JP2002257487A - Spiral fin tube type heat exchanger - Google Patents

Spiral fin tube type heat exchanger

Info

Publication number
JP2002257487A
JP2002257487A JP2001057772A JP2001057772A JP2002257487A JP 2002257487 A JP2002257487 A JP 2002257487A JP 2001057772 A JP2001057772 A JP 2001057772A JP 2001057772 A JP2001057772 A JP 2001057772A JP 2002257487 A JP2002257487 A JP 2002257487A
Authority
JP
Japan
Prior art keywords
tube
refrigerant
heat exchanger
type heat
spiral fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001057772A
Other languages
Japanese (ja)
Inventor
Masayuki Manaka
雅之 間中
Masaki Sunada
正樹 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2001057772A priority Critical patent/JP2002257487A/en
Publication of JP2002257487A publication Critical patent/JP2002257487A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive spiral tube type heat exchanger, coping with both of reduction of a material cost and workability of meandering bending of a heat transfer tube, while contriving the improvement of performance. SOLUTION: The spiral fin tube type heat exchanger 11 is constituted of a refrigerant tube 12, obtained by working a single heat transfer tube so as to have a meandering shape of a straight tube section and a curved tube section connected continuously, and strips 13. Since grooves are provided on the inner surface of the refrigerant tube 12, the reduction of weight of the refrigerant tube 12 can be contrived while contriving the improvement of the performance of the same. A contacting area between the inner wall surface of the refrigerant tube 12 and a mandrel is reduced in the process of meandering bending work of the heat transfer tube whereby a frictional resistance is reduced, the necessity of spraying oil for the lubrication in the tube is eliminated, and the workability of meandering bending of the heat transfer tube can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍冷蔵空調用に
用いられる単一の伝熱管を蛇行状に曲げ加工して形成す
るスパイラルフィンチューブ型熱交換器に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral fin tube type heat exchanger formed by bending a single heat transfer tube used for freezing and refrigeration air conditioning in a meandering manner.

【0002】[0002]

【従来の技術】近年の冷蔵庫、ショーケース等に使用さ
れる熱交換器は製品自体の小型化が図られてきているこ
とと、ほこり等による熱交換器の目詰まりによる性能劣
化を防止するために省スペース性、耐ほこり性に優れた
スパイラルフィンチューブ型熱交換器が多く用いられて
きている。
2. Description of the Related Art In recent years, heat exchangers used for refrigerators, showcases, and the like have been reduced in size, and in order to prevent performance deterioration due to clogging of the heat exchanger due to dust or the like. Spiral fin tube type heat exchangers which are excellent in space saving and dust resistance are often used.

【0003】以下図面を参照しながら従来のスパイラル
フィンチューブ型熱交換器の説明をする。
A conventional spiral fin tube type heat exchanger will be described below with reference to the drawings.

【0004】図7は従来のスパイラルフィンチューブ型
熱交換器の正面図、図8は従来のスパイラルフィンチュ
ーブ型熱交換器の断面図である。
FIG. 7 is a front view of a conventional spiral fin tube type heat exchanger, and FIG. 8 is a sectional view of a conventional spiral fin tube type heat exchanger.

【0005】図7、図8において、1はスパイラルフィ
ンチューブ型熱交換器、2は単一の伝熱管を直管部及び
曲管部が連続する蛇行状に加工した冷媒管、3は帯板で
ある。
In FIGS. 7 and 8, reference numeral 1 denotes a spiral fin tube type heat exchanger, 2 denotes a refrigerant tube formed by processing a single heat transfer tube into a meandering shape in which a straight tube portion and a curved tube portion are continuous, and 3 denotes a strip plate. It is.

【0006】図9は従来のスパイラルフィンチューブ型
熱交換器を構成する冷媒管の断面図である。
FIG. 9 is a sectional view of a refrigerant tube constituting a conventional spiral fin tube type heat exchanger.

【0007】図9において、4は冷媒管2の内面壁で、
平滑な面が形成されており、冷媒管2の肉厚t1は0.
4mmである。
In FIG. 9, reference numeral 4 denotes an inner wall of the refrigerant pipe 2;
A smooth surface is formed, and the wall thickness t1 of the refrigerant pipe 2 is set to 0.1.
4 mm.

【0008】スパイラルフィンチューブ型熱交換器1は
冷媒管2と帯板3より構成され、冷媒管2に帯板3を螺
旋状に巻き付けている。
The spiral fin tube type heat exchanger 1 includes a refrigerant tube 2 and a band plate 3, and the band plate 3 is spirally wound around the refrigerant tube 2.

【0009】冷媒管2の外径は4.76mmで、冷媒管
2の曲げRは16mmである。
The outer diameter of the refrigerant pipe 2 is 4.76 mm, and the bending R of the refrigerant pipe 2 is 16 mm.

【0010】尚、冷媒管2の肉厚t1が0.4mmの場
合、伝熱管を蛇行状に曲げ加工する工程において、冷媒
管2の内部に芯金を入れる必要はなく、更には潤滑のた
めに管内にオイルを噴霧する必要がない。
When the thickness t1 of the refrigerant tube 2 is 0.4 mm, it is not necessary to insert a metal core into the refrigerant tube 2 in the step of bending the heat transfer tube in a meandering shape, and furthermore, for lubrication. There is no need to spray oil into the pipe.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
スパイラルフィンチューブ型熱交換器1は上記のように
構成されているので、冷媒管2の肉厚t1が厚く、すな
わち単位長さあたりの重量(以下、単重という)が大き
く、材料費が高いという課題を有していた。
However, since the conventional spiral fin tube type heat exchanger 1 is configured as described above, the thickness t1 of the refrigerant tube 2 is large, that is, the weight per unit length ( (Hereinafter, referred to as single weight) and the material cost was high.

【0012】材料費から考えた場合、冷媒管2の単重を
低減させた方が好ましい。
From the viewpoint of material costs, it is preferable to reduce the unit weight of the refrigerant pipe 2.

【0013】そこで、従来のスパイラルフィンチューブ
型熱交換器1において、材料費を低減させるために冷媒
管2の内面壁4を平滑な面のままで肉厚t1を薄くした
場合、芯金を入れ、潤滑のために管内にオイルを噴霧し
ないで伝熱管を蛇行状に曲げ加工すると曲管部が扁平状
態、あるいは、折れたりして伝熱管を蛇行状に曲げ加工
することができなくなる。
Therefore, in the conventional spiral fin tube type heat exchanger 1, if the thickness t1 is reduced while the inner wall 4 of the refrigerant tube 2 is kept smooth to reduce the material cost, a core metal is inserted. However, if the heat transfer tube is bent in a meandering shape without spraying oil into the tube for lubrication, the heat transfer tube cannot be bent in a meandering shape because the bent portion is flat or broken.

【0014】この場合、伝熱管を蛇行状に曲げ加工する
工程において、潤滑のために管内にオイルを噴霧する
と、曲げ加工は可能となるが、管内オイルを除去するた
めに洗浄、乾燥工程が必要となり、製造工数の増加につ
ながることから、潤滑のために管内にオイルを噴霧しな
い方が好ましい。
In this case, in the process of bending the heat transfer tube in a meandering manner, if oil is sprayed into the tube for lubrication, the bending can be performed, but a washing and drying process is required to remove the oil in the tube. Therefore, it is preferable not to spray oil into the pipe for lubrication, since this leads to an increase in the number of manufacturing steps.

【0015】すなわち、スパイラルフィンチューブ型熱
交換器1において、材料費を低減させるために冷媒管2
の内面壁4を平滑な面のままで肉厚t1を薄くした場
合、芯金を入れ、潤滑のために管内にオイルを噴霧しな
いで伝熱管を蛇行状に曲げ加工すると、加工できなくな
る、つまり、伝熱管の蛇行状の曲げ加工性が低下すると
いう課題を有していた。
That is, in the spiral fin tube type heat exchanger 1, in order to reduce the material cost, the refrigerant pipe 2
When the thickness t1 is reduced while the inner wall 4 is kept smooth, if the core is inserted and the heat transfer tube is bent in a meandering shape without spraying oil into the tube for lubrication, processing becomes impossible. However, there is a problem that the meandering bending workability of the heat transfer tube is reduced.

【0016】また、従来のスパイラルフィンチューブ型
熱交換器1は上記のように構成されているので、冷蔵庫
等の家電製品は省エネが課題である中、その為には熱交
換器の高性能化が不可欠であるが、限られたスペースの
中で熱交換器の性能を引き出すには限界があるという課
題を有していた。
Further, since the conventional spiral fin tube type heat exchanger 1 is configured as described above, home appliances such as refrigerators have a problem of energy saving. Is indispensable, but there is a problem that there is a limit in extracting the performance of the heat exchanger in a limited space.

【0017】本発明は、上記従来技術の課題を解決する
スパイラルフィンチューブ型熱交換器に係わるものであ
り、大型化を抑制しながら高性能化を容易にし、冷媒管
の単重の低減を図りつつ、かつ、伝熱管の蛇行状の曲げ
加工性の向上を図った、すなわち、高性能化を図りなが
ら、材料費の低減と伝熱管の蛇行状の曲げ加工性を両立
した、低コストなものである。
The present invention relates to a spiral fin tube type heat exchanger that solves the above-mentioned problems of the prior art, which facilitates high performance while suppressing an increase in size and reduces the unit weight of a refrigerant tube. In addition, it is a low-cost product that improves the meandering bending workability of the heat transfer tube, that is, achieves both high material performance and low heat transfer tube meandering bending workability. It is.

【0018】[0018]

【課題を解決するための手段】本発明のスパイラルフィ
ンチューブ型熱交換器は上記課題を解決するために、単
一の伝熱管を直管部及び曲管部が連続する蛇行状に加工
した冷媒管と、前記冷媒管に螺旋状に巻き付けた帯板に
より構成されるスパイラルフィンチューブ型熱交換器に
おいて、前記冷媒管の内面に溝を設けたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a spiral fin tube type heat exchanger according to the present invention is a refrigerant in which a single heat transfer tube is processed into a meandering shape in which a straight tube portion and a curved tube portion are continuous. In a spiral fin tube type heat exchanger composed of a pipe and a strip wound spirally around the refrigerant pipe, a groove is provided on the inner surface of the refrigerant pipe.

【0019】この発明によれば、冷媒管の内面に溝を設
けたことにより、大型化を抑制しながら高性能化を容易
にし、冷媒管の単重の低減を図りつつ、かつ、伝熱管の
蛇行状の曲げ加工性の向上を図った、すなわち、高性能
化を図りながら、材料費の低減と伝熱管の蛇行状の曲げ
加工性を両立した、低コストなスパイラルフィンチュー
ブ型熱交換器を提供することができる。
According to the present invention, the provision of the groove in the inner surface of the refrigerant tube facilitates the high performance while suppressing the increase in size, reduces the single weight of the refrigerant tube, and reduces the heat transfer tube. A low-cost spiral fin tube heat exchanger that improves the meandering bending workability, that is, achieves both high performance and reduced material costs and meandering bending properties of heat transfer tubes. Can be provided.

【0020】また、本発明は、冷媒管の内面に設けた溝
の断面形状は、略台形としたものである。
Further, in the present invention, the cross-sectional shape of the groove provided on the inner surface of the refrigerant tube is substantially trapezoidal.

【0021】この発明によれば、大型化を抑制しなが
ら、材料費の低減と伝熱管の蛇行状の曲げ加工性の向上
を図り、更なる高性能化を図った、低コストなスパイラ
ルフィンチューブ型熱交換器を提供することができる。
According to the present invention, a low-cost spiral fin tube is provided, in which the material cost is reduced and the meandering bending property of the heat transfer tube is improved while suppressing an increase in size, thereby further improving the performance. A type heat exchanger can be provided.

【0022】また、本発明は、冷媒管の内面に設けた溝
の展開形状は、管の円周を4以上の偶数で分割する形で
管軸に対し互いに逆向きの角度を有したものである。
Further, in the present invention, the developed shape of the groove provided on the inner surface of the refrigerant pipe has angles opposite to each other with respect to the pipe axis in such a manner that the circumference of the pipe is divided by an even number of 4 or more. is there.

【0023】この発明によれば、大型化を抑制しなが
ら、材料費の低減と伝熱管の蛇行状の曲げ加工性の向上
を図り、更に飛躍的に凝縮性能が向上する、低コストな
スパイラルフィンチューブ型熱交換器を提供することが
できる。
According to the present invention, a low-cost spiral fin is provided which reduces material costs and improves the meandering bending workability of the heat transfer tube while suppressing an increase in size, and further dramatically improves the condensation performance. A tube heat exchanger can be provided.

【0024】[0024]

【発明の実施の形態】以下、本発明のスパイラルフィン
チューブ型熱交換器の実施の形態について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the spiral fin tube type heat exchanger of the present invention will be described below with reference to the drawings.

【0025】(実施の形態1)図1は本発明の実施の形
態1によるスパイラルフィンチューブ型熱交換器の断面
図である。
(Embodiment 1) FIG. 1 is a sectional view of a spiral fin tube type heat exchanger according to Embodiment 1 of the present invention.

【0026】図1において、11はスパイラルフィンチ
ューブ型熱交換器、12は単一の伝熱管を直管部及び曲
管部が連続する蛇行状に加工した冷媒管、13は帯板で
ある。
In FIG. 1, reference numeral 11 denotes a spiral fin tube type heat exchanger, 12 denotes a refrigerant tube formed by processing a single heat transfer tube into a meandering shape in which a straight tube portion and a curved tube portion are continuous, and 13 denotes a band plate.

【0027】図2は上記スパイラルフィンチューブ型熱
交換器を構成する冷媒管の断面図、図3は同スパイラル
フィンチューブ型熱交換器を構成する冷媒管の要部断面
図である。
FIG. 2 is a sectional view of a refrigerant tube constituting the spiral fin tube type heat exchanger, and FIG. 3 is a sectional view of a main part of a refrigerant tube constituting the spiral fin tube type heat exchanger.

【0028】図2、図3において、14は冷媒管12の
内面壁、15は溝である。
In FIGS. 2 and 3, reference numeral 14 denotes an inner wall of the refrigerant pipe 12, and reference numeral 15 denotes a groove.

【0029】スパイラルフィンチューブ型熱交換器11
は冷媒管12と帯板13より構成され、冷媒管12に帯
板13を螺旋状に巻き付けている。
Spiral fin tube type heat exchanger 11
Is composed of a refrigerant tube 12 and a band plate 13, and the band plate 13 is spirally wound around the refrigerant tube 12.

【0030】ここで、冷媒管12の内面には溝15を設
けており、溝15の断面形状は略三角としている。
Here, a groove 15 is provided on the inner surface of the refrigerant pipe 12, and the cross-sectional shape of the groove 15 is substantially triangular.

【0031】冷媒管12の管外径としては、例えば3m
mから7mmが使用でき、冷媒管12の内面に設けた溝
15の深さは例えば0.10mmから0.25mmが使
用できる。
The pipe outer diameter of the refrigerant pipe 12 is, for example, 3 m
The depth of the groove 15 provided on the inner surface of the refrigerant pipe 12 can be, for example, 0.10 mm to 0.25 mm.

【0032】本実施の形態の場合、冷媒管12の外径は
4.76mm、冷媒管12の内面に設けた溝15の深さ
は、0.15mmとしている。
In this embodiment, the outer diameter of the refrigerant pipe 12 is 4.76 mm, and the depth of the groove 15 provided on the inner surface of the refrigerant pipe 12 is 0.15 mm.

【0033】冷媒管12の総肉厚t2は、t2=t1=
0.4mmとし、本実施例の場合、従来のスパイラルフ
ィンチューブ型熱交換器1に用いた内面が平滑な冷媒管
2に対して、単重が約25%低減できる。
The total thickness t2 of the refrigerant pipe 12 is given by t2 = t1 =
In the case of the present embodiment, the unit weight can be reduced by about 25% with respect to the refrigerant pipe 2 used in the conventional spiral fin tube type heat exchanger 1 having a smooth inner surface.

【0034】尚、冷媒管12の内面に設けた溝15の展
開形状は、螺旋状とするが、直線状でも同様の効果が得
られる。
Although the groove 15 provided on the inner surface of the refrigerant pipe 12 has a spiral shape, a similar effect can be obtained even if the groove 15 is linear.

【0035】尚、溝15の加工方法は、転造または引抜
のどちらでもよい。
The groove 15 may be rolled or drawn.

【0036】尚、冷媒管12の曲げRは16mmであ
る。
The bending R of the refrigerant pipe 12 is 16 mm.

【0037】図4は上記のスパイラルフィンチューブ型
熱交換器の伝熱管の蛇行状曲げ加工工程における冷媒管
の要部断面図である。
FIG. 4 is a sectional view of a main part of a refrigerant tube in a meandering bending step of the heat transfer tube of the spiral fin tube type heat exchanger.

【0038】図4において16は芯金である。冷媒管1
2の内面壁14と芯金16の接触面積は少ない。
In FIG. 4, reference numeral 16 denotes a metal core. Refrigerant pipe 1
The contact area between the inner wall 14 and the core 16 is small.

【0039】ここで、冷媒管12の内壁面14を平滑で
肉厚t1を0.4mmとしたものをサンプルI、冷媒管
12の内壁面14を平滑で肉厚t1を0.3mmとした
ものをサンプルII、冷媒管12の内面に溝15を設け
総肉厚t2を0.4mmとしたものをサンプルIIIと
して、熱交換能力測定試験、及び同一条件で伝熱管を蛇
行状に曲げ加工を行った結果を(表1)に示す。
Here, the sample I was the one in which the inner wall surface 14 of the refrigerant pipe 12 was smooth and the thickness t1 was 0.4 mm, and the one in which the inner wall surface 14 of the refrigerant pipe 12 was smooth and the wall thickness t1 was 0.3 mm. A sample II, a groove 15 formed in the inner surface of the refrigerant tube 12 and a total thickness t2 of 0.4 mm as a sample III were subjected to a heat exchange capacity measurement test, and the heat transfer tube was bent in a meandering shape under the same conditions. The results are shown in (Table 1).

【0040】[0040]

【表1】 [Table 1]

【0041】まず、熱交換能力は、サンプルIとサンプ
ルIIは同等であるが、サンプルIIIはサンプルIに
対して10%向上する。これは、サンプルIIIは冷媒
管12の内面に溝15を設けたことで、伝熱面積の増
大、乱流促進などの効果により熱交換能力が向上したの
である。これにより、スパイラルフィンチューブ型熱交
換器11の小型化も可能となる。
First, the sample I and the sample II have the same heat exchange capacity, but the sample III has a 10% improvement over the sample I. This is because, in Sample III, the grooves 15 were provided on the inner surface of the refrigerant tube 12, so that the heat exchange capacity was improved due to the effect of increasing the heat transfer area and promoting turbulence. Thereby, the size of the spiral fin tube type heat exchanger 11 can be reduced.

【0042】また、単重については、IIIは冷媒管1
2の内面に溝15を設けたことによりサンプルIに対し
て25%低減できる。
For the unit weight, III is the refrigerant pipe 1
By providing the groove 15 on the inner surface of Sample No. 2, it is possible to reduce the sample I by 25%.

【0043】また、サンプルIに対し、サンプルII、
IIIの単重低減率は同じにもかかわらず、サンプルI
Iは冷媒管12の内面が平滑であり冷媒管12の内面壁
14と芯金16の接触面積が大きいため、摩擦抵抗が大
きく、潤滑のために管内にオイルを噴霧する必要がある
が、サンプルIIIは冷媒管12の内面に溝15を設け
たことにより、冷媒管12の内面壁14と芯金16の接
触面積が少なくなり、その為、摩擦抵抗が少なく、潤滑
のために管内にオイルを噴霧する必要がない。以上のよ
うに構成された本発明の実施例1のスパイラルフィンチ
ューブ型熱交換器は、冷媒管12の内面に溝15を設け
たことで、大型化を抑制しながら高性能化を容易にし、
冷媒管12の単重を低減でき、さらに、伝熱管を蛇行状
に曲げ加工する工程において、冷媒管12の内面壁14
と芯金16の接触面積が少なくなり、その為、摩擦抵抗
が少なく、潤滑のためにオイルを噴霧する必要がなく、
伝熱管の蛇行状の曲げ加工性の向上を図った、すなわ
ち、冷媒管の内面に拡管治具を挿入しないため、冷媒管
の内面に溝を設けた溝付管そのものの性能を発揮できる
ことで高性能化を図りながら、材料費の低減と伝熱管の
蛇行状の曲げ加工性を両立することができる。
Further, the sample I is replaced with the sample II,
Although the unit weight reduction rate of III is the same, sample I
In the case of I, since the inner surface of the refrigerant pipe 12 is smooth and the contact area between the inner wall 14 of the refrigerant pipe 12 and the metal core 16 is large, the frictional resistance is large, and it is necessary to spray oil into the pipe for lubrication. III has a groove 15 on the inner surface of the refrigerant tube 12 so that the contact area between the inner surface wall 14 of the refrigerant tube 12 and the core 16 is reduced, so that the frictional resistance is reduced and oil is injected into the tube for lubrication. No need to spray. The spiral fin tube type heat exchanger according to the first embodiment of the present invention configured as described above has the groove 15 provided on the inner surface of the refrigerant tube 12, thereby facilitating high performance while suppressing an increase in size.
The unit weight of the refrigerant pipe 12 can be reduced, and further, in the step of bending the heat transfer pipe in a meandering shape, the inner wall 14
And the contact area between the metal core 16 and the core metal 16 is reduced, so that the frictional resistance is small and there is no need to spray oil for lubrication.
The meandering bendability of the heat transfer tube has been improved.In other words, since the expansion jig is not inserted into the inner surface of the refrigerant tube, the performance of the grooved tube itself having the groove formed on the inner surface of the refrigerant tube is improved. It is possible to achieve both a reduction in material costs and a meandering bending property of the heat transfer tube while improving performance.

【0044】(実施の形態2)図5は本発明の実施の形
態2によるスパイラルフィンチューブ型熱交換器を構成
する冷媒管の要部断面図である。
(Embodiment 2) FIG. 5 is a sectional view of a main part of a refrigerant tube constituting a spiral fin tube type heat exchanger according to Embodiment 2 of the present invention.

【0045】図5において、22は冷媒管、24は冷媒
管22の内面壁、25は溝である。ここで、冷媒管22
の内面には溝25を設けている。
In FIG. 5, 22 is a refrigerant pipe, 24 is an inner wall of the refrigerant pipe 22, and 25 is a groove. Here, the refrigerant pipe 22
Is provided with a groove 25 on the inner surface thereof.

【0046】そして、上記実施の形態1と異なるのは、
冷媒管22の内面に設けた溝25の断面形状を、略台形
としている点であり、この点を中心に説明する。
The difference from the first embodiment is that
The cross-sectional shape of the groove 25 provided on the inner surface of the refrigerant pipe 22 is substantially trapezoidal, and this point will be mainly described.

【0047】上記実施例において、溝25の断面形状を
略台形としたことにより、上記実施例1で示した溝15
の断面形状を略三角としたものと比較すると、溝25の
断面積の削減により冷媒液の排出性が向上し、より管内
熱伝達率が向上する。従って、熱交換能力が更に増す。
In the above embodiment, since the cross-sectional shape of the groove 25 is substantially trapezoidal, the groove 15 shown in the first embodiment is used.
As compared with the case where the cross-sectional shape is substantially triangular, the reduction of the cross-sectional area of the groove 25 improves the discharge performance of the refrigerant liquid, and further improves the heat transfer coefficient in the tube. Therefore, the heat exchange capacity is further increased.

【0048】(実施の形態3)図6は本発明の実施の形
態3によるスパイラルフィンチューブ型熱交換器を構成
する冷媒管の要部展開図である。
(Embodiment 3) FIG. 6 is a developed view of a main part of a refrigerant tube constituting a spiral fin tube type heat exchanger according to Embodiment 3 of the present invention.

【0049】図6において、32は冷媒管、35は溝、
37は溝交差部である。
In FIG. 6, 32 is a refrigerant pipe, 35 is a groove,
37 is a groove intersection.

【0050】本実施例では冷媒管の内面に円周を4分割
する形で、管軸に対し互いに逆向きの角度を有する溝が
形成されている。ここで、冷媒管32の内面には溝35
を設けており、管軸に対し互いに逆向きの角度を有する
溝が交差する溝交差部37形成されている。
In this embodiment, grooves having angles opposite to each other with respect to the tube axis are formed on the inner surface of the refrigerant tube so as to divide the circumference into four parts. Here, a groove 35 is formed on the inner surface of the refrigerant pipe 32.
Are formed, and a groove intersection 37 is formed in which grooves having angles opposite to each other with respect to the tube axis intersect.

【0051】そして、上記実施例1と異なるのは、冷媒
管32の内面に設けた溝35の展開形状を、管の円周を
4以上の偶数で分割する形で管軸に対し互いに逆向きの
角度を有している点であり、この点を中心に説明する。
The difference from the first embodiment is that the developed shape of the groove 35 provided on the inner surface of the refrigerant pipe 32 is opposite to the pipe axis in such a manner that the circumference of the pipe is divided by an even number of 4 or more. This point will be mainly described.

【0052】上記実施例において、溝35の展開形状
を、管の円周を4以上の偶数で分割する形で管軸に対し
互いに逆向きの角度を有していることより、上記実施例
1で示した溝15の展開形状を螺旋状としたものと比較
すると、管内で冷媒が凝縮する際、溝交差部37で冷媒
が衝突し乱流促進がより高まることより、管内凝縮熱伝
達率が飛躍的に高まる。従って、飛躍的に凝縮熱交換能
力が増す。
In the above embodiment, the groove 35 is formed in such a manner that the circumference of the pipe is divided by an even number of four or more, and the grooves 35 have angles opposite to each other with respect to the pipe axis. When the refrigerant is condensed in the pipe, the refrigerant collides at the groove intersection 37 and the turbulence is promoted more than when the refrigerant is condensed in the pipe. Dramatically increase. Therefore, the condensation heat exchange capacity is dramatically increased.

【0053】スパイラルフィンチューブ型熱交換器は、
ほこりの目詰まりによる性能劣化を防止するために、冷
蔵庫やショーケース等の下部に設置される凝縮器として
使用されることが多く、凝縮性能の大幅な向上は省エネ
に非常に大きく寄与する。
The spiral fin tube type heat exchanger is
In order to prevent performance degradation due to dust clogging, it is often used as a condenser installed in the lower part of refrigerators, showcases, etc., and a significant improvement in condensation performance greatly contributes to energy saving.

【0054】[0054]

【発明の効果】以上説明したように請求項1に記載の発
明は、単一の伝熱管を直管部及び曲管部が連続する蛇行
状に加工した冷媒管と、前記冷媒管に螺旋状に巻き付け
た帯板により構成されるスパイラルフィンチューブ型熱
交換器において、前記冷媒管の内面に溝を設けたことを
特徴とするスパイラルフィンチューブ型熱交換器とした
ので、冷媒管の内面に溝を設けたことにより、大型化を
抑制しながら高性能化を容易にし、冷媒管の単重の低減
を図りつつ、かつ、伝熱管の蛇行状の曲げ加工性の向上
を図った、すなわち、高性能化を図りながら、材料費の
低減と伝熱管の蛇行状の曲げ加工性の向上を図るという
作用を有する。
As described above, according to the first aspect of the present invention, there is provided a refrigerant pipe in which a single heat transfer tube is processed into a meandering shape in which a straight pipe portion and a curved pipe portion are continuous, and a spiral pipe formed in the refrigerant tube. In the spiral fin tube type heat exchanger constituted by a band plate wound around the spiral fin tube type heat exchanger, wherein a groove is provided on the inner surface of the refrigerant tube, the groove is formed on the inner surface of the refrigerant tube. With the provision of the above, the high performance is facilitated while suppressing the increase in size, the single weight of the refrigerant tube is reduced, and the meandering bending workability of the heat transfer tube is improved. This has the effect of reducing material costs and improving the meandering bending workability of the heat transfer tube while improving performance.

【0055】また、請求項2記載に記載の発明は、冷媒
管の内面に設けた溝の断面形状を、略台形としたもので
あり、大型化を抑制しながら、材料費の低減と伝熱管の
蛇行状の曲げ加工性の向上を図り、更なる高性能化を図
るという作用を有する。
According to the second aspect of the present invention, the cross-sectional shape of the groove provided on the inner surface of the refrigerant tube is substantially trapezoidal, so that the material cost can be reduced and the heat transfer tube can be reduced while suppressing an increase in size. Has the effect of improving the meandering bending workability and further improving the performance.

【0056】また、請求項3記載に記載の発明は、冷媒
管の内面に設けた溝の展開形状を、管の円周を4以上の
偶数で分割する形で管軸に対し互いに逆向きの角度を有
したものであり、大型化を抑制しながら、材料費の低減
と伝熱管の蛇行状の曲げ加工性の向上を図り、更に飛躍
的に凝縮性能が向上するという作用を有する。
According to a third aspect of the present invention, the development shape of the groove provided on the inner surface of the refrigerant pipe is opposite to the pipe axis in such a manner that the circumference of the pipe is divided by an even number of four or more. It has an angle, and has the effect of reducing material costs and improving the meandering bending workability of the heat transfer tube while further suppressing the increase in size, and further dramatically improving the condensation performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1におけるスパイラルフィ
ンチューブ型熱交換器の図8相当部分の断面図
FIG. 1 is a sectional view of a portion corresponding to FIG. 8 of a spiral fin tube type heat exchanger according to Embodiment 1 of the present invention.

【図2】上記のスパイラルフィンチューブ型熱交換器を
構成する冷媒管の断面図
FIG. 2 is a cross-sectional view of a refrigerant tube constituting the spiral fin tube type heat exchanger.

【図3】上記のスパイラルフィンチューブ型熱交換器を
構成する冷媒管の要部断面図
FIG. 3 is a sectional view of a main part of a refrigerant pipe constituting the spiral fin tube type heat exchanger.

【図4】上記のスパイラルフィンチューブ型熱交換器の
伝熱管の蛇行状曲げ加工工程における冷媒管の要部断面
FIG. 4 is a sectional view of a main part of a refrigerant tube in a meandering bending process of the heat transfer tube of the spiral fin tube type heat exchanger.

【図5】本発明の実施の形態2におけるスパイラルフィ
ンチューブ型熱交換器を構成する冷媒管の要部断面図
FIG. 5 is a sectional view of a main part of a refrigerant tube constituting a spiral fin tube type heat exchanger according to Embodiment 2 of the present invention.

【図6】本発明の実施の形態3におけるスパイラルフィ
ンチューブ型熱交換器を構成する冷媒管の要部展開図
FIG. 6 is a development view of a main part of a refrigerant tube included in a spiral fin tube type heat exchanger according to Embodiment 3 of the present invention.

【図7】従来のスパイラルフィンチューブ型熱交換器の
正面図
FIG. 7 is a front view of a conventional spiral fin tube type heat exchanger.

【図8】図7のB−B´線における断面図FIG. 8 is a sectional view taken along line BB ′ of FIG. 7;

【図9】従来のスパイラルフィンチューブ型熱交換器を
構成する冷媒管の断面図
FIG. 9 is a sectional view of a refrigerant tube constituting a conventional spiral fin tube type heat exchanger.

【符号の説明】[Explanation of symbols]

11 スパイラルフィンチューブ型熱交換器 12,22,32 冷媒管 13 帯板 15,25,35 溝 11 Spiral fin tube type heat exchanger 12, 22, 32 Refrigerant tube 13 Strip plate 15, 25, 35 Groove

Claims (3)

【特許請求の範囲】[The claims] 【請求項1】 単一の伝熱管を直管部及び曲管部が連続
する蛇行状に加工した冷媒管と、前記冷媒管に螺旋状に
巻き付けた帯板により構成されるスパイラルフィンチュ
ーブ型熱交換器において、前記冷媒管の内面に溝を設け
たことを特徴とするスパイラルフィンチューブ型熱交換
器。
1. A spiral fin tube type heat exchanger comprising a refrigerant tube formed by processing a single heat transfer tube into a meandering shape in which a straight tube portion and a curved tube portion are continuous, and a band plate spirally wound around the refrigerant tube. A spiral fin tube type heat exchanger, wherein a groove is provided on an inner surface of the refrigerant tube in the exchanger.
【請求項2】 冷媒管の内面に設けた溝の断面形状は、
略台形としたことを特徴とする請求項1記載のスパイラ
ルフィンチューブ型熱交換器。
2. The cross-sectional shape of the groove provided on the inner surface of the refrigerant pipe is as follows:
The spiral fin tube type heat exchanger according to claim 1, wherein the heat exchanger is substantially trapezoidal.
【請求項3】 冷媒管の内面に設けた溝の展開形状は、
管の円周を4以上の偶数で分割する形で管軸に対し傾斜
し、且つ互いに逆向きの角度を有したことを特徴とする
請求項1又は2記載のスパイラルフィンチューブ型熱交
換器。
3. The developed shape of the groove provided on the inner surface of the refrigerant pipe is as follows:
The spiral fin tube type heat exchanger according to claim 1 or 2, wherein the circumference of the tube is inclined with respect to the tube axis in such a manner as to divide the circumference of the tube by an even number of 4 or more, and has angles opposite to each other.
JP2001057772A 2001-03-02 2001-03-02 Spiral fin tube type heat exchanger Pending JP2002257487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057772A JP2002257487A (en) 2001-03-02 2001-03-02 Spiral fin tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001057772A JP2002257487A (en) 2001-03-02 2001-03-02 Spiral fin tube type heat exchanger

Publications (1)

Publication Number Publication Date
JP2002257487A true JP2002257487A (en) 2002-09-11

Family

ID=18917599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057772A Pending JP2002257487A (en) 2001-03-02 2001-03-02 Spiral fin tube type heat exchanger

Country Status (1)

Country Link
JP (1) JP2002257487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122686A (en) * 2010-12-09 2012-06-28 Mitsubishi Electric Corp Twisted tube type heat exchanger
CN102714337A (en) * 2010-01-06 2012-10-03 株式会社Lg化学 Mid-or-large-sized battery pack having improved cooling efficiency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714337A (en) * 2010-01-06 2012-10-03 株式会社Lg化学 Mid-or-large-sized battery pack having improved cooling efficiency
JP2013516739A (en) * 2010-01-06 2013-05-13 エルジー・ケム・リミテッド Medium or large battery pack with improved cooling efficiency
JP2012122686A (en) * 2010-12-09 2012-06-28 Mitsubishi Electric Corp Twisted tube type heat exchanger

Similar Documents

Publication Publication Date Title
KR950007759B1 (en) Method of producing in small electric tube
EP1457751A1 (en) Heat exchanger and fabrication method thereof
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2008164245A (en) Heat exchanger
JP2000039283A (en) Heat exchanger
US20020070011A1 (en) Heat transfer pipe for refrigerant mixture
JP2001289585A (en) Inner grooved aluminum tube and heat exchanger comprising the same
US7059394B2 (en) Heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2006130558A (en) Method for manufacturing heat exchanger
CN104956175A (en) Heat exchanger and cooling device using same
JP2002257487A (en) Spiral fin tube type heat exchanger
JP4339665B2 (en) Manufacturing method of heat exchanger
JP2002090086A (en) Inner helically grooved heat exchanger tube and method for manufacturing heat exchanger
JP3286171B2 (en) Heat transfer tube with internal groove
JP2912826B2 (en) Heat transfer tube with internal groove
JPH0579783A (en) Heat transfer tube with inner surface groove
JP2811601B2 (en) Heat exchanger
JP3199636B2 (en) Heat transfer tube with internal groove
JPH04260792A (en) Small-diameter heat transfer tube
KR100469321B1 (en) A Fin-Tube Type Heat Exchanger And Manufacturing Method Thereof
JPH051891A (en) Heat transfer tube with internal groove
JPH09303986A (en) Method and structure for fitting-in between plate fin for heat-exchanger and pipe
JPH10103813A (en) Condenser
JPH0712483A (en) Heat transfer tube with inner surface groove