1a,1bをZ型のクランプオン形超音波流
量計に用いたものである。Z型のクランプオン形超音波
流量計は、流管4の中心軸に対して対向して2個の超音
波送受信器1a,1bを位置させなければならないので
場所によっては取り付けが困難な場合もある。しかし、
V型に比較してZ型のクランプオン形超音波流量計は超
音波送受信器1a,1bの距離が小さいため信号が大き
い。したがって、V型のクランプオン形超音波流量計
は、信号が小さくなる小口径の流管に適している。
FIG. 11 shows a case where the ultrasonic transceivers 1a and 1b shown in the second embodiment are used in a Z-type clamp-on ultrasonic flowmeter. In the Z-type clamp-on type ultrasonic flowmeter, two ultrasonic transceivers 1a and 1b must be located opposite to the central axis of the flow tube 4, so that it may be difficult to install the ultrasonic transmitter / receiver depending on the location. is there. But,
Compared with the V type, the Z type clamp-on type ultrasonic flow meter has a large signal because the distance between the ultrasonic transceivers 1a and 1b is small. Therefore, the V-type clamp-on ultrasonic flowmeter is suitable for a small-diameter flow tube in which a signal becomes small.

【0023】図12は第3の実施の形態を示す実施例の
斜視図である。超音波送受信器1は超音波振動子2と超
音波伝播物体3であるCFRPで構成されている。な
お、超音波振動子2はチタン酸鉛系の圧電セラミックス
であり、電極面と垂直方向に分極されている。そしてC
FRP中の炭素繊維6は流管4の中心軸に対して直交す
る方向に配置されている。またCFRPは流管4の外側
半径とほぼ同じ半径の曲率で流管に接するように加工さ
れている。そしてステンレス製の流管4に接するCFR
Pの面は突起7が設けられ、この突起7が流管4に接し
ている。図13は超音波伝播物体であるCFRPの断面
斜視図である。このように流管4の外側半径とほぼ同じ
半径の曲率で流管に接するように超音波伝播物体を加工
することで流管4との接触面積を増加させることで緒音
波伝播効率を高めることができる。
FIG. 12 is a perspective view of an example showing the third embodiment. The ultrasonic transmitter / receiver 1 includes an ultrasonic transducer 2 and a CFRP which is an ultrasonic wave propagating object 3. The ultrasonic transducer 2 is a lead titanate-based piezoelectric ceramic, and is polarized in a direction perpendicular to the electrode surface. And C
The carbon fibers 6 in the FRP are arranged in a direction orthogonal to the central axis of the flow tube 4. Further, the CFRP is processed so as to contact the flow tube with a curvature having substantially the same radius as the outer radius of the flow tube 4. And CFR in contact with stainless steel flow tube 4
A projection 7 is provided on the surface of P, and the projection 7 is in contact with the flow tube 4. FIG. 13 is a sectional perspective view of a CFRP which is an ultrasonic wave propagating object. As described above, by processing the ultrasonic wave propagating object so as to be in contact with the flow tube with a curvature having substantially the same radius as the outer radius of the flow tube 4, the contact area with the flow tube 4 is increased, thereby increasing the sound wave propagation efficiency. Can be.

【0024】なお、本発明においては、超音波送信器と
超音波受信器を対で用いたが、本発明の原理は、送信と
受信を1個で行う超音波送受信器に応用することも可能
であり応用分野としては超音波顕微鏡、超音波探傷器、
超音波診断装置、超音波厚さ計、超音波濃度計、魚群探
知機およびソナーなどがある。
In the present invention, an ultrasonic transmitter and an ultrasonic receiver are used as a pair, but the principle of the present invention can be applied to an ultrasonic transmitter / receiver that performs transmission and reception by one. Applications include ultrasonic microscopes, ultrasonic flaw detectors,
There are an ultrasonic diagnostic apparatus, an ultrasonic thickness gauge, an ultrasonic densitometer, a fish finder and a sonar.

【0025】[0025]

【発明の効果】超音波伝播物体3の流管4に接する面に
突起7を設け、これを流管対して強く押しつけると突起
の中心線と流管の接触面とは直交するので流管への入射
角はゼロであるため反射と屈折の法則による反射はな
い。このため、突起の効果により超音波を反射すること
なく効率よく伝送できる。また、斜め入射でないため流
管4中で不要な横振動などに変換される恐れがない。こ
の結果、流管中で不要な横振動が受信側の超音波送受波
器1に伝達されてしまい必要な流体5を通過した超音波
と共に検出されてしまいS/N比が悪くなる問題点も解
決できる。1対の超音波送受信器が同一であり、超音波
伝播物体3の突起7ももちろん同一であるとので超音波
の経路と突起の間隔が一致するので効率的に超音波を送
受信できる。超音波経路において超音波送受信器1を構
成する超音波振動子2と超音波伝播物体3の界面からの
隣り合う突起先端までの距離の差を超音波伝播物体3の
超音波振動の1波長とすることで突起先端の超音波振動
の位相は同じになるので強く励起することができる。し
たがって、不要な振動モードは、極力押さえられてしま
うので結局単一振動モードを得ることができる。以上の
ように超音波の送受信の指向性と効率を同時に高めるこ
とができるのでS/N比と感度の高い超音波送受信器を
構成できる。
When the projection 7 is provided on the surface of the ultrasonic wave propagating object 3 which is in contact with the flow tube 4 and strongly pressed against the flow tube, the center line of the projection and the contact surface of the flow tube are orthogonal to each other, so Since the incident angle of is zero, there is no reflection due to the law of reflection and refraction. Therefore, the ultrasonic waves can be transmitted efficiently without being reflected by the effect of the projections. In addition, since there is no oblique incidence, there is no danger of conversion into unnecessary lateral vibration in the flow tube 4. As a result, unnecessary lateral vibration in the flow tube is transmitted to the ultrasonic transmitter / receiver 1 on the receiving side, and is detected together with the ultrasonic wave passing through the necessary fluid 5, so that the S / N ratio deteriorates. Solvable. Since the pair of ultrasonic transceivers is the same and the projection 7 of the ultrasonic wave propagating object 3 is also the same, the ultrasonic path and the interval between the projections match, so that the ultrasonic wave can be transmitted and received efficiently. In the ultrasonic path, the difference between the distance from the interface between the ultrasonic transducer 2 and the ultrasonic wave propagating object 3 constituting the ultrasonic transmitter / receiver 1 to the tip of the adjacent projection is defined as one wavelength of the ultrasonic vibration of the ultrasonic wave propagating object 3. By doing so, the phase of the ultrasonic vibration at the tip of the projection becomes the same, so that strong excitation can be achieved. Therefore, unnecessary vibration modes are suppressed as much as possible, so that a single vibration mode can be eventually obtained. As described above, the directivity and efficiency of ultrasonic transmission / reception can be simultaneously improved, so that an ultrasonic transceiver having a high S / N ratio and high sensitivity can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1の実施の形態の斜視図である。FIG. 1 is a perspective view of a first embodiment.

【図2】 突起の形状を示す図である。FIG. 2 is a diagram showing a shape of a projection.

【図3】 角度を有した突起の形状を示す図である。。FIG. 3 is a diagram showing a shape of a projection having an angle. .

【図4】 突起とPFA流管の接触状態を示す図であ
る。
FIG. 4 is a diagram showing a contact state between a projection and a PFA flow tube.

【図5】 角度を有した突起とPFA流管の接触状態を
示す図である。
FIG. 5 is a diagram showing a contact state between a projection having an angle and a PFA flow tube.

【図6】 1対の超音波送受信器間の超音波伝播経路を
示す図である。
FIG. 6 is a diagram showing an ultrasonic wave propagation path between a pair of ultrasonic transceivers.

【図7】 超音波伝播物体中の超音波伝播経路を示す図
である。
FIG. 7 is a diagram showing an ultrasonic wave propagation path in an ultrasonic wave propagation object.

【図8】 第1の実施の形態による超音波送受信器の寸
法図である。
FIG. 8 is a dimensional diagram of the ultrasonic transceiver according to the first embodiment.

【図9】 第1の実施の形態によるV形クランプオン超
音波流量計を示す図である。
FIG. 9 is a diagram showing a V-shaped clamp-on ultrasonic flow meter according to the first embodiment.

【図10】第1の実施の形態を示す実施例の斜視図であ
る。
FIG. 10 is a perspective view of an example showing the first embodiment.

【図11】第2の実施の形態によるZ形クランプオン超
音波流量計を示す図である
FIG. 11 is a diagram showing a Z-shaped clamp-on ultrasonic flow meter according to a second embodiment.

【図12】第3の実施の形態を示す実施例の斜視図であ
る。
FIG. 12 is a perspective view of an example showing the third embodiment.

【図13】超音波伝播物体であるCFRPの断面斜視図
である。
FIG. 13 is a sectional perspective view of a CFRP which is an ultrasonic wave propagating object.

【図14】従来のクランプオン形超音波流量計の原理図
である。
FIG. 14 is a principle diagram of a conventional clamp-on type ultrasonic flow meter.

【符号の説明】[Explanation of symbols]

1 超音波送受波器 2 超音波振動子 3 超音波伝播物体 4 流管 5 流体 6 炭素繊維 7 突起 DESCRIPTION OF SYMBOLS 1 Ultrasonic transducer 2 Ultrasonic transducer 3 Ultrasonic wave propagating object 4 Flow tube 5 Fluid 6 Carbon fiber 7 Projection

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超音波振動子と超音波伝播物体とによって
構成した超音波送受波器を1対または1対以上を流体が
流れる流管の外周に位置させ、流体の流れ方向および逆
方向に超音波を伝播させることにより流体の流量を測定
する超音波流量計において、流管に接する超音波伝播物
体の面に流管の軸方向に2つ以上の突起を有しているこ
とを特徴とするクランプオン形超音波流量計おける超音
波送受波器。
An ultrasonic transducer constituted by an ultrasonic transducer and an ultrasonic wave propagating object is positioned at one or one or more pairs on the outer periphery of a flow tube through which a fluid flows, and is arranged in the flow direction and the reverse direction of the fluid. An ultrasonic flowmeter that measures the flow rate of a fluid by transmitting ultrasonic waves, characterized in that the surface of an ultrasonic wave propagating object in contact with the flow tube has two or more protrusions in the axial direction of the flow tube. Ultrasonic transducer in a clamp-on type ultrasonic flowmeter that does not work.
【請求項2】流管の軸方向に沿った前記2つ以上の突起
の間隔が1対以上の超音波送受波器で同一あることを特
徴とする請求項1に記載のクランプオン形超音波流量計
おける超音波送受波器。
2. The clamp-on type ultrasonic wave according to claim 1, wherein the distance between the two or more projections along the axial direction of the flow tube is the same for one or more ultrasonic transducers. Ultrasonic transducer for flow meter.
【請求項3】前記2つ以上の突起の隣り合う突起におい
て、突起を含む超音波伝播物体内での超音波伝播経路の
距離の差が超音波振動の1波長の整数倍であることを特
徴とする請求項1および2に記載のクランプオン形超音
波流量計おける超音波送受波器。
3. The method according to claim 2, wherein, in the protrusions adjacent to the two or more protrusions, a difference in distance of an ultrasonic wave propagation path in an ultrasonic wave propagating object including the protrusions is an integral multiple of one wavelength of ultrasonic vibration. An ultrasonic transducer in the clamp-on type ultrasonic flowmeter according to claim 1 or 2.
【請求項4】前記超音波伝播物体が繊維に規則性を持た
せて配向させているこ繊維複合材料であることを特徴と
する請求項1に記載のクランプオン形超音波流量計にお
ける超音波送受波器
4. An ultrasonic wave in a clamp-on type ultrasonic flowmeter according to claim 1, wherein said ultrasonic wave propagating object is a fiber composite material in which fibers are oriented with regularity. Transducer
【請求項5】前記繊維複合材料が炭素繊維複合材料であ
る請求項1およびに請求項5に記載のクランプオン形超
音波流量計における超音波送受波器
5. An ultrasonic transducer in a clamp-on type ultrasonic flow meter according to claim 1, wherein said fiber composite material is a carbon fiber composite material.
JP2001102088A 2001-02-26 2001-02-26 Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter Withdrawn JP2002250644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102088A JP2002250644A (en) 2001-02-26 2001-02-26 Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102088A JP2002250644A (en) 2001-02-26 2001-02-26 Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2002250644A true JP2002250644A (en) 2002-09-06

Family

ID=18955325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102088A Withdrawn JP2002250644A (en) 2001-02-26 2001-02-26 Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2002250644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155490B1 (en) * 2012-10-09 2013-03-06 東京計装株式会社 Ultrasonic flow meter
JP2015169433A (en) * 2014-03-04 2015-09-28 大阪瓦斯株式会社 Ultrasonic sound velocity measurement apparatus and ultrasonic sound velocity measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155490B1 (en) * 2012-10-09 2013-03-06 東京計装株式会社 Ultrasonic flow meter
JP2015169433A (en) * 2014-03-04 2015-09-28 大阪瓦斯株式会社 Ultrasonic sound velocity measurement apparatus and ultrasonic sound velocity measurement method

Similar Documents

Publication Publication Date Title
US6626049B1 (en) Clamp-on steam/gas flow meter
JP4782327B2 (en) Clamp-on type ultrasonic flowmeter
JPS6238355A (en) Method and device for measuring fluid characteristic by using capacity search signal of surface generation
JP2003075219A (en) Clamp-on ultrasonic flowmeter
JP2005188974A (en) Ultrasonic flowmeter
JP2012509460A (en) Ultrasonic flow meter
KR20150141876A (en) Clamp-on type ultrasonic flowmeter and method for measuring flow rate
CN114111927B (en) High-frequency ultrasonic sensor suitable for gas flow detection
KR101951533B1 (en) Ultrasonic flowmeter
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
US3204457A (en) Ultrasonic flowmeter
JPH08261997A (en) Surface wave probe
JP2002250644A (en) Ultrasound transmitter/receiver for clamp-on type ultrasonic flowmeter
JP3949982B2 (en) Clamp-on type ultrasonic flowmeter
JP2015230260A (en) Ultrasonic flowmeter and method of attaching ultrasonic flowmeter
JP7151311B2 (en) ultrasonic flow meter
JP3328505B2 (en) Ultrasonic flow meter
JP2003139591A (en) Ultrasonic flowmeter
JPH08313496A (en) Ultrasonic probe
KR101476534B1 (en) Ultra sonic Flow measuring Device
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JPH0375557A (en) Ultrasonic probe
JPS631217Y2 (en)
SU1163252A1 (en) Ultrasonic transducer for measuring velocity of transverse ultrasonic vibrations
JP3680635B2 (en) Ultrasonic sensor, ultrasonic sensing device and ultrasonic flow meter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513