JP2002257375A - Heat pump and dehumidifying-air conditioning device - Google Patents

Heat pump and dehumidifying-air conditioning device

Info

Publication number
JP2002257375A
JP2002257375A JP2001059330A JP2001059330A JP2002257375A JP 2002257375 A JP2002257375 A JP 2002257375A JP 2001059330 A JP2001059330 A JP 2001059330A JP 2001059330 A JP2001059330 A JP 2001059330A JP 2002257375 A JP2002257375 A JP 2002257375A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
pressure
heat
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001059330A
Other languages
Japanese (ja)
Other versions
JP3253021B1 (en
Inventor
Kensaku Maeda
健作 前田
Hideo Inaba
英男 稲葉
Toshiaki Nishiwaki
俊朗 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001059330A priority Critical patent/JP3253021B1/en
Application granted granted Critical
Publication of JP3253021B1 publication Critical patent/JP3253021B1/en
Priority to CNB02808263XA priority patent/CN1223804C/en
Priority to EP02701662A priority patent/EP1370809A4/en
Priority to PCT/JP2002/001897 priority patent/WO2002070958A1/en
Priority to US10/468,832 priority patent/US20040118133A1/en
Publication of JP2002257375A publication Critical patent/JP2002257375A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump with a high coefficient of performance(COP) and a dehumidifying-air conditioning device with a high dehumidifying capacity per energy consumption. SOLUTION: This device is provided with a booster 4 raising the pressure of refrigerant, a condenser 5 condensing the refrigerant, an evaporator 1 evaporating the refrigerant to cool down treated air to a dew-point temperature or below, branch refrigerant paths 42 to 44 branching into a plurality of lines between the condenser 5 and the evaporator 1, the first heat exchange part 21 evaporating the refrigerant at the intermediate pressure between the condensing pressure of the condenser 5 and the evaporating pressure of the evaporator 1 to cool down the treated air, the second heat exchange part 22 condensing the refrigerant at the intermediate pressure between the condensing pressure of the condenser 5 and the evaporating pressure of the evaporator 1 to heat the treated air, and treated-air paths connecting the first heat exchange part 21, the evaporator 1 and the second heat exchange part 22 in this order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプ及び
除湿空調装置、特に動作係数(COP)の高いヒートポ
ンプ及びこのようなヒートポンプを備え、エネルギー消
費量当たりの除湿能力の高い除湿空調装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump and a dehumidifying air conditioner, and more particularly to a heat pump having a high operating coefficient (COP) and a dehumidifying air conditioner having such a heat pump and having a high dehumidifying capacity per energy consumption. .

【0002】[0002]

【従来の技術】従来の空調システムの構成を図10に示
す。図10に示すように、従来の除湿空調装置は、冷媒
を圧縮する圧縮機201と、圧縮機201により圧縮さ
れた冷媒を外気OAで凝縮する凝縮器202と、凝縮さ
れた冷媒を膨張弁203で減圧し冷媒を蒸発させて空調
空間100からの処理空気を露点温度以下に冷却する蒸
発器204と、この露点以下に冷却された処理空気を、
凝縮器202の下流側で膨張弁203の上流側の冷媒で
再熱する再熱器205とを備えている。これら圧縮機2
01、凝縮器202、再熱器205、膨張弁203及び
蒸発器204によって、蒸発器204を流れる処理空気
から凝縮器202を流れる外気OAに熱を汲み上げるヒ
ートポンプHPが構成されている。
2. Description of the Related Art FIG. 10 shows a configuration of a conventional air conditioning system. As shown in FIG. 10, a conventional dehumidifying air conditioner includes a compressor 201 for compressing a refrigerant, a condenser 202 for condensing the refrigerant compressed by the compressor 201 with outside air OA, and an expansion valve 203 for condensing the refrigerant. And an evaporator 204 for evaporating the refrigerant and evaporating the refrigerant to cool the processing air from the air-conditioned space 100 to a temperature equal to or lower than the dew point.
And a reheater 205 that reheats the refrigerant downstream of the condenser 202 with the refrigerant upstream of the expansion valve 203. These compressors 2
01, the condenser 202, the reheater 205, the expansion valve 203, and the evaporator 204 constitute a heat pump HP that pumps heat from processing air flowing through the evaporator 204 to outside air OA flowing through the condenser 202.

【0003】図11は、従来の除湿空調装置において、
冷媒としてHFC134aを用いた場合のヒートポンプ
HPのモリエ線図である。図11において、点aは蒸発
器204で蒸発した冷媒の状態を示しており、このとき
の冷媒は飽和ガスの状態にある。冷媒の圧力は0.34
MPa、温度は5℃、エンタルピは400.9kJ/k
gである。点bはガスを圧縮機201で吸込圧縮した状
態、即ち圧縮機201の吐出口での状態を示しており、
このときの冷媒は過熱ガスの状態にある。
FIG. 11 shows a conventional dehumidifying air conditioner.
It is a Mollier diagram of the heat pump HP when HFC134a is used as a refrigerant. In FIG. 11, the point a indicates the state of the refrigerant evaporated by the evaporator 204, and the refrigerant at this time is in a saturated gas state. The refrigerant pressure is 0.34
MPa, temperature 5 ° C, enthalpy 400.9 kJ / k
g. Point b indicates a state in which gas is sucked and compressed by the compressor 201, that is, a state at the discharge port of the compressor 201,
At this time, the refrigerant is in a superheated gas state.

【0004】点bの状態にある冷媒ガスは、凝縮器20
2内で冷却され、点cで示される状態に至る。このとき
の冷媒は飽和ガスの状態であり、その圧力は0.94M
Pa、温度は38℃である。冷媒はこの圧力下で更に冷
却され凝縮して点dで示される状態に至る。このときの
冷媒は飽和液の状態であり、その圧力と温度は点cにお
ける圧力及び温度と同じである。このときのエンタルピ
は250.5kJ/kgである。
The refrigerant gas in the state at the point b is supplied to the condenser 20
2 to reach the state shown by point c. At this time, the refrigerant is in a saturated gas state, and its pressure is 0.94 M
Pa, temperature is 38 ° C. The refrigerant is further cooled and condensed under this pressure to reach the state indicated by point d. At this time, the refrigerant is in a saturated liquid state, and its pressure and temperature are the same as the pressure and temperature at point c. The enthalpy at this time is 250.5 kJ / kg.

【0005】この冷媒液は、膨張弁203で減圧され、
温度5℃の飽和圧力である0.34MPaまで減圧され
て点eで示される状態に至る。点eの状態における冷媒
は、5℃の冷媒液とガスの混合物として蒸発器204に
至り、蒸発器204において処理空気から熱を奪い、蒸
発して、点aで示される状態の飽和ガスとなる。この飽
和ガスは再び圧縮機201に吸入され、上述したサイク
ルが繰り返される。
[0005] This refrigerant liquid is decompressed by the expansion valve 203,
The pressure is reduced to 0.34 MPa, which is the saturation pressure at a temperature of 5 ° C., to reach the state shown by point e. The refrigerant in the state of the point e reaches the evaporator 204 as a mixture of the refrigerant liquid and the gas at 5 ° C., in which the heat is removed from the processing air in the evaporator 204 and evaporated to become a saturated gas in the state indicated by the point a. . This saturated gas is sucked into the compressor 201 again, and the above-described cycle is repeated.

【0006】図12は、従来の除湿空調装置における空
調サイクルを示す湿り空気線図である。図12におい
て、符号K、L、Mは、図10においてそれぞれの符号
を付した経路状態に対応している。図12に示すよう
に、従来の除湿空調装置において、空調空間100から
の空気(状態K)は、蒸発器204で露点温度以下に冷
却され、乾球温度が低下すると共に絶対湿度が低下して
状態Lに至る。この状態Lは湿り空気線図において飽和
線上にある。状態Lの空気は再熱器205で再熱され、
絶対湿度一定のまま乾球温度が上昇して状態Mに至り、
空調空間100に供給される。この状態Mは、状態Kと
比べて絶対湿度、乾球温度共に低い。
FIG. 12 is a psychrometric chart showing an air conditioning cycle in a conventional dehumidifying air conditioner. In FIG. 12, reference numerals K, L, and M correspond to the path states denoted by the respective reference numerals in FIG. As shown in FIG. 12, in the conventional dehumidifying air-conditioning apparatus, the air (state K) from the air-conditioned space 100 is cooled to the dew point temperature or lower by the evaporator 204, and the dry bulb temperature decreases and the absolute humidity decreases. State L is reached. This state L is on the saturation line in the psychrometric chart. The air in the state L is reheated by the reheater 205,
With the absolute humidity kept constant, the dry bulb temperature rises to reach state M,
The air is supplied to the air-conditioned space 100. In this state M, both the absolute humidity and the dry bulb temperature are lower than the state K.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の除湿空調装置においては、露点までの冷却量が
多いためヒートポンプの蒸発器における冷凍効果のうち
半分程度が顕熱負荷を奪うのに消費され、電力消費量当
たりの除湿能力(除湿性能)が低かった。また、ヒート
ポンプの圧縮機として単段圧縮機を用いる場合には、1
段圧縮の圧縮式冷凍サイクルになり、動作係数(CO
P)が低く、除湿量当たりの電力消費量が大きかった。
However, in the above-described conventional dehumidifying air conditioner, since the amount of cooling to the dew point is large, about half of the refrigerating effect in the evaporator of the heat pump is consumed to take the sensible heat load. , The dehumidifying capacity per power consumption (dehumidifying performance) was low. When a single-stage compressor is used as the heat pump compressor,
It becomes a compression refrigeration cycle of stage compression, and the operating coefficient (CO
P) was low, and the power consumption per dehumidification amount was large.

【0008】本発明は、このような従来技術の問題点に
鑑みてなされたもので、動作係数(COP)の高いヒー
トポンプ及びエネルギー消費量当たりの除湿能力の高い
除湿空調装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the prior art, and has as its object to provide a heat pump having a high operating coefficient (COP) and a dehumidifying air conditioner having a high dehumidifying capacity per energy consumption. And

【0009】[0009]

【課題を解決するための手段】このような従来技術にお
ける問題点を解決するために、本発明の一態様は、冷媒
を昇圧する昇圧機と、上記冷媒を凝縮させて高熱源流体
を加熱する凝縮器と、上記冷媒を蒸発させて低熱源流体
を冷却する蒸発器と、上記凝縮器と上記蒸発器との間で
複数列に分岐する分岐冷媒経路と、上記凝縮器と上記蒸
発器との間であって上記分岐冷媒経路中に設けられ、上
記凝縮器の凝縮圧力と上記蒸発器の蒸発圧力との中間の
圧力で冷媒を蒸発させて上記処理空気を冷却する第1の
熱交換手段と、上記凝縮器と上記蒸発器との間であって
上記分岐冷媒経路中に設けられ、上記凝縮器の凝縮圧力
と上記蒸発器の蒸発圧力との中間の圧力で冷媒を凝縮さ
せて上記処理空気を加熱する第2の熱交換手段と、上記
第1の熱交換手段と上記蒸発器と上記第2の熱交換手段
とをこの順番で接続する処理空気経路とを備えたことを
特徴とするヒートポンプである。
In order to solve the problems in the prior art, one aspect of the present invention is to provide a booster for increasing the pressure of a refrigerant and to heat the high heat source fluid by condensing the refrigerant. A condenser, an evaporator that evaporates the refrigerant and cools the low heat source fluid, a branch refrigerant path that branches into a plurality of rows between the condenser and the evaporator, and the condenser and the evaporator. A first heat exchange means provided between and in the branch refrigerant path, evaporating a refrigerant at an intermediate pressure between the condensation pressure of the condenser and the evaporation pressure of the evaporator to cool the processing air; Between the condenser and the evaporator, in the branch refrigerant path, and condensing the refrigerant at a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator to form the processing air. Heat exchange means for heating the first heat exchange means, and the first heat exchange means A heat pump, characterized in that a process air path for connecting the evaporator and the second heat exchange means in this order.

【0010】また、本発明の他の一態様は、冷媒を昇圧
する昇圧機と、上記冷媒を凝縮させて高熱源流体を加熱
する凝縮器と、上記冷媒を蒸発させて処理空気を露点温
度以下まで冷却する蒸発器と、上記凝縮器と上記蒸発器
との間で複数列に分岐する分岐冷媒経路と、上記凝縮器
と上記蒸発器との間であって上記分岐冷媒経路中に設け
られ、上記凝縮器の凝縮圧力と上記蒸発器の蒸発圧力と
の中間の圧力で冷媒を蒸発させて上記処理空気を冷却す
る第1の熱交換手段と、上記凝縮器と上記蒸発器との間
であって上記分岐冷媒経路中に設けられ、上記凝縮器の
凝縮圧力と上記蒸発器の蒸発圧力との中間の圧力で冷媒
を凝縮させて上記処理空気を加熱する第2の熱交換手段
と、上記第1の熱交換手段と上記蒸発器と上記第2の熱
交換手段とをこの順番で接続する処理空気経路とを備え
たことを特徴とする除湿空調装置である。
Another aspect of the present invention is a pressure booster for pressurizing a refrigerant, a condenser for condensing the refrigerant to heat a high heat source fluid, and evaporating the refrigerant to reduce the processing air to a dew point temperature or lower. An evaporator that cools down, a branch refrigerant path that branches into a plurality of rows between the condenser and the evaporator, and is provided in the branch refrigerant path between the condenser and the evaporator, First heat exchange means for evaporating a refrigerant at a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator to cool the processing air, and between the condenser and the evaporator. A second heat exchange means provided in the branch refrigerant path to condense refrigerant at a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator to heat the processing air; and The first heat exchange means, the evaporator, and the second heat exchange means A dehumidifying air-conditioning apparatus characterized by comprising a process air path for connecting in turn.

【0011】このような構成により、蒸発器での冷却の
前に第1の熱交換手段において低熱源流体を予冷でき、
その予冷の熱を使って、蒸発器での冷却の後に第2の熱
交換手段において低熱源流体を加熱し、また、処理空気
を低熱源とし、蒸発器で処理空気を露点温度以下に冷却
するようにすれば、除湿量当たりのエネルギー消費量が
小さい除湿空調装置を提供することが可能となる。
[0011] With this configuration, the low heat source fluid can be pre-cooled in the first heat exchange means before cooling in the evaporator,
Using the heat of pre-cooling, after cooling in the evaporator, the low heat source fluid is heated in the second heat exchange means, and the processing air is set to a low heat source, and the processing air is cooled to the dew point or lower by the evaporator. By doing so, it is possible to provide a dehumidifying air-conditioning apparatus that consumes less energy per dehumidifying amount.

【0012】更に、分岐冷媒経路を設けることによっ
て、冷媒の作用温度を段階的に変化させることができる
ので、熱交換効率を高めることが可能となる。ここで、
熱交換効率φは、高温側の流体の熱交換器入口温度をT
P1、出口温度をT、低温側の流体の熱交換器入口温度
をTC1、出口温度をTC2としたとき、高温側の流体
の冷却に注目した場合、即ち、熱交換の目的が冷却の場
合は、φ=(TP1−TP2)/(TP1−TC1)、
低温の流体の加熱に注目した場合、即ち、熱交換の目的
が加熱の場合は、φ=(TC2−TC1)/(TP1−
TC1)と定義されるものである。
Further, by providing the branch refrigerant path, the operating temperature of the refrigerant can be changed stepwise, so that the heat exchange efficiency can be increased. here,
The heat exchange efficiency φ is obtained by calculating the heat exchanger inlet temperature of the fluid on the high temperature side as T
When P1, the outlet temperature is T, the heat exchanger inlet temperature of the low-temperature fluid is TC1, and the outlet temperature is TC2, if attention is paid to cooling of the high-temperature fluid, that is, if the purpose of heat exchange is cooling, , Φ = (TP1-TP2) / (TP1-TC1),
When attention is paid to heating of a low-temperature fluid, that is, when the purpose of heat exchange is heating, φ = (TC2−TC1) / (TP1−
TC1).

【0013】また、本発明の好ましい一態様において
は、上記分岐冷媒経路が、上記蒸発器の内部を並列に延
び、該蒸発器の下流側で合流する。この場合において、
上記分岐冷媒経路のうち、温度が高い処理空気と熱交換
をする冷媒が通過する冷媒経路には、温度が低い処理空
気と熱交換する冷媒を上記冷媒経路を通過した冷媒によ
り昇圧するエゼクタを設置してもよい。
In a preferred aspect of the present invention, the branch refrigerant paths extend in parallel inside the evaporator and join at a downstream side of the evaporator. In this case,
An ejector that pressurizes the refrigerant that exchanges heat with the low-temperature processing air by the refrigerant that has passed through the refrigerant path is installed in the refrigerant path through which the refrigerant that exchanges heat with the high-temperature processing air passes. May be.

【0014】このような構成により、蒸発器の作用温度
が上昇するので、理論冷凍効果が増加し、理論圧縮仕事
が減少して効率を高めることが可能となる。また、冷媒
の比体積が減少するので、昇圧機で吸引する冷媒の流量
が増加する。従って、冷凍効果の増加に伴って除湿量が
増加し、効率を高めることができる。
With such a configuration, the operating temperature of the evaporator increases, so that the theoretical refrigeration effect increases, the theoretical compression work decreases, and the efficiency can be increased. Also, since the specific volume of the refrigerant decreases, the flow rate of the refrigerant sucked by the booster increases. Therefore, the amount of dehumidification increases with an increase in the freezing effect, and the efficiency can be improved.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る除湿空調装置
の第1の実施形態について図1乃至図6を参照して説明
する。図1は本実施形態における空調システムの全体構
成を示す図、図2は第1の実施形態における除湿空調装
置内のフローを模式的に示す図である。本実施形態にお
ける除湿空調装置は、空調空間100内の空気(処理空
気)をその露点温度以下に冷却して除湿するものであ
り、内部にヒートポンプHP1を含んでいる。除湿空調
装置によって湿度が下げられた処理空気が空調空間10
0に戻されることによって、空調空間100が快適な環
境に維持される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a dehumidifying air conditioner according to the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing an entire configuration of an air conditioning system according to the present embodiment, and FIG. 2 is a diagram schematically showing a flow in a dehumidifying air conditioner according to the first embodiment. The dehumidifying air-conditioning apparatus according to the present embodiment cools air (process air) in the air-conditioned space 100 to a temperature lower than its dew point and dehumidifies the air, and includes a heat pump HP1 therein. The processing air whose humidity has been reduced by the dehumidifying air-conditioning device
By returning to 0, the air-conditioned space 100 is maintained in a comfortable environment.

【0016】除湿空調装置は、図1に示すように、空調
空間100内に設置される室内機10と、空調空間10
0の外部(室外)に設置される室外機20とから基本的
に構成されている。除湿空調装置の室内機10は、冷媒
を蒸発させる冷媒蒸発器1と、冷媒と処理空気との間で
熱交換を行う熱交換器2と、処理空気を循環するための
送風機3とを備えている。熱交換器2は、蒸発器1に流
入する前後の処理空気同士の間で、冷媒を介して間接的
に熱交換を行うものであり、冷媒を蒸発させて処理空気
を冷却する第1の熱交換部21と、冷媒を凝縮させて処
理空気を加熱する第2の熱交換部22とを備えている。
また、除湿空調装置の室外機20は、冷媒を圧縮する昇
圧機4と、冷媒を冷却して凝縮させる冷媒凝縮器5と、
冷却空気を送風するための送風機6とを備えている。
As shown in FIG. 1, the dehumidifying air conditioner includes an indoor unit 10 installed in an air-conditioned space 100 and an air-conditioned space 10.
And the outdoor unit 20 installed outside (outdoor). The indoor unit 10 of the dehumidifying air conditioner includes a refrigerant evaporator 1 for evaporating the refrigerant, a heat exchanger 2 for exchanging heat between the refrigerant and the processing air, and a blower 3 for circulating the processing air. I have. The heat exchanger 2 indirectly exchanges heat between processing air before and after flowing into the evaporator 1 via a refrigerant, and a first heat for evaporating the refrigerant and cooling the processing air. An exchange unit 21 and a second heat exchange unit 22 for condensing the refrigerant and heating the processing air are provided.
The outdoor unit 20 of the dehumidifying air conditioner includes a booster 4 that compresses the refrigerant, a refrigerant condenser 5 that cools and condenses the refrigerant,
A blower 6 for blowing cooling air.

【0017】処理空気が流通する経路(処理空気経路)
は、図2に示すように、空調空間100と熱交換器2の
第1の熱交換部21とを接続する経路30と、第1の熱
交換部21と蒸発器1とを接続する経路31と、蒸発器
1と熱交換器2の第2の熱交換部22とを接続する経路
32と、第2の熱交換部22と送風機3とを接続する経
路33と、送風機3と空調空間100とを接続する経路
34とから構成されている。このような処理空気経路に
よって、熱交換器2の第1の熱交換部21と蒸発器1と
熱交換器2の第2の熱交換部22とが順番に接続されて
いる。
A path through which the processing air flows (a processing air path)
As shown in FIG. 2, a path 30 connecting the air-conditioned space 100 and the first heat exchange unit 21 of the heat exchanger 2 and a path 31 connecting the first heat exchange unit 21 and the evaporator 1 A path 32 connecting the evaporator 1 and the second heat exchange section 22 of the heat exchanger 2; a path 33 connecting the second heat exchange section 22 and the blower 3; And a path 34 connecting the two. The first heat exchange part 21 of the heat exchanger 2, the evaporator 1, and the second heat exchange part 22 of the heat exchanger 2 are sequentially connected by such a processing air path.

【0018】一方、冷媒経路は、蒸発器1と昇圧機4と
を接続する経路40と、昇圧機4と凝縮器5とを接続す
る経路41と、凝縮器5と蒸発器1とを接続する経路と
から構成される。ここで、凝縮器5と蒸発器1とを接続
する経路は、凝縮器5の下流側において複数列(図2に
おいては3列)に分岐しており、分岐冷媒経路42〜4
4が形成されている。この分岐冷媒経路42〜44は、
蒸発器1の上流側において1本の経路45に合流してい
る。
On the other hand, the refrigerant path includes a path 40 connecting the evaporator 1 and the booster 4, a path 41 connecting the booster 4 and the condenser 5, and connecting the condenser 5 and the evaporator 1. And a route. Here, a path connecting the condenser 5 and the evaporator 1 is branched into a plurality of rows (three rows in FIG. 2) on the downstream side of the condenser 5, and the branched refrigerant paths 42 to 4 are provided.
4 are formed. The branch refrigerant paths 42 to 44 are
At the upstream side of the evaporator 1, it joins one path 45.

【0019】凝縮器5には、経路46を介して冷却空気
としての外気OAが導入される。この外気OAは凝縮す
る冷媒から熱を奪い、加熱された外気は経路47を経由
して送風機6に吸い込まれ、経路48を経由して屋外に
排出される(EX)。
Outside air OA as cooling air is introduced into the condenser 5 through a passage 46. The outside air OA removes heat from the condensing refrigerant, and the heated outside air is sucked into the blower 6 via the path 47 and discharged outside via the path 48 (EX).

【0020】分岐冷媒経路42〜44は、熱交換器2の
第1の熱交換部21と第2の熱交換部22とをそれぞれ
貫通しており、第1の熱交換部21内には、冷媒を蒸発
させることによって第1の熱交換部21を流れる処理空
気を冷却する蒸発セクション51が形成され、第2の熱
交換部22内には、冷媒を凝縮させることによって第2
の熱交換部22を流れる処理空気を加熱(再熱)する凝
縮セクション52が形成されている。また、各分岐冷媒
経路42〜44には、第1の熱交換部21の上流側に絞
り11〜13がそれぞれ配置され、第2の熱交換部22
の下流側に絞り14〜16がそれぞれ配置されている。
これらの絞り11〜16として、例えば、オリフィス、
キャピラリチューブ、膨張弁などを用いることができ
る。
The branch refrigerant passages 42 to 44 pass through the first heat exchange part 21 and the second heat exchange part 22 of the heat exchanger 2, respectively. An evaporating section 51 is formed to cool the processing air flowing through the first heat exchange section 21 by evaporating the refrigerant, and the second section is formed in the second heat exchange section 22 by condensing the refrigerant.
A condensing section 52 for heating (reheating) the processing air flowing through the heat exchange section 22 is formed. In each of the branch refrigerant paths 42 to 44, throttles 11 to 13 are arranged on the upstream side of the first heat exchange section 21, respectively.
The throttles 14 to 16 are respectively arranged on the downstream side of.
As these apertures 11 to 16, for example, orifices,
A capillary tube, an expansion valve, or the like can be used.

【0021】図3は、図2の除湿空調装置の熱交換器2
における分岐冷媒経路42〜44を示す拡大図である。
蒸発セクション51と凝縮セクション52とを含んで構
成される冷媒経路は、第1の熱交換部21と第2の熱交
換部22とを交互に繰り返し貫通する。即ち、分岐冷媒
経路42は、図3に示すように、凝縮器5側から順番
に、蒸発セクション61a、凝縮セクション62a、凝
縮セクション62b、蒸発セクション61b、蒸発セク
ション61c、凝縮セクション62cを有している。ま
た同様に、分岐冷媒経路43は、蒸発セクション63
a、凝縮セクション64a、凝縮セクション64b、蒸
発セクション63b、蒸発セクション63c、凝縮セク
ション64cを有し、分岐冷媒経路44は、蒸発セクシ
ョン65a、凝縮セクション66a、凝縮セクション6
6b、蒸発セクション65b、蒸発セクション65c、
凝縮セクション66cを有している。
FIG. 3 shows the heat exchanger 2 of the dehumidifying air conditioner of FIG.
It is an enlarged view which shows the branch refrigerant paths 42-44 in.
The refrigerant path including the evaporating section 51 and the condensing section 52 passes through the first heat exchange section 21 and the second heat exchange section 22 alternately and repeatedly. That is, as shown in FIG. 3, the branch refrigerant path 42 includes, in order from the condenser 5 side, an evaporation section 61a, a condensation section 62a, a condensation section 62b, an evaporation section 61b, an evaporation section 61c, and a condensation section 62c. I have. Similarly, the branch refrigerant path 43 is connected to the evaporating section 63.
a, a condensing section 64a, a condensing section 64b, an evaporating section 63b, an evaporating section 63c, and a condensing section 64c. The branch refrigerant path 44 includes an evaporating section 65a, a condensing section 66a, and a condensing section 6.
6b, evaporating section 65b, evaporating section 65c,
It has a condensation section 66c.

【0022】ここで、蒸発器1を通過する前の処理空気
を流す第1の熱交換部21と、蒸発器1を通過した後の
処理空気を流す第2の熱交換部22とは、別々の直方体
空間に収容されており、これら第1の熱交換部21と第
2の熱交換部22との間には上述した蒸発器1が配置さ
れている。参考までに、冷媒経路が分岐していない場合
の熱交換器及び蒸発器の配置を図4(a)及び図4
(b)に示す。図4(a)は正面側から見た斜視図、図
4(b)は背面側から見た斜視図である。
Here, the first heat exchange section 21 for flowing the processing air before passing through the evaporator 1 and the second heat exchange section 22 for flowing the processing air after passing through the evaporator 1 are separately provided. The evaporator 1 described above is disposed between the first heat exchange unit 21 and the second heat exchange unit 22. For reference, the arrangement of the heat exchanger and the evaporator when the refrigerant path is not branched is shown in FIGS.
(B). FIG. 4A is a perspective view seen from the front side, and FIG. 4B is a perspective view seen from the back side.

【0023】第1の熱交換部21及び第2の熱交換部2
2には、処理空気の流れに直交する面に複数本の熱交換
チューブが冷媒経路として平行に配置されている。蒸発
セクション61aと凝縮セクション62a、蒸発セクシ
ョン61bと凝縮セクション62b、蒸発セクション6
1cと凝縮セクション62cといった対応するセクショ
ン間には、蒸発器1を跨ぐチューブが設けられ(図4
(b)参照)、対応する蒸発セクションと凝縮セクショ
ンとが互いに接続される。また、蒸発セクション61b
と蒸発セクション61cの端部、蒸発セクション63b
と蒸発セクション63cの端部、蒸発セクション65b
と蒸発セクション65cの端部はそれぞれUチューブ
(ユーチューブ)68によって接続されている。同様
に、凝縮セクション62aと凝縮セクション62bの端
部、凝縮セクション64aと凝縮セクション64bの端
部、凝縮セクション66aと凝縮セクション66bの端
部もそれぞれUチューブ69によって接続されている
(図4(a)参照)。
First heat exchange section 21 and second heat exchange section 2
In 2, a plurality of heat exchange tubes are arranged in parallel as a refrigerant path on a surface orthogonal to the flow of the processing air. Evaporation section 61a and condensing section 62a, evaporating section 61b and condensing section 62b, evaporating section 6
Between corresponding sections such as 1c and the condensing section 62c, a tube is provided that straddles the evaporator 1 (FIG. 4).
(See (b)), the corresponding evaporating section and condensing section are connected to each other. Also, the evaporating section 61b
And the end of the evaporation section 61c, the evaporation section 63b
And the end of the evaporating section 63c, the evaporating section 65b
The ends of the evaporating section 65c are connected by U-tubes (YouTubes) 68, respectively. Similarly, the ends of the condensing sections 62a and 62b, the ends of the condensing sections 64a and 64b, and the ends of the condensing sections 66a and 66b are connected by the U-tube 69, respectively (FIG. 4 (a)). )reference).

【0024】このような構成によって、例えば、冷媒経
路42において、蒸発セクション61aから凝縮セクシ
ョン62aに向かって流れた冷媒は、Uチューブ69に
より凝縮セクション62bに導かれる。凝縮セクション
62bに導かれた冷媒は、更に蒸発セクション61bに
流入し、Uチューブ68により蒸発セクション61cに
導入され、更に凝縮セクション62cに流入する。この
ように冷媒経路は蛇行する細管群により構成され、この
細管群は蛇行しながら第1の熱交換部21と第2の熱交
換部22内部を通過し、温度の高い処理空気と温度の低
い処理空気に交互に接触するようになっている。
With such a configuration, for example, the refrigerant flowing from the evaporating section 61a to the condensing section 62a in the refrigerant path 42 is guided to the condensing section 62b by the U-tube 69. The refrigerant guided to the condensing section 62b further flows into the evaporating section 61b, is introduced into the evaporating section 61c by the U-tube 68, and further flows into the condensing section 62c. As described above, the refrigerant path is formed by the meandering small tube group, and the small tube group passes through the insides of the first heat exchange unit 21 and the second heat exchange unit 22 while meandering. It comes into contact with the processing air alternately.

【0025】なお、図1及び図2に示すように、除湿空
調装置の室内機10の内部にはドレンパン7が設けられ
ているが、このドレンパン7は蒸発器1だけでなく、熱
交換器2の下方もカバーするように設けるのが好まし
い。熱交換器2の第1の熱交換部21においては処理空
気を主として予冷するが、一部の水分はここで結露する
ことがあるので、特に第1の熱交換部21の下方に設け
るのが好ましい。
As shown in FIGS. 1 and 2, a drain pan 7 is provided inside the indoor unit 10 of the dehumidifying air conditioner. This drain pan 7 is not only the evaporator 1 but also the heat exchanger 2. Is preferably provided so as to cover also the lower part of the upper part. In the first heat exchange section 21 of the heat exchanger 2, the processing air is mainly precooled. However, since a part of water may condense here, it is particularly preferable to provide the water below the first heat exchange section 21. preferable.

【0026】次に、各機器間の冷媒の流れについて図2
及び図3を参照して説明する。昇圧機4により圧縮され
た冷媒ガスは、昇圧機4の吐出口に接続された冷媒ガス
配管41を経由して凝縮器5に導かれ、冷却空気として
の外気OAで冷却され凝縮する。凝縮器5を出た液冷媒
は分岐冷媒経路42〜44に分岐される。以下では、冷
媒経路42を流れる冷媒を中心として説明し、他の冷媒
経路43、44を流れる冷媒についての説明はこれと同
様であるので省略する。
Next, the flow of the refrigerant between the devices is shown in FIG.
This will be described with reference to FIG. The refrigerant gas compressed by the booster 4 is guided to the condenser 5 via the refrigerant gas pipe 41 connected to the discharge port of the booster 4, and is cooled and condensed by outside air OA as cooling air. The liquid refrigerant that has exited from the condenser 5 is branched into branch refrigerant paths 42 to 44. Hereinafter, the refrigerant flowing through the refrigerant path 42 will be mainly described, and the description of the refrigerant flowing through the other refrigerant paths 43 and 44 will be omitted because it is the same as this.

【0027】分岐冷媒経路42を流れる冷媒は、絞り1
1で減圧され膨張して一部の液冷媒が蒸発(フラッシ
ュ)する。その液とガスの混合した冷媒は蒸発セクショ
ン61aに至り、ここで液冷媒は蒸発セクション61a
のチューブの内壁を濡らすように流れる。蒸発セクショ
ン61aには液相の冷媒が流入するが、蒸発セクション
61aに流入する冷媒は、一部が気化した、気相を僅か
に含む液冷媒であってもよい。蒸発セクション61aを
流れる間に液冷媒が蒸発し、蒸発器1に流入する前の処
理空気が冷却(予冷)され、冷媒自身は加熱され気相を
増やす。
The refrigerant flowing through the branch refrigerant path 42 is
At 1, the pressure is reduced and expanded, and a part of the liquid refrigerant evaporates (flashes). The refrigerant in which the liquid and the gas are mixed reaches the evaporating section 61a, where the liquid refrigerant is supplied to the evaporating section 61a.
Flow so as to wet the inner wall of the tube. The liquid-phase refrigerant flows into the evaporating section 61a, but the refrigerant flowing into the evaporating section 61a may be a liquid refrigerant that is partially vaporized and contains a small amount of a gas phase. While flowing through the evaporating section 61a, the liquid refrigerant evaporates, and the processing air before flowing into the evaporator 1 is cooled (precooled), and the refrigerant itself is heated to increase the gas phase.

【0028】上述したように、蒸発セクション61aと
凝縮セクション62aは一連のチューブにより構成され
ているので、上記蒸発セクション61aにおいて蒸発し
た冷媒ガス(及び蒸発しなかった液冷媒)は凝縮セクシ
ョン62aに流入する。凝縮セクション62aでは、蒸
発器1で冷却除湿され、蒸発セクション61aの処理空
気よりも温度の低くなった処理空気が加熱(再熱)さ
れ、冷媒自身は熱を奪われ気相冷媒を凝縮させながら、
次の凝縮セクション62bに流入する。冷媒は、凝縮セ
クション62bを流れる間に、低温の処理空気で更に熱
を奪われ気相冷媒を更に凝縮させる。
As described above, since the evaporating section 61a and the condensing section 62a are constituted by a series of tubes, the refrigerant gas evaporated in the evaporating section 61a (and the non-evaporated liquid refrigerant) flows into the condensing section 62a. I do. In the condensing section 62a, the processing air that has been cooled and dehumidified in the evaporator 1 and has a lower temperature than the processing air in the evaporating section 61a is heated (reheated), and the refrigerant itself loses heat and condenses the gas-phase refrigerant. ,
It flows into the next condensation section 62b. While flowing through the condensing section 62b, the refrigerant is further deprived of heat by the low-temperature process air, thereby further condensing the gas-phase refrigerant.

【0029】凝縮された液冷媒は、次の蒸発セクション
61b及びこれに続く蒸発セクション61cに流入し、
上記と同様にして蒸発器1に流入する前の処理空気が冷
却(予冷)される。更に凝縮セクション62cに冷媒ガ
スが流入して処理空気が加熱(再熱)される。このよう
に、冷媒は気相と液相の相変化をしながら分岐冷媒経路
を流れ、蒸発器1で冷却される前の処理空気と、蒸発器
1で冷却されて絶対湿度を低下させた処理空気との間で
間接的に熱交換が行われる。
The condensed liquid refrigerant flows into the next evaporating section 61b and the following evaporating section 61c,
The processing air before flowing into the evaporator 1 is cooled (precooled) in the same manner as described above. Further, the refrigerant gas flows into the condensation section 62c, and the processing air is heated (reheated). As described above, the refrigerant flows through the branch refrigerant path while changing the phase between the gas phase and the liquid phase, and the processing air before being cooled by the evaporator 1 and the processing air cooled by the evaporator 1 to reduce the absolute humidity. Heat exchange takes place indirectly with the air.

【0030】凝縮セクション62cにおいて凝縮した液
冷媒は、第2の熱交換部22の下流側に配置された絞り
14で減圧され膨張して温度が下がる。そして、他の分
岐冷媒経路43、44を流れてきた冷媒と合流し、合流
した冷媒は経路45を通って蒸発器1に至る。蒸発器1
では冷媒が蒸発し、その蒸発熱で処理空気が冷却され
る。蒸発器1で蒸発してガス化した冷媒は、経路40を
通って昇圧機4の吸込側に導かれる。そして、上述のサ
イクルが繰り返される。
The liquid refrigerant condensed in the condensing section 62c is decompressed and expanded by the throttle 14 arranged on the downstream side of the second heat exchange section 22, and its temperature is lowered. Then, the refrigerant merges with the refrigerant flowing through the other branch refrigerant paths 43 and 44, and the merged refrigerant reaches the evaporator 1 through the path 45. Evaporator 1
Then, the refrigerant evaporates, and the processing air is cooled by the heat of evaporation. The refrigerant evaporated and gasified by the evaporator 1 is guided to the suction side of the booster 4 through the path 40. Then, the above-described cycle is repeated.

【0031】次に、本実施形態における除湿空調装置に
含まれるヒートポンプHP1の作用について説明する。
図5は図2の除湿空調装置に含まれるヒートポンプHP
1の冷媒モリエ線図である。なお、図5に示す線図にお
いては、冷媒としてHFC134aを用いており、横軸
にエンタルピ、縦軸に圧力が取られている。HFC13
4aに限らず、HFC407CやHFC410Aを冷媒
として利用することもでき、これらの冷媒を用いた場合
には、作動圧力領域がHFC134aの場合よりも高圧
側にシフトする。
Next, the operation of the heat pump HP1 included in the dehumidifying air conditioner of this embodiment will be described.
FIG. 5 shows a heat pump HP included in the dehumidifying air conditioner of FIG.
1 is a refrigerant Mollier diagram of FIG. In the diagram shown in FIG. 5, HFC134a is used as a refrigerant, and the enthalpy is plotted on the horizontal axis and the pressure is plotted on the vertical axis. HFC13
In addition to HFC134a, HFC407C and HFC410A can also be used as refrigerants. When these refrigerants are used, the operating pressure range shifts to a higher pressure side than in the case of HFC134a.

【0032】図5において、点aは図2の蒸発器1で蒸
発した冷媒の状態を示しており、このときの冷媒は飽和
ガスの状態にある。冷媒の圧力は0.234MPa、温
度は5℃、エンタルピは395.1kJ/kgである。
点bはこのガスを昇圧機4で吸込圧縮した状態、即ち昇
圧機4の吐出口での状態を示しており、このときの冷媒
は、圧力が0.706MPaであり、過熱ガスの状態に
ある。
In FIG. 5, point a indicates the state of the refrigerant evaporated by the evaporator 1 in FIG. 2, and the refrigerant at this time is in a saturated gas state. The pressure of the refrigerant is 0.234 MPa, the temperature is 5 ° C., and the enthalpy is 395.1 kJ / kg.
Point b indicates a state where this gas is sucked and compressed by the booster 4, that is, a state at the discharge port of the booster 4, and the refrigerant at this time has a pressure of 0.706 MPa and is in a superheated gas state. .

【0033】点bの状態にある冷媒ガスは、凝縮器2内
で冷却され、点cで示される状態に至る。このときの冷
媒は飽和ガスの状態であり、その圧力は0.706MP
a、温度は38℃である。冷媒はこの圧力下で更に冷却
され凝縮して点dで示される状態に至る。このときの冷
媒は飽和液の状態であり、その圧力と温度は点cにおけ
る圧力及び温度と同じである。このときのエンタルピは
237.4kJ/kgである。
The refrigerant gas in the state at the point b is cooled in the condenser 2 to reach the state shown at the point c. At this time, the refrigerant is in a saturated gas state, and its pressure is 0.706MP.
a, The temperature is 38 ° C. The refrigerant is further cooled and condensed under this pressure to reach the state indicated by point d. At this time, the refrigerant is in a saturated liquid state, and its pressure and temperature are the same as the pressure and temperature at point c. The enthalpy at this time is 237.4 kJ / kg.

【0034】この冷媒液は分岐冷媒経路42〜44に分
かれて熱交換器2に流入するが、まず、冷媒経路43を
通る冷媒について説明する。冷媒経路43に流入した冷
媒液は、絞り12で減圧され、第1の熱交換部21の蒸
発セクション63aに流入する。このときの状態は点e
で示されており、一部の液が蒸発して液とガスが混合し
た状態となっている。このときの圧力は、凝縮器5の凝
縮圧力と蒸発器1の蒸発圧力との中間圧力であり、本実
施形態では、0.234MPaと0.706MPaの間
の値となる。
This refrigerant liquid flows into the heat exchanger 2 after being divided into the branch refrigerant paths 42 to 44. First, the refrigerant passing through the refrigerant path 43 will be described. The refrigerant liquid flowing into the refrigerant passage 43 is decompressed by the throttle 12 and flows into the evaporating section 63a of the first heat exchange unit 21. The state at this time is point e
The liquid is partially evaporated and the liquid and the gas are mixed. The pressure at this time is an intermediate pressure between the condensing pressure of the condenser 5 and the evaporating pressure of the evaporator 1, and is a value between 0.234 MPa and 0.706 MPa in the present embodiment.

【0035】蒸発セクション63a内で、上記中間圧力
下で冷媒液が蒸発して、同圧力で飽和液線と飽和ガス線
の中間に位置する点f1の状態となる。この状態では液
の一部が蒸発しているが、冷媒液はかなり残っている。
そして、点f1で示される状態の冷媒が、凝縮セクショ
ン64a及び64bに流入する。凝縮セクション64a
及び64bでは、冷媒は第2の熱交換部22を流れる低
温の処理空気により熱を奪われ、点g1の状態に至る。
In the evaporating section 63a, the refrigerant liquid evaporates under the above-mentioned intermediate pressure, and the state becomes a point f1 located between the saturated liquid line and the saturated gas line at the same pressure. In this state, a part of the liquid has evaporated, but a considerable amount of the refrigerant liquid remains.
Then, the refrigerant in the state indicated by the point f1 flows into the condensation sections 64a and 64b. Condensing section 64a
And 64b, the refrigerant is deprived of heat by the low-temperature processing air flowing through the second heat exchange section 22, and reaches the state of the point g1.

【0036】点g1の状態の冷媒は、蒸発セクション6
3b及び63cに流入し、ここで熱を奪われ液相を増や
して点f2の状態に至り、更に、凝縮セクション64c
に流入する。凝縮セクション64cにおいて、冷媒は液
相を増やして点g2の状態に至る。点g2はモリエ線図
では飽和液線上に位置しており、このときの冷媒の温度
は18℃、エンタルピは209.5kJ/kgである。
The refrigerant in the state at the point g1 is supplied to the evaporating section 6
3b and 63c, where heat is deprived and the liquid phase is increased to reach the state at point f2.
Flows into. In the condensing section 64c, the refrigerant increases its liquid phase and reaches the state at the point g2. The point g2 is located on the saturated liquid line in the Mollier diagram. At this time, the temperature of the refrigerant is 18 ° C., and the enthalpy is 209.5 kJ / kg.

【0037】点g2の状態の冷媒液は、絞り15で、温
度5℃の飽和圧力である0.234MPaまで減圧され
て点hで示される状態に至る。点hの状態における冷媒
は、5℃の冷媒液とガスの混合物として蒸発器1に至
り、ここで処理空気から熱を奪い、蒸発して点aで示さ
れる状態の飽和ガスとなる。この飽和ガスは再び昇圧機
4に吸入され、上述したサイクルが繰り返される。
The refrigerant liquid in the state at the point g2 is reduced in pressure by the throttle 15 to a saturation pressure of 0.234 MPa at a temperature of 5 ° C., and reaches a state indicated by a point h. The refrigerant in the state at the point h reaches the evaporator 1 as a mixture of the refrigerant liquid and the gas at 5 ° C., where it takes heat from the processing air and evaporates to a saturated gas in the state indicated by the point a. This saturated gas is sucked into the booster 4 again, and the above-described cycle is repeated.

【0038】同様に、冷媒経路42を通る冷媒は、絞り
11、蒸発セクション、凝縮セクション、絞り14を通
り、点j、点i1、点k1、点i2、点k2で示される
状態を経て点lで示される状態に至る。冷媒経路44を
通る冷媒は、絞り13、蒸発セクション、凝縮セクショ
ン、絞り16を通り、点m、点n1、点o1、点n2、
点o2で示される状態を経て点pで示される状態に至
る。
Similarly, the refrigerant passing through the refrigerant path 42 passes through the restrictor 11, the evaporating section, the condensing section, and the restrictor 14, and passes through the states indicated by points j, i1, k1, i2, and k2 to point l. It reaches the state shown by. The refrigerant passing through the refrigerant path 44 passes through the throttle 13, the evaporating section, the condensing section, and the throttle 16, and passes through points m, n1, o1, n2,
The state shown by the point p is reached through the state shown by the point o2.

【0039】このように、熱交換器2内において、冷媒
は蒸発セクション51では点eから点f1、あるいは点
g1から点f2までといったように蒸発の状態変化を、
凝縮セクション52では、点f1から点g1、あるいは
点f2から点g2までといったように凝縮の状態変化を
しており、蒸発伝熱と凝縮伝熱が行われているため、熱
伝達率が非常に高く、また熱交換効率が高い。
As described above, in the heat exchanger 2, the refrigerant changes its evaporation state in the evaporating section 51 from point e to point f1 or from point g1 to point f2.
In the condensing section 52, the state of condensation changes from point f1 to point g1 or from point f2 to point g2, and the heat transfer coefficient is very high because the evaporation heat transfer and the condensation heat transfer are performed. High heat exchange efficiency.

【0040】ここで、昇圧機4、凝縮器5、絞り11〜
16及び蒸発器1を含む圧縮ヒートポンプHP1として
考えると、本発明に係る熱交換器2を設けない場合に
は、凝縮器5における点dの状態の冷媒を、絞りを介し
て蒸発器1に戻すため、蒸発器1で利用できるエンタル
ピ差は395.1−237.4=157.7kJ/kg
しかない。しかし、本発明に係る熱交換器2を設けた場
合には、395.1−209.5=185.6kJ/k
gとなり、同一冷却負荷に対して圧縮機に循環するガス
量を、ひいては所要動力を15%(=1−157.7/
185.6)も小さくすることができる。即ち、サブク
ールサイクルと同様な作用を持たせることができる。
Here, the booster 4, the condenser 5, the throttles 11 to 11
Considering the compression heat pump HP1 including the evaporator 16 and the evaporator 1, when the heat exchanger 2 according to the present invention is not provided, the refrigerant in the state of the point d in the condenser 5 is returned to the evaporator 1 via the throttle. Therefore, the enthalpy difference usable in the evaporator 1 is 395.1-237.4 = 157.7 kJ / kg.
There is only. However, when the heat exchanger 2 according to the present invention is provided, 395.1-209.5 = 185.6 kJ / k.
g, and the amount of gas circulating through the compressor for the same cooling load, and hence the required power, is 15% (= 1-157.7 /
185.6) can also be reduced. That is, the same operation as in the subcool cycle can be provided.

【0041】図6は図2の除湿空調装置における空調サ
イクルを示す湿り空気線図である。図6において、符号
K、L、M、Xは、図2においてそれぞれの符号を付し
た経路状態に対応している。空調空間100からの処理
空気(状態K)は、処理空気経路30を通って、熱交換
器2の第1の熱交換部21に送り込まれ、蒸発セクショ
ン51内で蒸発する冷媒によりある程度まで冷却され
る。これは蒸発器1で露点温度以下まで冷却される前の
予備的冷却であるので予冷と呼ぶことができる。処理空
気は、蒸発セクション51で予冷されながら、ある程度
は水分を除去され僅かながら絶対湿度を低下させながら
飽和線上にある点Xに至る。あるいは予冷段階では点K
と点Xとの中間点まで冷却することとしてもよい。また
は点Xを越えて、多少飽和線上を低湿度側に移行した点
まで冷却されることとしてもよい。
FIG. 6 is a psychrometric chart showing an air conditioning cycle in the dehumidifying air conditioner of FIG. In FIG. 6, reference signs K, L, M, and X correspond to the path states denoted by the respective reference signs in FIG. The processing air (state K) from the air-conditioned space 100 is sent to the first heat exchange section 21 of the heat exchanger 2 through the processing air path 30 and is cooled to a certain extent by the refrigerant evaporated in the evaporation section 51. You. Since this is preliminary cooling before the evaporator 1 is cooled to a temperature equal to or lower than the dew point, it can be called precooling. While being precooled in the evaporating section 51, the processing air reaches a point X on the saturation line while removing a certain amount of water and slightly reducing the absolute humidity. Alternatively, in the pre-cooling stage, the point K
It may be cooled to an intermediate point between the point X and the point X. Alternatively, the cooling may be performed to a point beyond the point X to a point slightly shifted to the low humidity side on the saturation line.

【0042】第1の熱交換部21で予冷された処理空気
は、経路31を通って、蒸発器1に導入される。蒸発器
1では、絞り14〜16によって減圧された、低温で蒸
発する冷媒によって、処理空気がその露点温度以下に冷
却され、水分を奪われながら、絶対湿度を低下させつつ
乾球温度を下げて、点Lに至る。図6において、点Xか
ら点Lまでの変化を示す太線は、便宜上飽和線とはずら
して描いてあるが、実際は飽和線と重なっている。
The processing air precooled in the first heat exchange section 21 is introduced into the evaporator 1 through the path 31. In the evaporator 1, the processing air is cooled to a temperature lower than its dew point temperature by the refrigerant that evaporates at a low temperature, which is depressurized by the throttles 14 to 16. , To the point L. In FIG. 6, the bold line indicating the change from the point X to the point L is drawn out of the saturation line for convenience, but actually overlaps the saturation line.

【0043】点Lの状態の処理空気は、経路32を通っ
て熱交換器2の第2の熱交換部22に流入し、凝縮セク
ション52内で凝縮する冷媒により、絶対湿度一定のま
ま加熱され点Mに至る。点Mは、点Kよりも絶対湿度は
十分に低く、乾球温度は低すぎない、適度な相対湿度の
空気である。この点Mの状態の空気は送風機3により吸
い込まれ、経路34を通って空調空間100に戻され
る。
The processing air in the state at the point L flows into the second heat exchange section 22 of the heat exchanger 2 through the path 32, and is heated by the refrigerant condensing in the condensing section 52 while keeping the absolute humidity constant. It reaches point M. Point M is air of moderate relative humidity, where the absolute humidity is much lower than point K and the dry bulb temperature is not too low. The air in the state of the point M is sucked by the blower 3 and returned to the air-conditioned space 100 through the path 34.

【0044】ここで、図6の湿り空気線図上に示す処理
空気側のサイクルでは、第1の熱交換部21で処理空気
を予冷した熱量、即ち第2の熱交換部22で処理空気を
再熱した熱量ΔHが熱回収分であり、蒸発器1で処理空
気を冷却した熱量分がΔQである。また空調空間100
を冷房する、冷房効果がΔiである。
Here, in the cycle on the processing air side shown in the psychrometric chart of FIG. 6, the amount of heat obtained by pre-cooling the processing air in the first heat exchange section 21, that is, the processing air in the second heat exchange section 22 is supplied. The reheated heat amount ΔH is the heat recovery amount, and the heat amount obtained by cooling the processing air in the evaporator 1 is ΔQ. Air-conditioned space 100
Is cooled, and the cooling effect is Δi.

【0045】上述したように、熱交換器2では、蒸発セ
クション51での冷媒の蒸発により処理空気を予冷し、
凝縮セクション52での冷媒の凝縮により処理空気を再
熱する。そして蒸発セクション51で蒸発した冷媒は、
凝縮セクション52で凝縮する。このように同じ冷媒の
蒸発と凝縮作用により、蒸発器1で冷却される前後の処
理空気同士の熱交換が間接的に行われる。
As described above, in the heat exchanger 2, the processing air is precooled by the evaporation of the refrigerant in the evaporation section 51,
The condensing of the refrigerant in the condensing section 52 reheats the process air. And the refrigerant evaporated in the evaporating section 51 is
It condenses in the condensing section 52. As described above, heat exchange between the processing air before and after being cooled by the evaporator 1 is indirectly performed by the same evaporation and condensation of the refrigerant.

【0046】このように、本実施形態においては、処理
空気を露点以下に冷却する蒸発器と、処理空気を予冷却
する予冷却器と、再加熱を行う再加熱器の熱伝達媒体を
同じ冷媒を用いるようにしたので、冷媒系が単一に単純
化され、また蒸発器、凝縮器間の圧力差を利用できるた
め循環が能動的になり、更に予冷、再加熱の熱交換に相
変化を伴う沸騰現象を応用できるようにしたので、効率
を高くすることができる。
As described above, in the present embodiment, the heat transfer medium of the evaporator for cooling the processing air to the dew point or lower, the pre-cooler for pre-cooling the processing air, and the re-heater for re-heating are the same refrigerant. As a result, the refrigerant system is simplified to a single unit, the pressure difference between the evaporator and the condenser can be used, the circulation becomes active, and a phase change occurs in heat exchange between pre-cooling and reheating. Since the accompanying boiling phenomenon can be applied, the efficiency can be increased.

【0047】上述の実施形態においては冷媒経路を3列
に分岐させた例を説明したが、これに限られるものでは
なく、冷媒経路を何列に分岐させてもよい。図7は、本
発明に係る除湿空調装置における分岐冷媒経路の列数と
温度効率との関係を示すグラフである。図7から、分岐
冷媒経路の列数を多くすれば温度効率が向上することが
推測できる。このように、複数列に分岐した冷媒経路を
設けることによって、冷媒の作用温度を段階的に変化さ
せることができるので、熱交換効率を高めることが可能
となる。
In the above-described embodiment, an example in which the refrigerant path is branched into three rows has been described. However, the present invention is not limited to this, and the refrigerant path may be branched into any number of rows. FIG. 7 is a graph showing the relationship between the number of rows of branch refrigerant paths and the temperature efficiency in the dehumidifying air conditioner according to the present invention. From FIG. 7, it can be inferred that the temperature efficiency is improved by increasing the number of rows of the branch refrigerant paths. As described above, by providing the refrigerant paths branched in a plurality of rows, the working temperature of the refrigerant can be changed stepwise, so that the heat exchange efficiency can be increased.

【0048】次に、本発明に係る除湿空調装置の第2の
実施形態について図8及び図9を参照して説明する。図
8は第2の実施形態における除湿空調装置内のフローを
模式的に示す図、図9は図8の除湿空調装置に含まれる
ヒートポンプHP2の冷媒モリエ線図である。なお、上
述の第1の実施形態における部材又は要素と同一の作用
又は機能を有する部材又は要素には同一の符号を付し、
特に説明しない部分については第1の実施形態と同様で
ある。
Next, a second embodiment of the dehumidifying air conditioner according to the present invention will be described with reference to FIGS. FIG. 8 is a diagram schematically showing a flow in the dehumidifying air conditioner in the second embodiment, and FIG. 9 is a refrigerant Mollier diagram of the heat pump HP2 included in the dehumidifying air conditioner of FIG. Note that the same reference numerals are given to members or elements having the same operation or function as the members or elements in the above-described first embodiment,
Parts that are not particularly described are the same as in the first embodiment.

【0049】本実施形態においても、凝縮器5の下流側
において冷媒経路が複数列に分岐しており、分岐冷媒経
路142〜144が形成されているが、この分岐冷媒経
路142〜144が冷媒蒸発器101の内部まで延びて
おり、蒸発器101の下流側で合流している点が上述の
第1の実施形態と異なる。これらの分岐冷媒経路142
〜144のうち、温度が高い処理空気と熱交換をする冷
媒が通過する冷媒経路、即ち分岐冷媒経路142には、
温度が低い処理空気と熱交換をする冷媒、即ち冷媒経路
144を通過した冷媒を昇圧するエゼクタ8が設置され
ている。
Also in the present embodiment, the refrigerant paths are branched into a plurality of rows on the downstream side of the condenser 5, and the branched refrigerant paths 142 to 144 are formed. The third embodiment differs from the first embodiment in that the first embodiment extends to the inside of the vessel 101 and joins downstream of the evaporator 101. These branch refrigerant paths 142
To 144, the refrigerant path through which the refrigerant that exchanges heat with the processing air having a high temperature passes, that is, the branch refrigerant path 142 includes:
An ejector 8 is provided for increasing the pressure of the refrigerant that exchanges heat with the processing air having a low temperature, that is, the refrigerant that has passed through the refrigerant passage 144.

【0050】図9において、点aは図8の蒸発器101
で蒸発した冷媒の状態を示しており、このときの冷媒は
飽和ガスの状態にある。圧力は0.262MPa、温度
は8℃、エンタルピは396.8kJ/kgである。点
bはこのガスを昇圧機4で吸込圧縮した状態、即ち昇圧
機4の吐出口での状態を示しており、このときの冷媒
は、圧力が0.706MPaであり、過熱ガスの状態に
ある。
In FIG. 9, point a is the evaporator 101 in FIG.
Shows the state of the refrigerant evaporated, and the refrigerant at this time is in a saturated gas state. The pressure is 0.262 MPa, the temperature is 8 ° C., and the enthalpy is 396.8 kJ / kg. Point b indicates a state where this gas is sucked and compressed by the booster 4, that is, a state at the discharge port of the booster 4, and the refrigerant at this time has a pressure of 0.706 MPa and is in a superheated gas state. .

【0051】点bの状態にある冷媒ガスは、凝縮器5内
で冷却され、点cで示される状態に至る。このときの冷
媒は飽和ガスの状態であり、その圧力は0.706MP
a、温度は38℃である。冷媒はこの圧力下で更に冷却
され凝縮して点dで示される状態に至る。このときの冷
媒は飽和液の状態であり、その圧力と温度は点cにおけ
る圧力及び温度と同じである。このときのエンタルピは
237.4kJ/kgである。
The refrigerant gas in the state at the point b is cooled in the condenser 5 to reach the state shown at the point c. At this time, the refrigerant is in a saturated gas state, and its pressure is 0.706MP.
a, The temperature is 38 ° C. The refrigerant is further cooled and condensed under this pressure to reach the state indicated by point d. At this time, the refrigerant is in a saturated liquid state, and its pressure and temperature are the same as the pressure and temperature at point c. The enthalpy at this time is 237.4 kJ / kg.

【0052】冷媒経路143に流入した冷媒液は、絞り
12で減圧され、点eの状態に至る。このときの圧力
は、凝縮器5の凝縮圧力と蒸発器101の蒸発圧力との
中間圧力であり、本実施形態では、0.262MPaと
0.706MPaの間の値となる。その後、冷媒は第1
の熱交換部21の蒸発セクションと第2の熱交換部22
の凝縮セクションとを交互に通り、点f1、点g1、点
f2、点g2で示される状態を経て、絞り15で、温度
8℃の飽和圧力である0.262MPaまで減圧されて
点hで示される状態に至る。点hの状態における冷媒
は、8℃の冷媒液とガスの混合物として蒸発器101に
至り、ここで処理空気から熱を奪い、蒸発して点aで示
される状態の飽和ガスとなる。この飽和ガスは再び昇圧
機4に吸入され、上述したサイクルが繰り返される。
The refrigerant liquid flowing into the refrigerant passage 143 is decompressed by the throttle 12, and reaches the state at the point e. The pressure at this time is an intermediate pressure between the condensation pressure of the condenser 5 and the evaporation pressure of the evaporator 101, and has a value between 0.262 MPa and 0.706 MPa in the present embodiment. After that, the refrigerant
Evaporating section of the heat exchange section 21 and the second heat exchange section 22
Alternately passes through the condensing section of FIG. 1, passes through the states indicated by points f1, g1, f2, and g2, and is reduced by the restrictor 15 to 0.262 MPa, which is the saturation pressure at a temperature of 8 ° C., and is indicated by the point h. State. The refrigerant in the state at the point h reaches the evaporator 101 as a mixture of a refrigerant liquid and a gas at 8 ° C., where it takes heat from the processing air and evaporates to a saturated gas in the state indicated by the point a. This saturated gas is sucked into the booster 4 again, and the above-described cycle is repeated.

【0053】また、冷媒経路142に流入した冷媒液
は、絞り11、蒸発セクション、凝縮セクション、絞り
14を通り、点j、点i1、点k1、点i2、点k2で
示される状態を経て点lで示される状態に至る。点lで
示される状態の冷媒は、蒸発器101に至り、ここで処
理空気から熱を奪い、蒸発して点qで示される状態とな
る。一方、冷媒経路144に流入した冷媒液は、絞り1
3、蒸発セクション、凝縮セクション、絞り16を通
り、点m、点n1、点o1、点n2、点o2で示される
状態を経て点pで示される状態に至る。
The refrigerant liquid flowing into the refrigerant passage 142 passes through the throttle 11, the evaporating section, the condensing section, and the throttle 14, and passes through the states indicated by points j, i1, k1, i2, and k2 to reach the point. The state shown by l is reached. The refrigerant in the state indicated by the point l reaches the evaporator 101, where it takes heat from the processing air and evaporates to the state indicated by the point q. On the other hand, the refrigerant liquid flowing into the refrigerant path 144 is
3, through the evaporating section, the condensing section, and the throttle 16, and reach the state indicated by the point p through the states indicated by the points m, n1, o1, n2, and o2.

【0054】点pで示される状態の冷媒は、蒸発器10
1に至り、ここで処理空気から熱を奪い、蒸発して点r
で示される状態となる。点rで示される状態の冷媒は、
冷媒経路142に設置されたエゼクタ8によって昇圧さ
れる。即ち、エゼクタ8において、点qで示される状態
の高圧の冷媒によって、点rで示される状態の低圧の冷
媒が昇圧される。これにより、点rで示される状態の冷
媒と点qで示される状態の冷媒は点aで示される状態の
飽和ガスとなる。このように、エゼクタ8を設置するこ
とにより、蒸発器の作用温度が上昇するので、理論冷凍
効果が増加し、理論圧縮仕事が減少して効率を高めるこ
とが可能となる。また、冷媒の比体積が減少するので、
昇圧機で吸引する冷媒の流量が増加する。従って、冷凍
効果の増加に伴って除湿量が増加し、効率を高めること
ができる。
The refrigerant in the state indicated by the point p is supplied to the evaporator 10
1 where heat is removed from the process air and evaporated to a point r
The state shown by. The refrigerant in the state indicated by the point r is
The pressure is increased by the ejector 8 installed in the refrigerant path 142. That is, in the ejector 8, the high-pressure refrigerant in the state indicated by the point q raises the pressure of the low-pressure refrigerant in the state indicated by the point r. As a result, the refrigerant in the state indicated by the point r and the refrigerant in the state indicated by the point q become saturated gas in the state indicated by the point a. As described above, since the operating temperature of the evaporator is increased by installing the ejector 8, the theoretical refrigerating effect is increased, the theoretical compression work is reduced, and the efficiency can be increased. Also, since the specific volume of the refrigerant decreases,
The flow rate of the refrigerant sucked by the booster increases. Therefore, the amount of dehumidification increases with an increase in the freezing effect, and the efficiency can be improved.

【0055】ここで、昇圧機4、凝縮器5、絞り11〜
16及び蒸発器101を含む圧縮ヒートポンプHP2と
して考えると、本発明に係る熱交換器2を設けない場合
には、凝縮器5における点dの状態の冷媒を、絞りを介
して蒸発器1に戻すため、蒸発器101で利用できるエ
ンタルピ差は396.8−237.4=159.4kJ
/kgしかない。しかし、本発明に係る熱交換器2を設
けた場合には、396.8−209.5=187.3k
J/kgとなり、同一冷却負荷に対して圧縮機に循環す
るガス量を、ひいては所要動力を15%(=1−15
9.4/187.3)も小さくすることができる。即
ち、サブクールサイクルと同様な作用を持たせることが
できる。
Here, the booster 4, the condenser 5, the throttles 11 to 11
Considering the compression heat pump HP2 including the evaporator 16 and the evaporator 101, when the heat exchanger 2 according to the present invention is not provided, the refrigerant in the state of the point d in the condenser 5 is returned to the evaporator 1 via the throttle. Therefore, the enthalpy difference available in the evaporator 101 is 396.8-237.4 = 159.4 kJ.
/ Kg only. However, when the heat exchanger 2 according to the present invention is provided, 396.8-209.5 = 187.3k.
J / kg, and the amount of gas circulating through the compressor for the same cooling load, and thus the required power, is reduced by 15% (= 1-15)
9.4 / 187.3) can also be reduced. That is, the same operation as in the subcool cycle can be provided.

【0056】さてこれまで本発明の一実施形態について
説明したが、本発明は上述の実施形態に限定されず、そ
の技術的思想の範囲内において種々異なる形態にて実施
されてよいものである。例えば、各分岐冷媒経路におけ
る第1の熱交換部における蒸発セクションの数、第2の
熱交換部における凝縮セクションの数は図示のものに限
られるものではない。また、熱交換器における冷媒経路
の順序について、上述の実施形態における熱交換器の入
口部の第1の熱交換部を第2の熱交換部と入れ替えて、
第2の熱交換部、第1の熱交換部、第2の熱交換部とい
う順序にしてパス数を増やすこともできる。更に、上述
の実施形態においては空調空間を空調する除湿空調装置
を例として説明したが、必ずしも空調空間に限らず、本
発明の除湿装置を、他の除湿を必要とする空間に応用す
ることもできる。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and may be embodied in various forms within the scope of the technical idea. For example, the number of evaporating sections in the first heat exchange section and the number of condensing sections in the second heat exchange section in each branch refrigerant path are not limited to those illustrated. Further, regarding the order of the refrigerant paths in the heat exchanger, the first heat exchange unit at the inlet of the heat exchanger in the above-described embodiment is replaced with the second heat exchange unit,
The number of passes can be increased in the order of the second heat exchange section, the first heat exchange section, and the second heat exchange section. Further, in the above-described embodiment, the dehumidifying air-conditioning device for air-conditioning the air-conditioned space has been described as an example. However, the present invention is not necessarily limited to the air-conditioned space, and the dehumidifying device of the present invention can be applied to other spaces requiring dehumidification. it can.

【0057】[0057]

【発明の効果】上述したように本発明によれば、蒸発器
での冷却の前に第1の熱交換手段において低熱源流体を
予冷でき、その予冷の熱を使って、蒸発器での冷却の後
に第2の熱交換手段において低熱源流体を加熱すること
ができるので、動作係数の高いヒートポンプを提供する
ことが可能となる。また、処理空気を低熱源とし、蒸発
器で処理空気を露点温度以下に冷却するようにすれば、
除湿量当たりのエネルギー消費量が小さい除湿空調装置
を提供することが可能となる。更に、分岐冷媒経路を設
けることによって、冷媒の作用温度を段階的に変化させ
ることができるので、熱交換効率を高めることが可能と
なる。
As described above, according to the present invention, the low heat source fluid can be pre-cooled in the first heat exchange means before cooling in the evaporator, and the cooling in the evaporator is performed by using the heat of the pre-cooling. After that, the low heat source fluid can be heated in the second heat exchange means, so that a heat pump having a high operation coefficient can be provided. In addition, if the processing air is used as a low heat source and the processing air is cooled below the dew point temperature by the evaporator,
It is possible to provide a dehumidifying air conditioner having a small energy consumption per dehumidifying amount. Further, by providing the branch refrigerant path, the operating temperature of the refrigerant can be changed stepwise, so that the heat exchange efficiency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシステムの全体構成を示す図であ
る。
FIG. 1 is a diagram showing an overall configuration of a system according to the present invention.

【図2】本発明の第1の実施形態における除湿空調装置
内のフローを模式的に示す図である。
FIG. 2 is a diagram schematically showing a flow in the dehumidifying air conditioner according to the first embodiment of the present invention.

【図3】図2の除湿空調装置の熱交換器における分岐冷
媒経路を示す拡大図である。
FIG. 3 is an enlarged view showing a branch refrigerant path in a heat exchanger of the dehumidifying air conditioner of FIG.

【図4】冷媒経路が分岐していない場合の熱交換器及び
蒸発器の配置を示す斜視図である。
FIG. 4 is a perspective view showing an arrangement of a heat exchanger and an evaporator when a refrigerant path is not branched.

【図5】図2の除湿空調装置に含まれるヒートポンプの
冷媒モリエ線図である。
FIG. 5 is a refrigerant Mollier diagram of a heat pump included in the dehumidifying air conditioner of FIG. 2;

【図6】図2の除湿空調装置における空調サイクルを示
す湿り空気線図である。
FIG. 6 is a psychrometric chart showing an air conditioning cycle in the dehumidifying air conditioner of FIG.

【図7】本発明に係る除湿空調装置における分岐冷媒経
路の列数と温度効率との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the number of rows of branch refrigerant paths and temperature efficiency in the dehumidifying air conditioner according to the present invention.

【図8】本発明の第2の実施形態における除湿空調装置
内のフローを模式的に示す図である。
FIG. 8 is a diagram schematically showing a flow in a dehumidifying air conditioner according to a second embodiment of the present invention.

【図9】図8の除湿空調装置に含まれるヒートポンプの
冷媒モリエ線図である。
FIG. 9 is a refrigerant Mollier diagram of a heat pump included in the dehumidifying air conditioner of FIG.

【図10】従来の除湿空調装置内のフローを模式的に示
す図である。
FIG. 10 is a diagram schematically showing a flow in a conventional dehumidifying air conditioner.

【図11】従来の除湿空調装置に含まれるヒートポンプ
の冷媒モリエ線図である。
FIG. 11 is a refrigerant Mollier diagram of a heat pump included in a conventional dehumidifying air conditioner.

【図12】従来の除湿空調装置における空調サイクルを
示す湿り空気線図である。
FIG. 12 is a psychrometric chart showing an air conditioning cycle in a conventional dehumidifying air conditioner.

【符号の説明】[Explanation of symbols]

1、101 蒸発器 2 熱交換器 3、6 送風機 4 昇圧機 5 凝縮器 7 ドレンパン 8 エゼクタ 10 室内機 11〜16 絞り 20 室外機 21 第1の熱交換部 22 第2の熱交換部 30〜34、40〜48、142〜144 経路 51 蒸発セクション 52 凝縮セクション 67〜69 チューブ 100 空調空間 DESCRIPTION OF SYMBOLS 1, 101 Evaporator 2 Heat exchanger 3, 6 Blower 4 Booster 5 Condenser 7 Drain pan 8 Ejector 10 Indoor unit 11-16 Throttle 20 Outdoor unit 21 First heat exchange part 22 Second heat exchange part 30-34 , 40-48, 142-144 Path 51 Evaporation section 52 Condensing section 67-69 Tube 100 Air-conditioned space

【手続補正書】[Procedure amendment]

【提出日】平成13年7月2日(2001.7.2)[Submission date] July 2, 2001 (2001.7.2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【課題を解決するための手段】このような従来技術にお
ける問題点を解決するために、本発明の一態様は、冷媒
を昇圧する昇圧機と、上記冷媒を凝縮させて高熱源流体
を加熱する凝縮器と、上記冷媒を蒸発させて低熱源流体
を冷却する蒸発器と、上記凝縮器と上記蒸発器との間で
複数列に分岐する分岐冷媒経路と、上記凝縮器と上記蒸
発器との間であって上記分岐冷媒経路中に設けられ、上
記凝縮器の凝縮圧力と上記蒸発器の蒸発圧力との中間の
圧力で冷媒を蒸発させて上記低熱源流体を冷却する第1
の熱交換手段と、上記凝縮器と上記蒸発器との間であっ
て上記分岐冷媒経路中に設けられ、上記凝縮器の凝縮圧
力と上記蒸発器の蒸発圧力との中間の圧力で冷媒を凝縮
させて上記低熱源流体を加熱する第2の熱交換手段と、
上記第1の熱交換手段と上記蒸発器と上記第2の熱交換
手段とをこの順番で接続する低熱源流体経路とを備えた
ことを特徴とするヒートポンプである。
In order to solve the problems in the prior art, one aspect of the present invention is to provide a booster for increasing the pressure of a refrigerant and to heat the high heat source fluid by condensing the refrigerant. A condenser, an evaporator that evaporates the refrigerant and cools the low heat source fluid, a branch refrigerant path that branches into a plurality of rows between the condenser and the evaporator, and the condenser and the evaporator. A first heat exchanger which is provided in the branch refrigerant path between the condensing pressure of the condenser and the evaporating pressure of the evaporator to evaporate the refrigerant to cool the low heat source fluid .
Heat exchange means, provided between the condenser and the evaporator and in the branch refrigerant path, to condense the refrigerant at a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator. A second heat exchange means for heating the low heat source fluid ,
A heat pump, comprising: a first heat exchange means, a low heat source fluid path connecting the evaporator and the second heat exchange means in this order.

Claims (4)

【特許請求の範囲】[The claims] 【請求項1】 冷媒を昇圧する昇圧機と、 前記冷媒を凝縮させて高熱源流体を加熱する凝縮器と、 前記冷媒を蒸発させて低熱源流体を冷却する蒸発器と、 前記凝縮器と前記蒸発器との間で複数列に分岐する分岐
冷媒経路と、 前記凝縮器と前記蒸発器との間であって前記分岐冷媒経
路中に設けられ、前記凝縮器の凝縮圧力と前記蒸発器の
蒸発圧力との中間の圧力で冷媒を蒸発させて前記処理空
気を冷却する第1の熱交換手段と、 前記凝縮器と前記蒸発器との間であって前記分岐冷媒経
路中に設けられ、前記凝縮器の凝縮圧力と前記蒸発器の
蒸発圧力との中間の圧力で冷媒を凝縮させて前記処理空
気を加熱する第2の熱交換手段と、 前記第1の熱交換手段と前記蒸発器と前記第2の熱交換
手段とをこの順番で接続する処理空気経路とを備えたこ
とを特徴とするヒートポンプ。
A condenser for condensing the refrigerant to heat a high heat source fluid; an evaporator for evaporating the refrigerant to cool a low heat source fluid; A branch refrigerant path that branches into a plurality of rows with the evaporator; and a branch refrigerant path that is provided in the branch refrigerant path between the condenser and the evaporator, and that condenses pressure of the condenser and evaporates the evaporator. First heat exchange means for evaporating a refrigerant at a pressure intermediate to the pressure to cool the processing air, and provided in the branch refrigerant path between the condenser and the evaporator, Second heat exchanging means for condensing the refrigerant at a pressure intermediate between the condensing pressure of the vessel and the evaporating pressure of the evaporator to heat the processing air; the first heat exchanging means, the evaporator, and the second evaporator. And a processing air path for connecting the heat exchange means in this order. A heat pump characterized by the following.
【請求項2】 冷媒を昇圧する昇圧機と、 前記冷媒を凝縮させて高熱源流体を加熱する凝縮器と、 前記冷媒を蒸発させて処理空気を露点温度以下まで冷却
する蒸発器と、 前記凝縮器と前記蒸発器との間で複数列に分岐する分岐
冷媒経路と、 前記凝縮器と前記蒸発器との間であって前記分岐冷媒経
路中に設けられ、前記凝縮器の凝縮圧力と前記蒸発器の
蒸発圧力との中間の圧力で冷媒を蒸発させて前記処理空
気を冷却する第1の熱交換手段と、 前記凝縮器と前記蒸発器との間であって前記分岐冷媒経
路中に設けられ、前記凝縮器の凝縮圧力と前記蒸発器の
蒸発圧力との中間の圧力で冷媒を凝縮させて前記処理空
気を加熱する第2の熱交換手段と、 前記第1の熱交換手段と前記蒸発器と前記第2の熱交換
手段とをこの順番で接続する処理空気経路とを備えたこ
とを特徴とする除湿空調装置。
2. A booster that pressurizes a refrigerant, a condenser that condenses the refrigerant to heat a high heat source fluid, an evaporator that evaporates the refrigerant and cools processing air to a dew point temperature or lower, and a condenser. A branch refrigerant path that branches into a plurality of rows between a vessel and the evaporator; and a branch refrigerant path that is provided between the condenser and the evaporator and in the branch refrigerant path, the condensing pressure of the condenser and the evaporation. First heat exchange means for evaporating the refrigerant at a pressure intermediate to the evaporating pressure of the vessel to cool the processing air, and provided in the branch refrigerant path between the condenser and the evaporator. A second heat exchange means for condensing a refrigerant at an intermediate pressure between the condensation pressure of the condenser and the evaporation pressure of the evaporator to heat the processing air; and the first heat exchange means and the evaporator And the second heat exchange means in this order. A dehumidifying air conditioner comprising a road.
【請求項3】 前記分岐冷媒経路は、前記蒸発器の内部
を並列に延び、該蒸発器の下流側で合流することを特徴
とする請求項2に記載の除湿空調装置。
3. The dehumidifying air-conditioning apparatus according to claim 2, wherein the branch refrigerant path extends inside the evaporator in parallel and joins downstream of the evaporator.
【請求項4】 前記分岐冷媒経路のうち、温度が高い処
理空気と熱交換をする冷媒が通過する冷媒経路には、温
度が低い処理空気と熱交換する冷媒を前記冷媒経路を通
過した冷媒により昇圧するエゼクタを設置したことを特
徴とする請求項3に記載の除湿空調装置。
4. In the branch refrigerant path, a refrigerant path that exchanges heat with the high-temperature process air passes through a refrigerant path that exchanges heat with the low-temperature process air by the refrigerant that has passed through the refrigerant path. The dehumidifying air conditioner according to claim 3, further comprising an ejector for increasing the pressure.
JP2001059330A 2001-03-02 2001-03-02 Heat pump and dehumidifying air conditioner Expired - Lifetime JP3253021B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001059330A JP3253021B1 (en) 2001-03-02 2001-03-02 Heat pump and dehumidifying air conditioner
CNB02808263XA CN1223804C (en) 2001-03-02 2002-03-01 Heat pump and dehumidifying air-conditioning apparatus
EP02701662A EP1370809A4 (en) 2001-03-02 2002-03-01 Heat pump and dehumidifying air-conditioning apparatus
PCT/JP2002/001897 WO2002070958A1 (en) 2001-03-02 2002-03-01 Heat pump and dehumidifying air-conditioning apparatus
US10/468,832 US20040118133A1 (en) 2001-03-02 2002-03-01 Heat pump and dehumidifying air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059330A JP3253021B1 (en) 2001-03-02 2001-03-02 Heat pump and dehumidifying air conditioner

Publications (2)

Publication Number Publication Date
JP3253021B1 JP3253021B1 (en) 2002-02-04
JP2002257375A true JP2002257375A (en) 2002-09-11

Family

ID=18918904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059330A Expired - Lifetime JP3253021B1 (en) 2001-03-02 2001-03-02 Heat pump and dehumidifying air conditioner

Country Status (5)

Country Link
US (1) US20040118133A1 (en)
EP (1) EP1370809A4 (en)
JP (1) JP3253021B1 (en)
CN (1) CN1223804C (en)
WO (1) WO2002070958A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688166B1 (en) * 2004-12-10 2007-03-02 엘지전자 주식회사 Air conditioner
CN101443608B (en) * 2005-07-28 2011-04-13 开利公司 Closed-loop dehumidification loop for refrigerant system
US8544288B2 (en) * 2006-10-02 2013-10-01 Lennox Manufacturing Inc. Dehumidification enhancement via blower control
JP4975187B2 (en) * 2009-02-20 2012-07-11 三菱電機株式会社 User side unit and air conditioner
US9592796B2 (en) * 2012-08-05 2017-03-14 Yokohama Heat Use Technlogy HVAC device for a vehicle
CN107120746B (en) * 2016-02-25 2020-06-02 维谛技术有限公司 Composite type refrigerating and dehumidifying method and refrigerating and dehumidifying composite system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211668A (en) * 1985-03-15 1986-09-19 松下電工株式会社 Dehumidifier
JP2761379B2 (en) * 1995-08-30 1998-06-04 キャリア コーポレイション Air conditioner
JP2000356481A (en) * 1999-06-16 2000-12-26 Ebara Corp Heat exchanger, heat pump and dehumidifier
JP2001021175A (en) * 1999-07-12 2001-01-26 Ebara Corp Dehumidifying apparatus
JP2001215030A (en) * 2000-02-03 2001-08-10 Ebara Corp Dehumidifying apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031411A (en) * 1990-04-26 1991-07-16 Dec International, Inc. Efficient dehumidification system
MX9603136A (en) * 1995-08-30 1997-03-29 Carrier Corp Air conditioning system with subcooler coil and series expander devices.
JP2000111095A (en) * 1998-10-06 2000-04-18 Ebara Corp Dehumidification air conditioner
JP3228731B2 (en) * 1999-11-19 2001-11-12 株式会社荏原製作所 Heat pump and dehumidifier
JP3765732B2 (en) * 2001-04-18 2006-04-12 株式会社荏原製作所 Heat pump and dehumidifying air conditioner
WO2003006890A1 (en) * 2001-07-13 2003-01-23 Ebara Corporation Dehumidifying air-conditioning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211668A (en) * 1985-03-15 1986-09-19 松下電工株式会社 Dehumidifier
JP2761379B2 (en) * 1995-08-30 1998-06-04 キャリア コーポレイション Air conditioner
JP2000356481A (en) * 1999-06-16 2000-12-26 Ebara Corp Heat exchanger, heat pump and dehumidifier
JP2001021175A (en) * 1999-07-12 2001-01-26 Ebara Corp Dehumidifying apparatus
JP2001215030A (en) * 2000-02-03 2001-08-10 Ebara Corp Dehumidifying apparatus

Also Published As

Publication number Publication date
JP3253021B1 (en) 2002-02-04
EP1370809A4 (en) 2006-10-04
CN1503889A (en) 2004-06-09
US20040118133A1 (en) 2004-06-24
EP1370809A1 (en) 2003-12-17
WO2002070958A1 (en) 2002-09-12
CN1223804C (en) 2005-10-19

Similar Documents

Publication Publication Date Title
JP3228731B2 (en) Heat pump and dehumidifier
JP3406593B2 (en) Dehumidifier
JP2968231B2 (en) Air conditioning system
US7448229B2 (en) Heat exchanger of air conditioner
CN110410904A (en) A kind of densification and high performance humiture independence control air conditioner system
CN106225319A (en) A kind of double evaporating temperatures refrigeration and heat pump air conditioner unit and the method for back-heating type non-azeotropic mixed working medium
CN112050618A (en) Triple-effect heat recovery type air mixing type heat pump drying system and application thereof
JP3765732B2 (en) Heat pump and dehumidifying air conditioner
JP3253021B1 (en) Heat pump and dehumidifying air conditioner
US4528823A (en) Heat pump apparatus
JP3693582B2 (en) Dry storage device and method for drying stored product
JP3699623B2 (en) Heat pump and dehumidifier
JP4074487B2 (en) Dehumidifying air conditioner
JP2000356481A (en) Heat exchanger, heat pump and dehumidifier
JP3874624B2 (en) Heat pump and dehumidifying air conditioner
JP2948776B2 (en) Air conditioning system
JP3874623B2 (en) Heat pump and dehumidifying air conditioner
JPH05240531A (en) Room cooling/heating hot water supplying apparatus
JP6804076B1 (en) Multi-stage heat exchanger and its usage and refrigeration system incorporating the multi-stage heat exchanger
CN114719593B (en) Heat pump drying system for step cooling and step evaporation
CN210772889U (en) Heat exchanger system and water chilling unit
JP2007218529A (en) Air conditioner
JP3944418B2 (en) Dehumidifying air conditioner
JP2004028365A (en) Dehumidifying air conditioner
JPH10267577A (en) Air conditioning system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3253021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term