JP2002257698A - Method of cocentrating liquid sample - Google Patents

Method of cocentrating liquid sample

Info

Publication number
JP2002257698A
JP2002257698A JP2001055262A JP2001055262A JP2002257698A JP 2002257698 A JP2002257698 A JP 2002257698A JP 2001055262 A JP2001055262 A JP 2001055262A JP 2001055262 A JP2001055262 A JP 2001055262A JP 2002257698 A JP2002257698 A JP 2002257698A
Authority
JP
Japan
Prior art keywords
container
liquid sample
open container
gas
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001055262A
Other languages
Japanese (ja)
Other versions
JP3891783B2 (en
Inventor
Akira Uno
明 卯野
Shigenori Maeda
繁則 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2001055262A priority Critical patent/JP3891783B2/en
Publication of JP2002257698A publication Critical patent/JP2002257698A/en
Application granted granted Critical
Publication of JP3891783B2 publication Critical patent/JP3891783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of concentrating a solute in a solution sample by means of a microwave heating, capable of performing the concentration of the same in of a high concentrating ratio a short time. SOLUTION: When the solution sample 2 held inside a vessel 3 with an open mouth is evapolated by a microwave heating 10 to have its solvent removed, a dielectric substance such as water having a high permittivity is brought into contact with at least a part of the external surface of the vessel to be also heated with the microwave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体試料を濃縮す
る方法および該方法に用いる装置に関する。更に詳しく
は、例えば、液体試料について微量分析を行なう際のプ
レコンセントレーションとして有用なマイクロ波加熱を
利用した濃縮方法および該濃縮方法に好適に用いられる
マイクロ波加熱装置に関する。
[0001] The present invention relates to a method for concentrating a liquid sample and an apparatus used for the method. More specifically, for example, the present invention relates to a concentration method using microwave heating which is useful as a pre-concentration when performing micro-analysis on a liquid sample, and a microwave heating apparatus suitably used for the concentration method.

【0002】[0002]

【従来の技術】近年、半導体材料分野等において、原材
料や製品の純度に対する要求は高く、ごく微量含まれる
不純物の分析を高精度で行なうことが重要となってい
る。そのためには、例えば、溶液試料については、定量
の妨害をするようなマトリックス物質を除去したり、分
析目的成分を機器分析の定量限界内に入るようにした
り、更には測定精度を高めたりする目的で、測定試料を
濃縮する操作(プレコンセントレーション)することが
行われている。
2. Description of the Related Art In recent years, in the field of semiconductor materials and the like, there is a high demand for purity of raw materials and products, and it is important to analyze impurities contained in a very small amount with high accuracy. For this purpose, for example, for a solution sample, the purpose is to remove matrix substances that may interfere with quantification, to make the analysis target component fall within the quantification limit of instrumental analysis, and to increase measurement accuracy. Then, an operation of concentrating the measurement sample (preconcentration) is performed.

【0003】液体試料のプレコンセントレーションの一
手段として、溶媒若しくは分散媒を蒸発させて除去する
方法がある。そして、液体試料の溶媒若しくは分散媒が
水等の比誘電率の高い誘電体である場合には、簡便な方
法としては、マイクロ波加熱を用いて溶媒若しくは分散
媒を蒸発させて除去し、濃縮を行う方法が知られてい
る。該方法は、水等の比誘電率の大きな物質は、マイク
ロ波の照射によって生じる高周波電界によって容易に発
熱することを利用したものであり、簡便に濃縮操作がで
きるという特徴がある。なお、一般に、該方法において
は、試料を加熱した際に可燃性ガスや酸などの危険性の
あるガスを発生することが多いため、これらガスを安全
に排出するため、容器内で加熱を行ない、発生したガス
が大気中に拡散しない様に隔絶して排出させるのが一般
的である。
As one means of preconcentration of a liquid sample, there is a method of removing a solvent or a dispersion medium by evaporating the solvent or the dispersion medium. When the solvent or the dispersion medium of the liquid sample is a dielectric having a high relative dielectric constant such as water, a simple method is to remove the solvent or the dispersion medium by evaporating the solvent or the dispersion medium using microwave heating, and to concentrate the solution. There is a known way to do this. This method utilizes the fact that a substance having a large relative dielectric constant, such as water, easily generates heat by a high-frequency electric field generated by microwave irradiation, and is characterized in that a concentration operation can be easily performed. In addition, in general, in the method, when a sample is heated, a dangerous gas such as a flammable gas or an acid is often generated. Therefore, in order to discharge these gases safely, heating is performed in a container. In general, the generated gas is isolated and discharged so as not to diffuse into the atmosphere.

【0004】例えば、特開平6−82349号公報に
は、不活性ガス供給管及び排気管とを有する密閉可能な
処理容器内の溶液試料に対してマイクロ波を照射し、溶
媒を気化させて、気化した溶媒蒸気を不活性ガスに同伴
させて排気管から系外に排出して濃縮又は灰化処理を行
なうための加熱処理装置が開示されており、このような
装置を用いることにより発生ガスを安全に排出すると共
に外部からの汚染を防止しながら処理を行なうことが可
能となっている。また、該装置を用いた場合には、液体
試料を目盛り付きの試験管に入れ、これを上記処理容器
内に挿入配置して濃縮又は灰化処理を行うことにより、
その試験管を用いて処理後に引続き稀釈操作を行なうこ
とも可能となっている。
For example, Japanese Patent Application Laid-Open No. Hei 6-82349 discloses that a solution sample in a sealable processing vessel having an inert gas supply pipe and an exhaust pipe is irradiated with microwaves to evaporate a solvent. A heat treatment apparatus for performing concentration or incineration processing by discharging vaporized solvent vapor with an inert gas to the outside of the system from an exhaust pipe has been disclosed. It is possible to carry out treatment while discharging safely and preventing contamination from outside. In addition, when using the device, the liquid sample is placed in a graduated test tube, and inserted and arranged in the processing container to perform concentration or incineration treatment.
It is also possible to perform a dilution operation after the treatment using the test tube.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、マイク
ロ波加熱を利用して、容器内で濃縮する方法において
は、濃縮に伴い試料の液量が減ると共に濃縮速度が激減
し、例えば10mlの液体試料を濃縮すると時間をかけ
ても3ml以下に液量が減らないといった現象がおこる
{Anal.Chem.,72,(13),2908−2913(200
0)}。
However, in the method of concentrating in a container using microwave heating, the concentration of the sample decreases with the concentration, and the rate of concentration decreases drastically. When concentrated, a phenomenon occurs in which the liquid volume does not decrease to 3 ml or less even with time. Anal. Chem., 72 , (13), 2908-2913 (200)
0)}.

【0006】そこで、本発明は、マイクロ波加熱を利用
して短時間で液体試料の高倍率の濃縮が可能な方法を提
供することを目的とする。
Accordingly, an object of the present invention is to provide a method capable of concentrating a liquid sample at a high magnification in a short time by utilizing microwave heating.

【0007】[0007]

【課題を解決するための手段】本発明者は、従来の方法
で濃縮が止ってしまうのは、一旦気化した溶媒若しくは
分散媒が系外に排出される前に凝縮し、容器壁を伝わっ
て戻ってくる(還流する)のが原因ではないかと考え、
前記公開公報に記載されたような不活性ガスの導入が可
能な装置を用い、不活性ガスを液面に直接吹き付けて蒸
発を促すことを試みた。しかしながら、この場合、上記
還流は起こらなかったものの、液量が少なくなるととも
に濃縮速度が激減し、所期の目的を達することはできな
かった。
The inventor of the present invention concludes that the concentration stops in the conventional method because the solvent or dispersion medium once vaporized is condensed before being discharged out of the system, and propagates along the container wall. I think that it may be due to returning (reflux),
Using an apparatus capable of introducing an inert gas as described in the above-mentioned publication, an attempt was made to directly blow the inert gas onto the liquid surface to promote evaporation. However, in this case, although the above-mentioned reflux did not occur, the liquid volume was reduced and the concentration rate was drastically reduced, so that the intended purpose could not be achieved.

【0008】この濃縮速度が低下する原因は、発熱体で
ある溶媒若しくは分散媒が減少するため、十分な熱量が
得られなくなることではないかと考え、さらに容器外部
から蒸発を促す加熱を行う必要があると考えた。試料を
有効に加熱する方法について種々検討を行なった結果、
容器を二重構造にし、還流した溶媒等が試料内には戻ら
ずにその外側に溜まるようにした場合には、短時間で液
体試料を乾固させることができることを見出し、本発明
を完成するに至った。
It is considered that the cause of the reduction in the concentration rate is that a sufficient amount of heat cannot be obtained because the amount of the solvent or the dispersing medium as the heating element decreases, and it is necessary to further perform heating from the outside of the container to promote evaporation. I thought there was. As a result of various studies on a method of effectively heating the sample,
In the case where the container has a double structure, and the refluxed solvent or the like is allowed to collect outside the sample without returning to the sample, it has been found that the liquid sample can be dried in a short time, and the present invention is completed. Reached.

【0009】即ち、第一の本発明は、開口容器の内部に
保持された液体試料であって、該開口容器の構成材料よ
りも高い比誘電率を有する誘電体からなる溶媒若しくは
分散媒に濃縮目的物である溶質が溶解した溶液試料をマ
イクロ波加熱して該液体試料の溶媒若しくは分散媒を蒸
発させて除去することにより前記濃縮目的物を濃縮する
方法において、液体試料をマイクロ波加熱する際に、前
記開口容器の構成材料よりも高い比誘電率を有する誘電
体を前記開口容器外面の少なくとも一部に接触させ、当
該誘電体を同時にマイクロ波加熱することを特徴とする
前記液体試料の濃縮方法である。
That is, a first aspect of the present invention is a liquid sample held in an open container, which is concentrated in a solvent or dispersion medium made of a dielectric having a higher relative dielectric constant than the constituent material of the open container. In the method of concentrating the concentrated target by microwave heating a solution sample in which a solute as a target substance is dissolved and evaporating and removing a solvent or a dispersion medium of the liquid sample, the liquid sample is heated by microwave. Contacting at least a part of the outer surface of the open container with a dielectric having a higher relative dielectric constant than the constituent material of the open container, and simultaneously microwave-heating the dielectric, thereby concentrating the liquid sample. Is the way.

【0010】上記本発明の濃縮方法においては、ガス導
入孔及びガス排出孔を有する有蓋容器の内部に、液体試
料を保持した開口容器を配置し、前記有蓋容器内面と該
開口容器外面との間の空間に、前記開口容器の構成材料
よりも高い比誘電率を有する誘電体を前記開口容器外面
の少なくとも一部と密接するように介在させ、該誘電体
を液体試料と同時にマイクロ波加熱することにより、外
部からの汚染を防止しながら安全に濃縮操作を行なうこ
とができる。さらに、マイクロ波加熱中に前記ガス排出
孔から吸引するか又は前記ガス導入孔からガスを導入す
るかして前記有蓋容器内のガスを排出すると共に、マイ
クロ波加熱によって蒸発した溶媒若しくは分散媒の少な
くとも一部を凝縮させ、得られたら凝縮液を有蓋容器内
面と開口容器外面との間の空間に該開口容器外面の少な
くとも一部と密着するように介在させることにより、よ
り短時間で濃縮を行なうことが可能となる。また、この
場合には、開口容器の構成材料よりも高い比誘電率を有
する誘電体を別途用意する必要も無い。
[0010] In the enrichment method of the present invention, an open container holding a liquid sample is disposed inside a closed container having a gas inlet and a gas outlet, and a space between the inner surface of the closed container and the outer surface of the open container is provided. In the space, a dielectric having a higher relative dielectric constant than the constituent material of the open container is interposed so as to be in close contact with at least a part of the outer surface of the open container, and the dielectric is microwave-heated simultaneously with the liquid sample. Thereby, the concentration operation can be performed safely while preventing contamination from the outside. Further, the gas in the closed container is discharged by sucking from the gas discharge hole or introducing gas from the gas introduction hole during microwave heating, and the solvent or the dispersion medium evaporated by the microwave heating is removed. At least a portion is condensed, and when obtained, the condensate is interposed in a space between the inner surface of the closed container and the outer surface of the open container so as to be in close contact with at least a part of the outer surface of the open container, so that the concentration can be performed in a shorter time. It is possible to do. Further, in this case, there is no need to separately prepare a dielectric having a higher relative dielectric constant than the constituent material of the open container.

【0011】本発明の濃縮方法においては、液体試料を
保持する開口容器がマイクロ波加熱によって容易に発熱
する比誘電率が高い誘電体と接触しているため、溶媒若
しくは分散媒が減少して液体試料自体の発熱量が減少し
ても濃縮を続けるのに必要な熱が熱伝導によって供給さ
れ続けるため、濃縮効率が低下しないものと思われる。
In the enrichment method of the present invention, since the open container holding the liquid sample is in contact with the dielectric having a high relative dielectric constant, which easily generates heat by microwave heating, the solvent or the dispersion medium is reduced to reduce the liquid. Even if the calorific value of the sample itself decreases, the heat necessary for continuing the concentration continues to be supplied by heat conduction, and it is considered that the concentration efficiency does not decrease.

【0012】また、第二の本発明は、液体試料を保持し
た開口容器をその内部に配置するための有蓋容器であっ
て、ガス導入孔及びガス排出孔、前記液体試料から発生
した溶媒若しくは分散媒の蒸気を凝縮させるための蒸気
凝縮部、並びに該蒸気凝縮部で凝縮した凝縮液を集めて
該凝縮液が前記開口容器外面に接触するように保持する
凝縮液保持部を有する有蓋容器と、該有蓋容器を保持す
るための容器保持室を有する装置本体と、前記容器保持
室に配置された有蓋容器内の液体試料及び該有蓋容器内
面と前記開口容器外面との間に存在する凝縮液をマイク
ロ波加熱するためのマイクロ波発生手段とを有すること
を特徴とするマイクロ波加熱装置である。
[0012] The present invention also relates to a closed container for disposing an open container holding a liquid sample therein, the container having a gas inlet and a gas outlet, and a solvent or dispersion generated from the liquid sample. A steam condensing section for condensing the vapor of the medium, and a closed container having a condensed liquid holding section for collecting the condensed liquid condensed in the steam condensing section and holding the condensed liquid in contact with the outer surface of the open container; An apparatus body having a container holding chamber for holding the covered container, a liquid sample in the covered container arranged in the container holding chamber, and a condensate present between the inner surface of the covered container and the outer surface of the open container. A microwave generating device for performing microwave heating.

【0013】上記本発明の装置を用いることにより、本
発明の濃縮方法を簡便且つ効率よく行なうことができ
る。
By using the apparatus of the present invention, the concentration method of the present invention can be carried out simply and efficiently.

【0014】[0014]

【発明の実施の形態】本発明の濃縮方法では、マイクロ
波加熱法を利用する。ここで、マイクロ波加熱法とは、
電磁波加熱の一種であり、高周波電界によって、誘電体
内部に生じた電気双極子を、高周波により回転させて分
子間に摩擦を起こし、その摩擦によって発生する熱を利
用して加熱を行なうものであり、電界を作る方法として
電波を用いる加熱方法である。マイクロ波加熱では、通
常、主にマグネトロンを使用し、2450MHz、91
5MHzの周波数を使って加熱が行われ、導波管及びオ
ーブンが用いられる。また、電波を均等に照射するため
に、攪拌ファンが用いられることもある。
BEST MODE FOR CARRYING OUT THE INVENTION The concentration method of the present invention utilizes a microwave heating method. Here, the microwave heating method is
A type of electromagnetic wave heating, in which a high-frequency electric field rotates an electric dipole generated inside a dielectric by high frequency, causing friction between molecules, and heating using the heat generated by the friction. This is a heating method using radio waves as a method for creating an electric field. In microwave heating, usually, a magnetron is mainly used and 2450 MHz, 91
Heating is performed using a frequency of 5 MHz and a waveguide and oven are used. In addition, a stirring fan may be used in order to uniformly irradiate the radio waves.

【0015】本発明の濃縮方法では、上記したようなマ
イクロ波加熱を利用して開口容器に保持された液体試料
の濃縮を行なう。液体試料を開口容器に保持するのは、
加熱されて気化した溶媒若しくは分散媒を拡散除去させ
るためである。上記開口容器の材質は、絶縁体であれば
特に限定されないが、それ自体が加熱されて高温になっ
たり、変形したりするのを防ぐという観点から、比誘電
率が小さい、特に比誘電率(εr)が15以下、更には
10以下の誘電体からなっているのが好適である。ま
た、硼珪酸ガラス(εr=4.5〜5.0)、アルミナ
磁器(εr=9.3)も適用できるが、容器から溶液中
に不純物が溶出しにくいという観点から、石英ガラス
(εr=3.5〜4.5)あるいはポリ四弗化エチレン
(εr=2.1)、ポリ弗化ビニリデン(εr=8.4)
等のフッ素樹脂製であるのが特に好適である。
In the concentration method of the present invention, the liquid sample held in the open container is concentrated using the microwave heating as described above. Holding a liquid sample in an open container
This is for diffusing and removing the solvent or the dispersion medium that has been heated and vaporized. The material of the open container is not particularly limited as long as it is an insulator. However, from the viewpoint of preventing the material itself from being heated to a high temperature or being deformed, the relative permittivity is small, particularly the relative permittivity ( epsilon r) is 15 or less, it is preferable that further consists of 10 or less of the dielectric. In addition, borosilicate glass (ε r = 4.5 to 5.0) and alumina porcelain (ε r = 9.3) can also be used. However, from the viewpoint that impurities are hardly eluted from a container into a solution, quartz glass (ε r = 9.3) is used. ε r = 3.5 to 4.5) or polytetrafluoroethylene (ε r = 2.1), polyvinylidene fluoride (ε r = 8.4)
It is particularly preferable to use a fluororesin.

【0016】なお、該有蓋容器と前記開口容器は必ずし
も個別である必要はなく、有蓋容器と開口容器が一体と
なったような2重構造の有蓋容器を用いてもよい。
The closed container and the open container need not always be separate from each other, and a double-structured closed container in which the open container and the open container are integrated may be used.

【0017】本発明の濃縮方法では、上記したようなマ
イクロ波加熱を利用するため、用いる液体試料の溶媒若
しくは分散媒は、液体試料を保持する開口容器の構成材
料よりも高い比誘電率、好ましくは20以上の比誘電率
を有する必要がある。適用できる液体試料の溶媒若しく
は分散媒は、上記条件を満足すれば特に限定されず、
水、又は公知の有機溶媒でよい。本発明で好適に使用で
きる溶媒若しくは分散媒を例示すれば、水(εr=8
1);アセトン(εr=20.7)等のケトン類、メタ
ノール(εr=32.6)、エタノール(εr=24.
3)等のアルコール類等が挙げられる。これらは、単独
で用いても複数種類混合して用いてもよい。これらの中
でも、水は沸点が高く他の方法では蒸発させにくいのに
対し、マイクロ波加熱で容易に蒸気となるので、本発明
の方法は、水又は水と水溶性有機溶媒との混合物を溶媒
又は分散媒とする試料に適用するのが最も効果的であ
る。
In the enrichment method of the present invention, since the above-described microwave heating is used, the solvent or dispersion medium of the liquid sample to be used has a higher relative dielectric constant than that of the material constituting the open container holding the liquid sample, preferably. Needs to have a relative dielectric constant of 20 or more. The solvent or dispersion medium of the applicable liquid sample is not particularly limited as long as the above conditions are satisfied,
Water or a known organic solvent may be used. As an example of a solvent or dispersion medium that can be suitably used in the present invention, water (ε r = 8
1); ketones such as acetone (ε r = 20.7), methanol (ε r = 32.6), ethanol (ε r = 24.
And alcohols such as 3). These may be used alone or as a mixture of a plurality of types. Among these, water has a high boiling point and is difficult to evaporate by other methods, but easily becomes steam by microwave heating.Therefore, the method of the present invention uses water or a mixture of water and a water-soluble organic solvent as a solvent. Or, it is most effective to apply to a sample to be used as a dispersion medium.

【0018】また、液体試料において濃縮対象物となる
溶質又は懸濁物は、特に限定されず、目的に応じて適宜
決定される。液体試料が水溶液である場合には塩である
ことが多く、イオンの形で溶解していることが多い。濃
縮効率の点から、濃縮目的物である溶質又は懸濁物は溶
媒又は分散媒よりも揮発し難いものであるのが好ましい
が、揮発性を有する場合にも捕集剤を用いて高沸点の錯
体を形成させることにより濃縮が可能となる。例えばホ
ウ素を濃縮するためにマンニトールを必要量加えてホウ
素−マンニトール錯体を形成後、濃縮を行うことができ
る。
The solute or suspension to be concentrated in the liquid sample is not particularly limited, and is appropriately determined according to the purpose. When the liquid sample is an aqueous solution, it is often a salt and is often dissolved in the form of ions. From the viewpoint of concentration efficiency, the solute or suspension that is the concentration target is preferably less volatile than the solvent or the dispersion medium, but also has a high boiling point using a collector even when it has volatility. By forming a complex, concentration becomes possible. For example, after a required amount of mannitol is added to concentrate boron to form a boron-mannitol complex, concentration can be performed.

【0019】なお、液体試料には、濃縮目的となる物質
以外にも各種酸、アルカリ、塩等の他の物質が溶解して
いてもよい。
The liquid sample may contain other substances such as various acids, alkalis and salts in addition to the substance to be concentrated.

【0020】本発明の濃縮方法においては、前記開口容
器に保持された液体試料をマイクロ波加熱するに際し
て、前記開口容器の構成材料よりも高い比誘電率を有す
る誘電体(以下、外部加熱用誘電体ともいう。)を前記
開口容器外面の少なくとも一部に接触させ、当該誘電体
を同時にマイクロ波加熱することを最大の特徴とする。
外部加熱用誘電体を開口容器に接触させて、これを合わ
せてマイクロ波加熱することにより、外部加熱用誘電体
から発生した熱を液体試料に伝え、液体試料の量が少な
くなっても溶媒等を蒸発させ続けることが可能となる。
In the concentration method of the present invention, when the liquid sample held in the open container is microwave-heated, a dielectric having a higher relative dielectric constant than the constituent material of the open container (hereinafter referred to as an external heating dielectric). The feature of the present invention is that the dielectric material is brought into contact with at least a part of the outer surface of the open container, and the dielectric material is simultaneously microwave-heated.
The external heating dielectric is brought into contact with the open container, and the microwave is heated together to transfer the heat generated from the external heating dielectric to the liquid sample. Can be continuously evaporated.

【0021】外部加熱用誘電体は、その比誘電率が前記
開口容器の構成材料よりも高い誘電体であれば特に限定
されないが、その加熱効果の点から、比誘電率が20以
上の誘電体であるのが好適である。好適に使用できる外
部加熱用誘電体を、具体的に例示すれば、液体試料の好
適な溶媒若しくは分散媒として例示したものと同じもの
の他、酸化チタン(εr=80)、チタン酸バリウム
(εr=1700)等が挙げられる。
The dielectric for external heating is not particularly limited as long as its dielectric constant is higher than that of the constituent material of the open container. From the viewpoint of its heating effect, the dielectric having a dielectric constant of 20 or more is used. It is preferred that Specific examples of the external heating dielectric that can be preferably used are the same as those exemplified as the suitable solvent or dispersion medium for the liquid sample, titanium oxide (ε r = 80), and barium titanate (ε). r = 1700).

【0022】本発明の濃縮方法においては、液体試料か
ら一旦蒸発した溶媒若しくは分散媒を凝縮させ、得られ
た凝縮液を外部加熱用誘電体として使用することもでき
る。該凝縮液を外部加熱用誘電体として使用するには、
例えば有蓋容器の内部に、液体試料を保持した開口容器
を配置し、前記有蓋容器の上部内壁面でマイクロ波加熱
によって発生した溶媒若しくは分散媒の蒸気を凝縮さ
せ、壁面を通じて凝縮液を有蓋容器下方の前記開口容器
との間の空間に導き、凝縮液が開口容器の外面に接触す
るようにすればよい。
In the concentration method of the present invention, the solvent or dispersion medium once evaporated from the liquid sample can be condensed, and the obtained condensate can be used as a dielectric for external heating. To use the condensate as an external heating dielectric,
For example, an open container holding a liquid sample is placed inside a covered container, the vapor of a solvent or a dispersion medium generated by microwave heating is condensed on the upper inner wall surface of the covered container, and the condensate is passed through the wall surface to a lower portion of the closed container. Then, the condensed liquid may be guided to the space between the open container and the outer surface of the open container.

【0023】上記有蓋容器においては、液体試料を保持
した開口容器を出し入れすることができるように蓋は取
り外しできるようになっていると共に、加熱によりガス
発生したり内部のガスの膨張により加圧状態になるのを
避け、外部と均圧を保つため、或いは溶媒若しくは分散
媒の蒸発を促進するために内部のガスを吸引排気するた
めの排気孔が設けられているのが好ましい。また、吸引
排気する場合には、内部が過度の減圧状態になら無い様
にするために、大気若しくは外部から供給される不活性
ガス等のガスを有蓋容器内に導入するためのガス導入孔
が設けられているのが好適である。なお、ガス導入孔お
よび排気孔の両方を有する場合には、ガス導入孔から不
活性ガス等を外部から強制的に導入し有蓋容器内のガス
を排気孔から排気しても上記吸引排気と同様の効果を得
ることができる。
In the above-mentioned closed container, the lid is detachable so that the open container holding the liquid sample can be taken in and out, and a gas is generated by heating or a pressurized state by expansion of the gas inside. It is preferable to provide an exhaust hole for sucking and exhausting the internal gas in order to keep the pressure equal to the outside and to keep the pressure equal to the outside or to promote the evaporation of the solvent or the dispersion medium. In addition, in the case of suction and exhaust, a gas introduction hole for introducing a gas such as an inert gas supplied from the atmosphere or the outside into the closed container is provided to prevent the inside from being excessively decompressed. Preferably, it is provided. When both the gas introduction hole and the exhaust hole are provided, even if an inert gas or the like is forcibly introduced from the outside through the gas introduction hole and the gas in the covered container is exhausted from the exhaust hole, the same as the above-described suction exhaust. The effect of can be obtained.

【0024】上記有蓋容器の材質は特に限定されない
が、前記したのと同じ理由により、開口容器と同様の材
質であるのが好適である。また、大きさは特に限定され
ないが、蓋の形状は、蓋の内面で凝縮したにできる凝縮
液が開口容器内部にもどらず、蓋の側面をつたって有蓋
容器の底つまり開口容器の外側を包むように溜まるよう
にするために、例えばドーム型の形状をしているのが望
ましい。更に、外部加熱効果を高めるために、その内底
部に前記開口容器を載置した際にできる、有蓋容器内面
と開口容器外面との間の空間容積が、有蓋容器容積に対
し特に20〜30%となるような大きさでかつ開口容器
の高さはこの空間に溜まる凝縮液が開口容器内流入しな
い高さであるのが好適である。
The material of the closed container is not particularly limited, but is preferably the same as that of the open container for the same reason as described above. The size of the lid is not particularly limited, but the shape of the lid is such that condensed liquid formed on the inner surface of the lid does not return to the inside of the open container, but wraps around the side of the lid to cover the bottom of the closed container, that is, the outside of the open container. It is desirable that the shape is, for example, a dome shape in order to collect the water. Further, in order to enhance the external heating effect, the space volume between the inner surface of the closed container and the outer surface of the open container, which is formed when the open container is placed on the inner bottom thereof, is particularly 20 to 30% of the volume of the closed container. The height of the open container is preferably such that the condensate remaining in this space does not flow into the open container.

【0025】本発明の濃縮方法は、前記した本発明のマ
イクロ波加熱装置を用いて好適に行なうことができる。
以下に、図を参照して本発明のマイクロ波加熱装置を用
いた濃縮操作につて詳しく説明する。
The concentration method of the present invention can be suitably performed using the above-described microwave heating device of the present invention.
Hereinafter, the concentration operation using the microwave heating device of the present invention will be described in detail with reference to the drawings.

【0026】図1は、代表的な本発明のマイクロ波加熱
装置1の該略図である。該マイクロ波加熱装置1は、
液体試料2を保持した開口容器3をその内部に配置する
ための有蓋容器4と、該有蓋容器を保持するための容
器保持室5を有する装置本体(オーブン)6と、前記
容器保持室5に配置された有蓋容器4内の液体試料2及
び該有蓋容器内面と前記開口容器外面との間の空間(以
下、外部加熱用誘電体保持空間ともいう。)に存在する
凝縮液8をマイクロ波加熱するためのマイクロ波発生手
段7とを有する。
FIG. 1 is a schematic diagram of a typical microwave heating device 1 of the present invention. The microwave heating device 1 includes:
A container 4 for placing the open container 3 holding the liquid sample 2 therein, an apparatus body (oven) 6 having a container holding chamber 5 for holding the container, and a container holding chamber 5 Microwave heating of the liquid sample 2 in the placed covered container 4 and the condensate 8 existing in the space between the inner surface of the covered container and the outer surface of the open container (hereinafter, also referred to as the external heating dielectric holding space). And a microwave generating means 7 for performing the operation.

【0027】上記有蓋容器4は、容器本体4aと蓋4b
からなっており、該蓋4bを開閉することによって容器
本体4a内部に開口容器3を設置できるようになってい
る。なお、容器本体には、開口容器3が転倒するのを防
止するために開口容器3が嵌合する凹部、或いは転倒防
止壁等の固定手段を有するのが好適である。また、有蓋
容器本体4aと開口容器3とが一体となるように成型し
たものを使用することもできる。
The covered container 4 comprises a container body 4a and a lid 4b.
The open container 3 can be installed inside the container body 4a by opening and closing the lid 4b. It is preferable that the container body has a fixing means such as a concave portion into which the open container 3 is fitted or a fall prevention wall in order to prevent the open container 3 from falling. Moreover, what was molded so that the covered container main body 4a and the open container 3 were integrated can also be used.

【0028】また、該蓋4bには、ガス導入孔4d及び
ガス排出孔4eが設けられている。ガス導入孔4dには
汚染を防止するフィルターを取り付けたり清浄な不活性
ガス源に接続したりすることもできる。そして、ガス排
出孔4eに接続した排気管9(該排気管9は、装置本体
6を貫通して装置外部に延出している。)を介して前記
有蓋容器4内のガスを装置外部に真空ポンプやアスピレ
ーター等の排気手段(図示しない)によって吸引排出す
ると共に前記ガス導入孔4dから外気或いは不活性ガス
を該有蓋容器内に導入する(ガス置換法A)か、又は前
記ガス導入孔4dに該導入孔4dを貫通しないように接
続された配管(図示しない)を介して前記有蓋容器4内
に外気或いは不活性ガスを供給すると共に前記ガス排出
孔4eに接続した排気管9を介して該有蓋容器内のガス
を装置外部に排出する(ガス置換法B)ことによって前
記有蓋容器内のガスを置換することができるようになっ
ている。この時排気ガス中に酸やアルカリミストなどが
含まれている場合には、排気ガスを水などに吸収させ、
中和処理すればよい。
The lid 4b is provided with a gas introduction hole 4d and a gas discharge hole 4e. The gas introduction hole 4d may be provided with a filter for preventing contamination or connected to a clean inert gas source. The gas in the covered container 4 is evacuated to the outside of the apparatus via an exhaust pipe 9 connected to the gas discharge hole 4e (the exhaust pipe 9 extends through the apparatus main body 6 to the outside of the apparatus). The air is sucked and discharged by an exhaust means (not shown) such as a pump or an aspirator, and outside air or an inert gas is introduced into the closed container through the gas introduction hole 4d (gas replacement method A), or the gas is introduced into the gas introduction hole 4d. Outside air or an inert gas is supplied into the covered container 4 via a pipe (not shown) connected so as not to penetrate the introduction hole 4d, and the gas is supplied via an exhaust pipe 9 connected to the gas discharge hole 4e. By discharging the gas in the covered container to the outside of the apparatus (gas replacement method B), the gas in the covered container can be replaced. At this time, if the exhaust gas contains acid or alkali mist, etc., the exhaust gas is absorbed by water, etc.
What is necessary is just to neutralize.

【0029】なお、上記ガス置換法Bを採用する場合、
ガス導入孔4dを貫通した配管を用いて開口容器近傍で
ガスを吹き込んだ場合には、溶媒等の蒸気が凝縮しない
で系外に排出されてしまい、凝縮液を外部加熱用誘電体
とする本発明の濃縮方法を行なうことができなくなるの
で注意する必要がある。
When the gas replacement method B is adopted,
When gas is blown in the vicinity of the open container using a pipe penetrating the gas introduction hole 4d, vapor such as a solvent is discharged out of the system without being condensed, and the condensate is used as a dielectric for external heating. It should be noted that the enrichment method of the invention cannot be performed.

【0030】また、装置本体6は扉(図示しない)を有
しており、これを開閉して有蓋容器4を容器保持室5に
設置できるようになっている。
The apparatus main body 6 has a door (not shown), which can be opened and closed to set the covered container 4 in the container holding chamber 5.

【0031】なお、図1ではマイクロ波発生手段7が容
器保持室5の天井部に配置され、マイクロ波10が上方
から照射される態様を示したが、導波管を介してマイク
ロ波を溶液試料等に照射できるので、その位置は任意に
変更できる。
FIG. 1 shows a mode in which the microwave generating means 7 is arranged on the ceiling of the container holding chamber 5 and the microwave 10 is irradiated from above, but the microwave is applied to the solution through a waveguide. Since the irradiation can be performed on a sample or the like, the position can be arbitrarily changed.

【0032】濃縮に際しては、先ず、液体試料2を保持
した開口容器3をその有蓋容器4内に設置した後、これ
を装置本体6の容器保持室5に設置し、必要に応じて前
記ガス置換方A又はBを行ないながら液体試料2および
外部加熱用誘電体保持空間にマイクロ波発生手段7で発
生させたマイクロ波を照射すればよい。マイクロ波の照
射によって溶液試料は発熱し、溶媒が気化しその蒸気は
上部に導かれる。有蓋容器4は、それ自体は発熱しにく
く、また十分な高さを有しているので、その上方部が液
体試料から発生した溶媒若しくは分散媒の蒸気を凝縮さ
せるための蒸気凝縮部4cとなり、凝縮液は自然に壁面
を伝って下方部の開口容器3との間の空間に集まる。集
まった凝縮液8(即ち、外部加熱用誘電体)はマイクロ
波加熱されて発熱し、発生した熱は熱伝導により開口容
器を介して溶液試料に伝えられ、濃縮効率が低下するこ
と無く、例えば、乾固するまで濃縮を行なうことができ
る。
At the time of concentration, first, the open container 3 holding the liquid sample 2 is set in the covered container 4 and then set in the container holding chamber 5 of the apparatus main body 6 and, if necessary, the gas replacement is performed. The microwave generated by the microwave generating means 7 may be applied to the liquid sample 2 and the external heating dielectric holding space while performing the method A or B. The solution sample generates heat by microwave irradiation, the solvent is vaporized, and the vapor is led to the upper part. Since the covered container 4 itself does not easily generate heat and has a sufficient height, the upper part thereof becomes a vapor condensing part 4c for condensing the vapor of the solvent or the dispersion medium generated from the liquid sample, The condensate naturally travels along the wall and collects in the space between the lower opening container 3. The collected condensate 8 (that is, the external heating dielectric) is heated by microwaves and generates heat, and the generated heat is transmitted to the solution sample via the open container by heat conduction, and the concentration efficiency is not reduced. Can be concentrated to dryness.

【0033】[0033]

【実施例】本発明を更に具体的に説明するため以下実施
例および比較例を挙げて説明するが、本発明はこれらの
実施例に限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to the following Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0034】実施例1 図1に示すのと同じ構造のマイクロ波加熱装置を用い
て、ベリリウムが1ppb溶解した水溶液の濃縮を行な
った。なお、濃縮は、内容積23mlのテフロン(登録
商標)製の開口容器に、試料溶液10mlを入れ、これ
をテフロン製の有蓋容器に配置し、マイクロ波加熱装置
にセットした後、2450MHz(出力300Wに設
定)の周波数を使って1時間加熱した。なお、加熱中は
排気管から排気速度10l/minの真空ポンプを用い
て吸引を行なった。この時ガス通気孔にはテフロンフィ
ルターを接続し、排気したのと同量のフィルターろ過さ
れた大気が導入されるようにしておいた。もちろんあら
かじめ操作中の大気からベリリウムの混入がないことを
確認している。
Example 1 An aqueous solution in which beryllium was dissolved at 1 ppb was concentrated using a microwave heating apparatus having the same structure as that shown in FIG. The concentration was performed by placing 10 ml of the sample solution in a Teflon (registered trademark) open container having an internal volume of 23 ml, placing the sample solution in a Teflon-covered container, setting it in a microwave heating apparatus, and then setting it at 2450 MHz (output 300 W). ) For 1 hour. During heating, suction was performed from the exhaust pipe using a vacuum pump with an exhaust speed of 10 l / min. At this time, a Teflon filter was connected to the gas vent so that the same amount of filtered air as that exhausted was introduced. Of course, it has been confirmed in advance that there is no beryllium from the atmosphere during operation.

【0035】加熱処理後有蓋容器内を観察したところ、
開口容器との間に水が溜まっていた。また、溶液試料の
溶媒は完全になくなっており、ピペットでは吸引できな
かった。その後、開口容器を取り出し、乾固物に1%硝
酸0.5mlを加え溶液として回収した。この溶液を誘
導結合プラズマ質量分析法(ICP−MS)により分析
を行なったところ、ベリリウム濃度は20ppbであ
り、1ppb水溶液が10mlから0.5mlへと20
倍濃縮した操作中にベリリウムの消失はなく、溶液が乾
固されていることが確認された。
When the inside of the covered container was observed after the heat treatment,
Water had accumulated between the open container. In addition, the solvent of the solution sample was completely lost and could not be aspirated with a pipette. Thereafter, the open container was taken out, and 0.5 ml of 1% nitric acid was added to the dried product to collect a solution. When this solution was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), the beryllium concentration was 20 ppb, and the 1 ppb aqueous solution was changed from 10 ml to 0.5 ml.
There was no disappearance of beryllium during the double concentration operation, and it was confirmed that the solution was dried.

【0036】比較例1 実施例1において、加熱中に吸引を行なう代わりに、ガ
ス導入孔からガス導入管をその先端が有蓋容器底部近傍
にくるように貫入し、窒素ガスを約0.2/min.の流速
で導入する他は実施例1と同様にして濃縮を行なった。
Comparative Example 1 In Example 1, instead of performing suction during heating, a gas introduction pipe was inserted through the gas introduction hole so that the tip was near the bottom of the covered container, and nitrogen gas was added at about 0.2 / Concentration was performed in the same manner as in Example 1 except that the mixture was introduced at a flow rate of min.

【0037】加熱処理後有蓋容器内を観察したところ、
開口容器との間に凝集液は溜まっていなかった。また、
開口容器内に溶液試料が残存しておりその量をピペット
で吸引して確認したところ約0.5mlであり、0.5
ml溶液で回収する操作では大きな誤差をもって測定し
なけらばならないことがわかった。
When the inside of the covered container was observed after the heat treatment,
The coagulation liquid did not accumulate between the open container. Also,
The solution sample remained in the open container, and the amount was confirmed by suction with a pipette.
It was found that the measurement with a large error had to be carried out in the operation of recovering with a ml solution.

【0038】比較例2 加熱時間を4時間とする他は比較例1と同様にして加熱
を行なった。加熱処理後有蓋容器内を観察したところ、
開口容器内には溶液試料が約0.25ml残存してい
た。
Comparative Example 2 Heating was carried out in the same manner as in Comparative Example 1 except that the heating time was changed to 4 hours. After observing the inside of the covered container after the heat treatment,
About 0.25 ml of the solution sample remained in the open container.

【0039】比較例3 開口容器を内部に入れず、有蓋容器のみでさらに上蓋を
外してマイクロ波で濃縮を行った。4時間加熱したが、
溶液試料が約0.5ml残存していた。
COMPARATIVE EXAMPLE 3 An open container was not placed inside, and the upper lid was further removed with only a closed container, and concentration was performed by microwave. Heated for 4 hours,
About 0.5 ml of the solution sample remained.

【0040】[0040]

【発明の効果】本発明の濃縮方法によれば、水溶液や懸
濁液等の液体試料について外部からの汚染を受けること
無く、簡便に短時間で溶媒若しくは分散媒を蒸発させて
除去し、溶質又は懸濁物を濃縮することができる。しか
も、従来のマイクロ波加熱を利用した濃縮方法では、溶
媒等の量の減少と共に濃縮効率が低下し、高倍率の濃縮
を行なうのが困難であったのに対し、本発明の濃縮方法
では、このような濃縮効率の低下が起こらない。したが
って、本発明の濃縮方法は、微量分析を行なう際のプレ
コンセントレーション法として好適に採用できる。
According to the concentrating method of the present invention, a liquid sample such as an aqueous solution or a suspension is easily and quickly evaporated and removed in a short time without being contaminated from the outside. Alternatively, the suspension can be concentrated. Moreover, in the conventional concentration method using microwave heating, the concentration efficiency decreases with the decrease in the amount of the solvent and the like, and it is difficult to perform high-magnification concentration.On the other hand, in the concentration method of the present invention, Such a decrease in concentration efficiency does not occur. Therefore, the concentration method of the present invention can be suitably used as a pre-concentration method when performing trace analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本図は、代表的な本発明のマイクロ波加熱装
置の概略図である。
FIG. 1 is a schematic diagram of a typical microwave heating device of the present invention.

【符号の説明】[Explanation of symbols]

1・・・マイクロ波加熱装置 2・・・溶液試料 3・・・開口容器 4・・・有蓋容器 4a・・・・容器本体 4b・・・・蓋 4c・・・・蒸気凝縮部 4d・・・・ガス導入孔 4e・・・・ガス排出孔 5・・・容器保持室 6・・・装置本体 7・・・マイクロ波発生手段 8・・・凝縮液 9・・・排気管 10・・マイクロ波 DESCRIPTION OF SYMBOLS 1 ... Microwave heating apparatus 2 ... Solution sample 3 ... Open container 4 ... Covered container 4a ... Container body 4b ... Cover 4c ... Steam condensing part 4d ... ..Gas introduction hole 4e ... gas discharge hole 5 ... container holding chamber 6 ... device body 7 ... microwave generation means 8 ... condensate 9 ... exhaust pipe 10 ... micro wave

Claims (4)

【特許請求の範囲】[The claims] 【請求項1】 開口容器の内部に保持された液体試料で
あって、該開口容器の構成材料よりも高い比誘電率を有
する誘電体からなる溶媒若しくは分散媒に濃縮目的物で
ある物質が溶解若しくは懸濁した液体試料をマイクロ波
加熱して該液体試料の溶媒若しくは分散媒を蒸発させて
除去することにより前記濃縮目的物を濃縮する方法にお
いて、液体試料をマイクロ波加熱する際に、前記開口容
器の構成材料よりも高い比誘電率を有する誘電体を前記
開口容器外面の少なくとも一部に接触させ、当該誘電体
を同時にマイクロ波加熱することを特徴とする前記液体
試料の濃縮方法。
1. A liquid sample held in an open container, wherein a substance to be concentrated is dissolved in a solvent or dispersion medium made of a dielectric having a higher relative dielectric constant than the constituent material of the open container. Alternatively, in the method of concentrating the concentrated object by microwave heating a suspended liquid sample and removing the solvent or dispersion medium of the liquid sample by evaporating the liquid sample, when the liquid sample is heated by microwave, The method for concentrating a liquid sample according to claim 1, wherein a dielectric having a higher relative dielectric constant than a constituent material of the container is brought into contact with at least a part of the outer surface of the open container, and the dielectric is simultaneously microwave-heated.
【請求項2】 ガス導入孔及びガス排出孔を有する有蓋
容器の内部に、液体試料を保持した開口容器を配置し、
前記有蓋容器内面と該開口容器外面との間の空間に、前
記開口容器の構成材料よりも高い比誘電率を有する誘電
体を前記開口容器外面の少なくとも一部と密接するよう
に介在させ、該誘電体を液体試料と同時にマイクロ波加
熱することを特徴とする請求項1に記載の濃縮方法。
2. An open container holding a liquid sample is disposed inside a covered container having a gas introduction hole and a gas discharge hole,
In the space between the inner surface of the open container and the outer surface of the open container, a dielectric having a higher relative dielectric constant than the constituent material of the open container is interposed so as to be in close contact with at least a part of the outer surface of the open container, The method according to claim 1, wherein the dielectric is heated by microwaves simultaneously with the liquid sample.
【請求項3】 マイクロ波加熱中に前記ガス排出孔から
吸引するか又は前記ガス導入孔からガスを導入するかし
て前記有蓋容器内のガスを排出すると共に、マイクロ波
加熱によって蒸発した溶媒若しくは分散媒の少なくとも
一部を凝縮させ、得られた凝縮液を有蓋容器内面と開口
容器外面との間の空間に該開口容器外面の少なくとも一
部と密着するように介在させることを特徴とする請求項
2に記載の濃縮方法。
3. A method of sucking gas from the gas discharge hole or introducing gas from the gas introduction hole during microwave heating to discharge the gas in the closed container, and removing the solvent or the solvent evaporated by microwave heating. At least a portion of the dispersion medium is condensed, and the obtained condensate is interposed in a space between the inner surface of the closed container and the outer surface of the open container so as to be in close contact with at least a part of the outer surface of the open container. Item 3. The concentration method according to Item 2.
【請求項4】 液体試料を保持した開口容器をその内部
に配置するための有蓋容器であって、ガス導入孔及びガ
ス排出孔、前記液体試料から発生した溶媒若しくは分散
媒の蒸気を凝縮させるための蒸気凝縮部、並びに該蒸気
凝縮部で凝縮した凝縮液を集めて該凝縮液が前記開口容
器外面に接触するように保持する凝縮液保持部を有する
有蓋容器と、該有蓋容器を保持するための容器保持室を
有する装置本体と、前記容器保持室に配置された有蓋容
器内の液体試料及び該有蓋容器内面と前記開口容器外面
との間に存在する凝縮液をマイクロ波加熱するためのマ
イクロ波発生手段とを有することを特徴とするマイクロ
波加熱装置。
4. A closed container for arranging an open container holding a liquid sample therein, the gas container having a gas introduction hole and a gas discharge hole for condensing a vapor of a solvent or a dispersion medium generated from the liquid sample. A closed vessel having a steam condensing section, and a condensed liquid holding section for collecting the condensed liquid condensed in the steam condensing section and holding the condensed liquid in contact with the outer surface of the open container; and for holding the covered container. A device main body having a container holding chamber, and a microwave for microwave heating a liquid sample in a covered container disposed in the container holding chamber and a condensate existing between the inner surface of the covered container and the outer surface of the open container. A microwave heating device, comprising: a wave generation unit.
JP2001055262A 2001-02-28 2001-02-28 Liquid sample concentration method Expired - Fee Related JP3891783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001055262A JP3891783B2 (en) 2001-02-28 2001-02-28 Liquid sample concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001055262A JP3891783B2 (en) 2001-02-28 2001-02-28 Liquid sample concentration method

Publications (2)

Publication Number Publication Date
JP2002257698A true JP2002257698A (en) 2002-09-11
JP3891783B2 JP3891783B2 (en) 2007-03-14

Family

ID=18915469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001055262A Expired - Fee Related JP3891783B2 (en) 2001-02-28 2001-02-28 Liquid sample concentration method

Country Status (1)

Country Link
JP (1) JP3891783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018032A1 (en) * 2010-08-02 2012-02-09 住友化学株式会社 Method for determining amount of free boric acid
JP2014151266A (en) * 2013-02-08 2014-08-25 Shin Etsu Chem Co Ltd Colloidal solution concentration method and concentrated colloidal solution
CN104475005A (en) * 2014-11-26 2015-04-01 贵州远盛钾业科技有限公司 Chemical raw material microwave concentrator and concentration method thereof
JP2015227322A (en) * 2014-05-31 2015-12-17 有限会社ミネルバライトラボ Production method of organic metal complex

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018032A1 (en) * 2010-08-02 2012-02-09 住友化学株式会社 Method for determining amount of free boric acid
JP2014151266A (en) * 2013-02-08 2014-08-25 Shin Etsu Chem Co Ltd Colloidal solution concentration method and concentrated colloidal solution
JP2015227322A (en) * 2014-05-31 2015-12-17 有限会社ミネルバライトラボ Production method of organic metal complex
CN104475005A (en) * 2014-11-26 2015-04-01 贵州远盛钾业科技有限公司 Chemical raw material microwave concentrator and concentration method thereof

Also Published As

Publication number Publication date
JP3891783B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
EP2562787B1 (en) Mass spectrometer and mass analyzing method
JP5596402B2 (en) Analysis device, ionization device, and analysis method
US20070272542A1 (en) Method and apparatus for microwave assisted chemical reactions
US5750008A (en) Method and device for the extraction treatment of a sample
EP2628515A1 (en) Method and device for distilling solvents using electromagnetic radiation
CN1532543A (en) Detecting device and detecting method for chemical agent
JP3891783B2 (en) Liquid sample concentration method
WO2014171428A1 (en) Mass spectrometry method, ion generator and mass spectrometry system
JP2002005799A (en) Analytical method for trace metal impurities
JP2003294597A (en) Volatile element condensation method
JP2012256437A (en) Plasma generating nozzle, plasma generating device using it, and sterilization device
JP2013000126A (en) Sterilization apparatus
JP3117671B2 (en) Apparatus and method for concentrating chemical substances for semiconductors
JP2002263475A (en) Method for treating waste liquid of organic compound containing metal and treatment equipment for the same
JP2004516667A (en) Contaminant collection trap for ion implanters
KR100187448B1 (en) Concentrating method and apparatus of chemical for semiconductor process
JPS62159433A (en) Method and apparatus for removing resist
JP6085446B2 (en) Sterilization method
JPH07270285A (en) Sample-concentration and liquid-purification device
JP2000266650A (en) Method for analyzing surface-layer impurity of polysilicon, and sample-treating container for etching polysilicon
JP2001141721A (en) Analytical method of trace metallic impurity
JPH07235523A (en) Plasma reactor
JPS6236546A (en) Analyzer
JP3345121B2 (en) Method and apparatus for analyzing trace components of solid sample
CN115824769A (en) Pretreatment method for detecting graphene in blood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151215

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees