JP2002252492A - Method for producing fine powder for shielding electromagnetic wave - Google Patents

Method for producing fine powder for shielding electromagnetic wave

Info

Publication number
JP2002252492A
JP2002252492A JP2001050218A JP2001050218A JP2002252492A JP 2002252492 A JP2002252492 A JP 2002252492A JP 2001050218 A JP2001050218 A JP 2001050218A JP 2001050218 A JP2001050218 A JP 2001050218A JP 2002252492 A JP2002252492 A JP 2002252492A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
fine powder
weight
firing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001050218A
Other languages
Japanese (ja)
Inventor
Kouji Uchida
煌二 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHIDA KOGYO KK
Original Assignee
UCHIDA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHIDA KOGYO KK filed Critical UCHIDA KOGYO KK
Priority to JP2001050218A priority Critical patent/JP2002252492A/en
Publication of JP2002252492A publication Critical patent/JP2002252492A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a general purpose fine powder for shielding an electromagnetic wave which can solve both problems of recycling of waste and shielding of the electromagnetic wave. SOLUTION: A material mixture produced by kneading any one of tar, pitch and asphalt, or a mixture of any one of them and an aluminum compound or a titanium compound is fired in a reducing atmosphere having a highest temperature in the range of 850-950 deg.C and then powdered to produce fine powder for shielding the electromagnetic wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁波遮蔽性能を必
要とする遮蔽板、各種ケーシング、塗料、チョッキ等の
衣服、その他各種物品に、混在、付着、コーティング、
含浸その他の手段によって保持させて遮蔽機能を発揮さ
せることができる電磁波遮蔽用微粉体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shielding plate, various casings, paints, clothes such as waistcoats, and other various articles which require electromagnetic shielding performance.
The present invention relates to a method for producing an electromagnetic shielding fine powder capable of exhibiting a shielding function by being held by impregnation or other means.

【0002】[0002]

【従来の技術】工業化の進展、消費化社会の発展等に伴
いアスファルト類、タール類、ピッチ類などのいわゆる
産業廃棄物と称されるものが増加している。また、セル
ロース系素材の古紙(故紙)や木材屑も増加の一途を辿っ
ている。再利用が他の産業廃棄物同様に重要な検討課題
となっている。
2. Description of the Related Art With the advance of industrialization and the development of a consumer society, so-called industrial wastes such as asphalts, tars and pitches are increasing. In addition, the amount of waste paper (waste paper) and wood waste made of cellulosic materials is increasing steadily. Reuse is as important an issue as other industrial waste.

【0003】一方、電磁波の人体への影響が報告され、
電磁波をシールドするための技術開発も近年盛んになっ
ている。携帯電話等の高周波帯域の電磁波を放出する機
器を使用した場合の人体への影響が数多く報告されてい
るため携帯電話等の発する高周波帯域における影響につ
いて主として対策が検討されている。シールド技術もそ
の帯域におけるものが中心である。例えば特開平11-409
82号には、アルミニウム箔などの導電性を有する金属シ
ート上に絶縁シート材を介して炭素粉末を積層一体化し
た材が記載されている。特開平9-86910号では、有機物
を炭化して炭化物を製造するにあたって、有機物を300
〜700℃の範囲の温度まで昇温させて焼成し、次にこの
有機物を700℃を超える温度に昇温させて再度焼成する
ことを特徴とする炭化物の製造方法が提案されている。
また、特開2000-7426号では、粘土に対し、15〜20重量
%の自硬化性フェノール樹脂、10〜15重量%の活性炭、
5〜7重量%の酸化チタン、1〜3重量%の希土類金属
を加え、窒素気流下、1040℃にてLPGで焼成すること
を特徴とするカーボンセラミックスの製造方法が提案さ
れている。
On the other hand, effects of electromagnetic waves on the human body have been reported,
In recent years, technology for shielding electromagnetic waves has been actively developed. Since many effects on the human body when using devices that emit high-frequency electromagnetic waves such as mobile phones have been reported, countermeasures have been mainly studied for the effects in high-frequency bands emitted by mobile phones and the like. Shield technology is also mainly in that band. For example, JP-A-11-409
No. 82 describes a material in which carbon powder is laminated and integrated on a conductive metal sheet such as an aluminum foil via an insulating sheet material. In Japanese Patent Application Laid-Open No. 9-86910, when carbonizing an organic substance to produce a carbide,
There has been proposed a method for producing a carbide, characterized in that the temperature is raised to a temperature in the range of ~ 700 ° C and firing is performed, and then the organic material is heated to a temperature exceeding 700 ° C and fired again.
Japanese Patent Application Laid-Open No. 2000-7426 discloses that, based on clay, 15 to 20% by weight of a self-curing phenol resin, 10 to 15% by weight of activated carbon,
There has been proposed a method for producing carbon ceramics, which comprises adding 5 to 7% by weight of titanium oxide and 1 to 3% by weight of a rare earth metal, and baking with LPG at 1040 ° C. in a nitrogen stream.

【0004】[0004]

【発明が解決しようとする課題】上述のように、多くの
提案が見られるものの電磁波遮蔽性能を備え、かつ、産
業廃棄物、特にタール又はピッチ状のもの、更には古紙
のようなセルロース系素材を混合して再資源化して有効
利用するといった考えはみられないようである。そこ
で、本発明者は廃棄物の再資源化と電磁波遮蔽の双方の
課題を解決すると共に、汎用性の高い電磁波遮蔽用微粉
体を提供するための製造方法について検討した。加え
て、電磁波吸収能の改良についても検討した。
As described above, although many proposals have been made, they have electromagnetic wave shielding performance and are industrial waste, especially tar or pitch-like materials, and furthermore, cellulosic materials such as waste paper. There seems to be no idea of mixing and recycling resources for effective use. Therefore, the present inventor has solved both the problems of the recycling of waste and the shielding of electromagnetic waves, and studied a manufacturing method for providing fine powder for electromagnetic shielding with high versatility. In addition, the improvement of electromagnetic wave absorption was also studied.

【0005】[0005]

【課題を解決するための手段】上記課題を検討した結
果、タール又はピッチ状の歴青類とアルミニウム化合物
又はチタン化合物の混練した原料混合物を、還元性雰囲
気中において最高温度が850〜950℃の範囲内で焼成した
後、粉体化することを特徴とする電磁波遮蔽用微粉体の
製造方法とした。
As a result of studying the above-mentioned problems, a raw material mixture obtained by kneading a tar or pitch-like bituminous substance and an aluminum compound or a titanium compound is mixed in a reducing atmosphere at a maximum temperature of 850 to 950 ° C. A method for producing a fine powder for shielding electromagnetic waves, characterized in that it is powdered after firing within the range.

【0006】ここにいうタール、ピッチ、又はアスファ
ルトとしては、アスファルト類例えば、ストレートアス
ファルト、ブローンアスファルト、セミブローンアスフ
ァルト、カットバックアスファルト、プロパン脱歴アス
ファルトなどの石油アスファルト、及びロックアスファ
ルト、レーキアスファルト、サンドアスファルト、アス
ファルタイト、ギルソナイト、グラハマイト、トリニダ
ートアスファルトなどの天然アスファルト、重油(ディ
ーゼル重油、バンカー重油などの残さ油)、タール類例
えばガス炉コールタール、コークス炉コールタール、ブ
ラストファーネスコールタール、プロデュウサーガスコ
ールタールなどのコールタール、及びオイルガスター
ル、発生炉ガスタール、水性ガスタール、脂肪酸ター
ル、木タール、骨灰タール、低温タール、舗装タールな
ど、ピッチ類例えば石油ピッチ、オイルガスタールピッ
チ、水性ガスタールピッチ、木タールピッチ、ガス炉タ
ールピッチ、コールタールピッチ(プラストファーネス
コールタールピッチ、コークス炉コールタールピッチな
ど)、プロデュウサーガスタールピッチ、脂肪酸タール
ピッチ、脱硫酸ピッチなどをいう。
[0006] As the tar, pitch or asphalt used herein, asphalts such as petroleum asphalt such as straight asphalt, blown asphalt, semi-blown asphalt, cutback asphalt and propane deasphalted asphalt, and rock asphalt, lake asphalt and sand Natural asphalt such as asphalt, asphaltite, gilsonite, grahamite, trinidate asphalt, heavy oil (residue oil such as diesel heavy oil, bunker heavy oil), tars such as gas furnace coal tar, coke oven coal tar, blast furnace coal tar, and produsaga Coal tar such as squall tar, oil gas tar, generator gas tar, water gas tar, fatty acid tar, wood tar, bone ash tar Pitch, petroleum pitch, oil gas tar pitch, water gas tar pitch, wood tar pitch, gas furnace tar pitch, coal tar pitch (plast furnace coal tar pitch, coke oven coal tar pitch, etc.) ), Producer gas tar pitch, fatty acid tar pitch, desulfurized pitch and the like.

【0007】具体的電磁波遮蔽用微粉体の製造方法とし
ては、タール、ピッチ、又はアスファルトのいずれか又
はこれらのうちのいずれかの混合物を50〜70重量%、セ
ルロース系素材を20〜40重量%、酸化アルミニウムを10
〜20重量%、酸化チタンを5〜10重量%含む原料混合物
を混練し、還元性雰囲気中において最高温度が850〜950
℃の範囲内で焼成することにより、焼成後の炭素比率を
60〜85重量%とした後、粉体化することを特徴とする電
磁波遮蔽用微粉体の製造方法である。
As a specific method for producing a fine powder for shielding electromagnetic waves, tar, pitch, or asphalt or a mixture of any of them is used in an amount of 50 to 70% by weight, and a cellulosic material is used in an amount of 20 to 40% by weight. 10 aluminum oxide
~ 20% by weight and a raw material mixture containing 5-10% by weight of titanium oxide, and the maximum temperature is 850-950 in a reducing atmosphere.
By firing within the range of ℃, the carbon ratio after firing is reduced
This is a method for producing a fine powder for shielding electromagnetic waves, wherein the powder is made into powder after adjusting to 60 to 85% by weight.

【0008】タール、ピッチ、又はアスファルトのいず
れか又はこれらのうちのいずれかの混合物の配合は原料
混合物の成形時や焼成前の保形に役立つと共に炭素源と
なる。50重量%以下では硬度が増して硬くなり、また、
70重量%以上では脆くなって崩れ易くなる。好ましくは
50〜70重量%である。
The blending of tar, pitch, or asphalt, or a mixture of any of these, serves to maintain the shape of the raw material mixture during molding and before firing, and serves as a carbon source. Below 50% by weight, the hardness increases and becomes harder,
If it is 70% by weight or more, it becomes brittle and easily collapses. Preferably
50 to 70% by weight.

【0009】ここにいうセルロース系素材とは、紙、木
材、竹材等に由来する故紙(製紙屑や古紙)や、木材廃
材、間伐材、製材屑、その他植物使用の加工屑等であ
り、粉体又は繊維状に加工して用いる。特に古紙の使用
が好ましい。これらは細断して微細な状態にするとター
ル又はピッチ状の歴青類中へ混合し易い。いずれも炭素
源である。20重量%以下では、炭素源として不十分で、
また、40重量%以上では混練成形が困難となる。好まし
くは20〜40重量%である。
The cellulosic material referred to herein includes waste paper (papermaking waste and wastepaper) derived from paper, wood, bamboo, etc., wood waste, thinned wood, sawmill, and other processing waste used in plants. It is processed into a body or fiber and used. Particularly, use of waste paper is preferable. When these are cut into fine pieces, they are easily mixed into tar or pitch-like bituminous products. Both are carbon sources. If it is less than 20% by weight, it is insufficient as a carbon source.
On the other hand, if it is 40% by weight or more, kneading and molding becomes difficult. Preferably it is 20 to 40% by weight.

【0010】アルミニウムは電磁波遮蔽用微粉体に導電
性をもたらして電磁波遮蔽性能を高める。導電性を与え
る金属類は多いが、例えば銀は高価であり、銅は毒性を
有する。また、鉄は錆びやすい。このような難点のない
ものとして、アルミニウムの採用が好ましい。アルミニ
ウムは金属状のものでは本発明品の焼成後微粉にし難
い。そこで、酸化物、水酸化物等のアルミニウム化合物
が好ましい。なかでも酸化アルミニウムの10〜20重量%
の添加が好ましい。10重量%以下では導電性が低下して
電磁波遮蔽性能が得にくい。また、20重量%以上では過
剰添加となる。金属アルミニウムの使用よりも酸化アル
ミニウムの使用が好ましい。
[0010] Aluminum imparts conductivity to the electromagnetic wave shielding fine powder to enhance the electromagnetic wave shielding performance. Although many metals provide conductivity, silver is expensive and copper is toxic. Iron is easily rusted. The use of aluminum is preferred because there is no such difficulty. Aluminum is difficult to turn into a fine powder after firing of the product of the present invention if it is in a metallic form. Therefore, aluminum compounds such as oxides and hydroxides are preferable. 10-20% by weight of aluminum oxide
Is preferred. If the content is less than 10% by weight, the conductivity is reduced and it is difficult to obtain the electromagnetic wave shielding performance. If the content is 20% by weight or more, excessive addition is required. The use of aluminum oxide is preferred over the use of metallic aluminum.

【0011】チタンも金属状のものよりも化合物が好ま
しく、酸化チタンの場合では5〜10重量%が好ましい。
これも導電性付与のために添加される。5重量%以下で
は導電性が不十分で、また、10重量%以上では硬度が増
し粉砕が困難となる。
[0011] Titanium is also preferably a compound rather than a metallic one. In the case of titanium oxide, the content is preferably 5 to 10% by weight.
This is also added for imparting conductivity. If it is less than 5% by weight, the conductivity is insufficient, and if it is more than 10% by weight, the hardness increases and pulverization becomes difficult.

【0012】原料混合物を還元性雰囲気で焼成する。還
元性雰囲気は酸素を除くことであって、その際にハロゲ
ンガスでも好ましいが、不活性ガスの使用が好ましい。
不活性ガスとしては窒素、ヘリュウム、ネオン、アルゴ
ン、クリプトン、キセノン等希ガスを使用可能である
が、安価な点から一酸化炭素雰囲気下で行うのが好まし
い。
The raw material mixture is fired in a reducing atmosphere. The reducing atmosphere is to remove oxygen. At this time, a halogen gas is also preferable, but an inert gas is preferably used.
As the inert gas, a rare gas such as nitrogen, helium, neon, argon, krypton, or xenon can be used. However, it is preferable to use an inert gas in a carbon monoxide atmosphere because of its low cost.

【0013】焼成温度も重要であって、まず、100〜300
℃の低温焼成を行う。低温焼成時間は1〜2時間が好ま
しい。この低温焼成によって、水分の蒸散乾燥を行い、
焼成体の割れを防止する。また、焼成の最高温度は800
〜1,000℃、好ましくは850〜950℃の範囲内にあるのが
好ましい。この範囲内に最高温度が存在すると、ピッチ
状の歴青類の炭化が、後に微粉になり易いものとなる。
また、導電性の炭素となり電磁波遮蔽性能の高いものと
なる。焼成温度が850℃以下では導電性のよいものが得
られず、また、焼成温度が950℃以上では硬くなり微粉
体に成り難くなる。微粉体にする手段としては、既存の
ボールミル法、グラインダー法、ミキサー法等が採用で
きる。
[0013] The firing temperature is also important.
Perform low-temperature baking at ℃. The low-temperature firing time is preferably 1 to 2 hours. By this low-temperature firing, the moisture is evaporated and dried,
Prevent cracking of the fired body. The maximum firing temperature is 800
It is preferably in the range of 1,0001000 ° C., preferably 850 ° -950 ° C. When the maximum temperature exists in this range, the carbonization of the pitch-like bituminous matter is likely to become fine powder later.
Further, it becomes conductive carbon and has high electromagnetic wave shielding performance. If the firing temperature is 850 ° C. or lower, a material having good conductivity cannot be obtained, and if the firing temperature is 950 ° C. or higher, the powder becomes hard and hardly becomes fine powder. As a means for forming fine powder, an existing ball mill method, grinder method, mixer method, or the like can be employed.

【0014】[0014]

【発明の実施の形態】以下本発明を実施例に基づいて詳
細に説明する。石油ピッチ、石炭ピッチ、細断古紙、酸
化アルミニウム、酸化チタン、その他酸化鉄の配合例を
表1の実施例No.1〜No.6に示すように調製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. Examples of blending of petroleum pitch, coal pitch, shredded waste paper, aluminum oxide, titanium oxide, and other iron oxides were prepared as shown in Examples 1 to 6 in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示すNo.1〜No.6の配合組成のもの
それぞれを窒素ガスを炉内に供給しながら、室温から25
0℃まで1時間かけて昇温し、250℃のままで2時間低温
焼成した。次に、表1中右欄に示す最高焼成温度に達す
るまで、2時間かけて昇温させた後、その最高温度のま
ま4時間維持して高温焼成した。その後室温まで冷却
し、冷却後の焼成物をボールミル法で300〜370メッシュ
の微粉体にした。
Each of the compositions No. 1 to No. 6 shown in Table 1 was supplied from a room temperature to 25% while supplying nitrogen gas into the furnace.
The temperature was raised to 0 ° C. over 1 hour and calcined at 250 ° C. for 2 hours at low temperature. Next, the temperature was raised over 2 hours until the maximum firing temperature shown in the right column in Table 1 was reached, and then the high temperature was maintained at that maximum temperature for 4 hours to perform high-temperature firing. Thereafter, it was cooled to room temperature, and the fired product after cooling was turned into fine powder of 300 to 370 mesh by a ball mill method.

【0017】No.1〜No.6の焼成物の元素分析結果を表
2に示す。炭素比率が70〜80%となっている。いずれも
割れがなかった。
Table 2 shows the results of elemental analysis of the fired products No. 1 to No. 6. The carbon ratio is 70-80%. None of them had cracks.

【0018】[0018]

【表2】 [Table 2]

【0019】No.1〜No.6の実施例のいずれも容易に微
粉体にすることができた。得られた微粉体は、比重が1.
2〜1.3、比表面積80〜95m2/g、全細孔容積0.01〜0.02ml
/gである。No.1〜No.6の焼成物の電磁波遮蔽能力及び
表面抵抗値測定結果を表3に示す。表3中には同時に従
来公知の電磁波遮蔽材に示された測定値を示す。No.1
〜No.6の焼成物の電磁波遮蔽能力の測定方法は、KE
C(関西電子工業振興センター)法による。測定機器はス
ペクトルアナライザーTR4172:アドバンテスト社製(測定
条件:15℃)である。表面抵抗値の測定は、SANWA SD-420
Cによった。
All of the Examples No. 1 to No. 6 could be easily made into fine powder. The resulting fine powder has a specific gravity of 1.
2 to 1.3, the specific surface area 80~95m 2 / g, total pore volume 0.01~0.02ml
/ g. Table 3 shows the measurement results of the electromagnetic wave shielding ability and the surface resistance of the fired products No. 1 to No. 6. Table 3 also shows the measured values shown for the conventionally known electromagnetic wave shielding materials. No.1
No. 6 is a method of measuring the electromagnetic wave shielding ability of the fired product,
According to the C (Kansai Electronics Industry Promotion Center) method. The measuring instrument is a spectrum analyzer TR4172: manufactured by Advantest (measuring conditions: 15 ° C.). The measurement of surface resistance value is performed by SANWA SD-420
According to C.

【0020】[0020]

【表3】 [Table 3]

【0021】表3の結果から本発明のNo.1〜No.6の焼
成物の電磁波遮蔽能力は100MHz、1GHz、5GHzのいずれ
においても従来例より優れている。また、表面抵抗値の
測定結果は良好な導電性を示し、これが電磁波遮蔽効果
に寄与する結果となっている。
From the results shown in Table 3, the fired products of Nos. 1 to 6 of the present invention have better electromagnetic wave shielding ability than the conventional example at 100 MHz, 1 GHz and 5 GHz. Further, the measurement result of the surface resistance value shows good conductivity, which results in an electromagnetic wave shielding effect.

【0022】実施例No.3の焼成物の周波数別電磁波遮
蔽能力を図1に示す。また、図2に実施例No.2とNo.3
の組成で最高温度を800〜950℃の範囲内で焼成した場合
の電磁波遮蔽能力を示す。最高温度を950℃以上にした
場合、硬くなって粉体にし難いので試験していない。
FIG. 1 shows the frequency of electromagnetic wave shielding of the fired product of Example No. 3. FIG. 2 shows Example Nos. 2 and 3
Shows the electromagnetic wave shielding ability when the composition is fired at a maximum temperature in the range of 800 to 950 ° C. When the maximum temperature was set to 950 ° C or higher, it was not tested because it becomes hard and hard to turn into powder.

【0023】図1から本発明の焼成物の周波数別電磁波
遮蔽能力が10MHz〜1GHzの全領域でほぼ50dB以上の性能
を発揮することが明らかになっている。また、図2から
最高温度を800〜950℃の範囲内で焼成した場合に電磁波
遮蔽能力が優れているのが明らかとなっている。
From FIG. 1, it is clear that the fired product of the present invention exhibits an electromagnetic wave shielding ability by frequency of approximately 50 dB or more in the entire range of 10 MHz to 1 GHz. Further, it is clear from FIG. 2 that when the maximum temperature is baked in the range of 800 to 950 ° C., the electromagnetic wave shielding ability is excellent.

【0024】図3に実施例No.1と近いの組成で、酸化
アルミニウムの添加を5〜10重量%に変化させ、最高温
度を800℃で焼成した場合の電磁波遮蔽能力を示す。酸
化アルミニウムの添加量が減少すると、表面抵抗値が増
し、電磁波遮蔽能力が低下するのが分かる。
FIG. 3 shows the electromagnetic wave shielding ability when the composition is close to that of Example No. 1 and the maximum temperature is baked at 800 ° C. while changing the addition of aluminum oxide to 5 to 10% by weight. It can be seen that when the addition amount of aluminum oxide decreases, the surface resistance increases and the electromagnetic wave shielding ability decreases.

【0025】[0025]

【発明の効果】本発明によって、廃棄物の再資源化と電
磁波遮蔽の双方の課題を解決できるととなった。得られ
た電磁波遮蔽用微粉体は電磁波吸収能力が高く、しか
も、電磁波遮蔽性能を必要とする遮蔽板、各種ケーシン
グ、塗料、チョッキ等の衣服、その他各種物品に汎用性
に富む特徴がある。経時変化に強く、安定で、多くの化
学薬品に対して抵抗力があり、長時間性能が変化するこ
となく使用できるといった特徴をも備えているのであ
る。
According to the present invention, it is possible to solve both the problems of recycling of waste and shielding of electromagnetic waves. The obtained fine particles for shielding electromagnetic waves have high electromagnetic wave absorbing ability, and are characterized by a versatility in shielding plates, various casings, paints, clothes such as vests, and other various articles requiring electromagnetic wave shielding performance. It is resistant to aging, is stable, resistant to many chemicals, and can be used for a long time without changing its performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によって得られた焼成物の電磁波の周波
数変化に対する遮蔽能力を測定したグラフである。
FIG. 1 is a graph showing the measured shielding ability of a fired product obtained according to the present invention with respect to a change in frequency of an electromagnetic wave.

【図2】最高温度を800〜950℃の範囲内で焼成した場合
の焼成物の遮蔽能力を測定したグラフである。
FIG. 2 is a graph showing the measured shielding ability of a fired product when fired at a maximum temperature in the range of 800 to 950 ° C.

【図3】表面抵抗値と電磁波遮蔽能力の関係を示すグラ
フである。
FIG. 3 is a graph showing a relationship between a surface resistance value and an electromagnetic wave shielding ability.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タール、ピッチ、又はアスファルトのい
ずれか又はこれらのうちのいずれかの混合物とアルミニ
ウム化合物又はチタン化合物を混練した原料混合物を、
還元性雰囲気中において最高温度が850〜950℃の範囲内
で焼成した後、粉体化することを特徴とする電磁波遮蔽
用微粉体の製造方法。
Claims 1. A raw material mixture obtained by kneading an aluminum compound or a titanium compound with any of tar, pitch, or asphalt or a mixture of any of these,
A method for producing a fine powder for electromagnetic wave shielding, comprising firing in a reducing atmosphere at a maximum temperature in the range of 850 to 950 ° C. and then pulverizing the powder.
【請求項2】 タール、ピッチ、又はアスファルトのい
ずれか又はこれらのうちのいずれかの混合物を50〜70重
量%、セルロース系素材を20〜40重量%、酸化アルミニ
ウムを10〜20重量%、酸化チタンを5〜10重量%含む原
料混合物を混練し、還元性雰囲気中において最高温度が
850〜950℃の範囲内で焼成することにより、焼成後の炭
素比率を60〜85重量%とした後、粉体化することを特徴
とする電磁波遮蔽用微粉体の製造方法。
2. Tar, pitch or asphalt or a mixture of any of them, 50 to 70% by weight, cellulosic material 20 to 40% by weight, aluminum oxide 10 to 20% by weight, oxidation A raw material mixture containing 5 to 10% by weight of titanium is kneaded, and the maximum temperature is reduced in a reducing atmosphere.
A method for producing a fine powder for electromagnetic wave shielding, characterized in that a carbon ratio after firing is reduced to 60 to 85% by weight by firing at a temperature in the range of 850 to 950 ° C, and then powdered.
【請求項3】 原料混合物を還元性雰囲気で焼成するに
際し、一酸化炭素雰囲気下で行うことを特徴とする請求
項1又は2に記載の電磁波遮蔽用微粉体の製造方法。
3. The method for producing a fine powder for electromagnetic wave shielding according to claim 1, wherein the firing of the raw material mixture in a reducing atmosphere is performed in a carbon monoxide atmosphere.
【請求項4】 最高温度が850〜950℃の範囲内の高温域
焼成の前に、100〜300℃の低温域焼成を行うことを特徴
とする請求項1又は2に記載の電磁波遮蔽用微粉体の製
造方法。
4. The fine powder for shielding electromagnetic waves according to claim 1, wherein the low-temperature firing at 100 to 300 ° C. is performed before the high-temperature firing at a maximum temperature in the range of 850 to 950 ° C. How to make the body.
JP2001050218A 2001-02-26 2001-02-26 Method for producing fine powder for shielding electromagnetic wave Pending JP2002252492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050218A JP2002252492A (en) 2001-02-26 2001-02-26 Method for producing fine powder for shielding electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050218A JP2002252492A (en) 2001-02-26 2001-02-26 Method for producing fine powder for shielding electromagnetic wave

Publications (1)

Publication Number Publication Date
JP2002252492A true JP2002252492A (en) 2002-09-06

Family

ID=18911213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050218A Pending JP2002252492A (en) 2001-02-26 2001-02-26 Method for producing fine powder for shielding electromagnetic wave

Country Status (1)

Country Link
JP (1) JP2002252492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070901A (en) * 2010-09-28 2012-04-12 Toto Ltd Heating toilet seat device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070901A (en) * 2010-09-28 2012-04-12 Toto Ltd Heating toilet seat device

Similar Documents

Publication Publication Date Title
Guzmán A et al. Valorization of rice straw waste: an alternative ceramic raw material
CN107285744A (en) A kind of ladle low carbon magnesia carbon brick and preparation method thereof
JPH0660314B2 (en) Fuel briquette manufacturing method
CN111518973A (en) Multi-element mixed semi-coke powder for steelmaking blast furnace injection raw material
Sharma et al. Influence of properties of bituminous binders on the strength of formed coke
JP2002252492A (en) Method for producing fine powder for shielding electromagnetic wave
JP4681688B2 (en) Iron ore sintering carbon
JP2005263547A (en) Composite activated carbonized material and method for manufacturing the same
EP2554280A1 (en) Product obtained by baking cacao bean husk
RU2337895C2 (en) Method of natural clayey suspension manufacturing for electrode material production
CN105461336A (en) Method for preparing firebricks
CN108610051A (en) A kind of preparation method being modified wooden base silicon carbide ceramic material
RU2264981C1 (en) Electrode mass for self-roasting electrodes
JP2005200239A (en) Highly heat-conductive graphite material and its production method
JP7143714B2 (en) Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore
KR101210966B1 (en) High-Strength Complex Material
JP7397303B2 (en) Method for producing sintered ore
RU2272085C1 (en) High-heat-conducting material absorbing uhf-energy
JPH08127785A (en) Solid fuel
CN105513664A (en) Industrial conductive material and preparation method thereof
KR100376488B1 (en) The method of using tire waste for raw material of metallugical coke
JPH11130535A (en) Production of carbon material
SU542276A1 (en) Metal ceramic brush for electric cars
RU2080417C1 (en) Carbon anode mass
JPS6054241B2 (en) Method for manufacturing graphitized articles