JP2002246579A - Solid-state image pickup element and manufacturing method thereof - Google Patents

Solid-state image pickup element and manufacturing method thereof

Info

Publication number
JP2002246579A
JP2002246579A JP2001038888A JP2001038888A JP2002246579A JP 2002246579 A JP2002246579 A JP 2002246579A JP 2001038888 A JP2001038888 A JP 2001038888A JP 2001038888 A JP2001038888 A JP 2001038888A JP 2002246579 A JP2002246579 A JP 2002246579A
Authority
JP
Japan
Prior art keywords
light
wiring
solid
shielding film
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001038888A
Other languages
Japanese (ja)
Inventor
Shinichi Yotsuya
真一 四谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001038888A priority Critical patent/JP2002246579A/en
Publication of JP2002246579A publication Critical patent/JP2002246579A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a structure of an in-layer micro lens which improves insufficient sensitivity of a CMOS photosensor. SOLUTION: After a light shielding film is formed, a resist patterning is performed to form an opening part. The light shielding film is patterned by dry-etching, and an interlayer insulating film just below it is dry-etched up to just above a photoelectric conversion element to form a non-through hole. Then, the resist is removed, and the hole is filled with a material having a refractive index higher than the interlayer insulating film and flattened. A color filter layer is formed over it, thus a color filter layer is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像素子及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年のデジタルカメラや携帯型情報端末
の普及とともに、固体撮像素子の需要は急速に拡大しつ
つある。これに伴い、より低価格で高分解能かつ低消費
電力な固体撮像素子の需要が高まっている。特に低省電
力な固体画像素子として、CMOS型固体撮像素子は
「CCDカメラ技術入門(竹村祐夫著、コロナ社刊)」
の37ヘ゜ーシ゛11行目から40ヘ゜ーシ゛20行目までに記載されてい
るように、従来の電荷転送素子を用いたCCD型撮像素
子よりもCMOSトランジスターにより電荷を増幅・転
送する撮像素子の方が消費電力に対し優れているため、
非常に注目されている方式である。
2. Description of the Related Art With the spread of digital cameras and portable information terminals in recent years, the demand for solid-state imaging devices is rapidly expanding. Along with this, there is an increasing demand for a solid-state imaging device with lower cost, higher resolution, and lower power consumption. In particular, as a low-power solid-state imaging device, a CMOS solid-state imaging device is described as “Introduction to CCD Camera Technology (Yuo Takemura, published by Corona)”.
As described on page 37, line 11 to page 40, line 20, the image sensor that amplifies and transfers electric charges using CMOS transistors is more expensive than the CCD image sensor that uses a conventional charge transfer device. Because it is superior to electricity,
This is a very popular method.

【0003】また、この素子はCMOSのトランジスタ
ーで構成されているため、従来の半導体の工場で試作・
製造できるので設備投資も少なく、さらにチップ内部に
画像処理用プロセッサも同時に形成できるなど設計柔軟
性も十分にあるため、近年非常に盛んに開発されている
素子でもある。
[0003] Further, since this element is composed of a CMOS transistor, it is prototyped at a conventional semiconductor factory.
Since it can be manufactured, there is little capital investment, and since it has sufficient design flexibility such that an image processing processor can be simultaneously formed inside the chip, it is a device that has been very actively developed in recent years.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このC
MOSのトランジスターにより電荷を転送する撮像素子
の場合、図8に示す様に、光電変換素子100と遮光膜
101の間に存在する層間絶縁膜102の中に多層の配
線103が存在する。そのため、光電変換素子100と
遮光膜101の間隔が大きくなり、斜めに入射する光は
表面に形成されたマイクロレンズアレイ200で集光し
ても、光電変換素子の範囲外にて集光してしまうので、
効率の悪い、感度の低い撮像素子になってしまう恐れが
あった。
However, this C
In the case of an imaging device that transfers electric charges by using MOS transistors, as shown in FIG. 8, a multilayer wiring 103 exists in an interlayer insulating film 102 existing between a photoelectric conversion element 100 and a light-shielding film 101. Therefore, the distance between the photoelectric conversion element 100 and the light-shielding film 101 becomes large, and even if the light obliquely incident is collected by the microlens array 200 formed on the surface, it is collected outside the range of the photoelectric conversion element. Because
There is a possibility that the imaging device may be inefficient and have low sensitivity.

【0005】また、光電変換素子の範囲外で集光した光
が隣接した光電変換素子へ入射する事により、本来単色
であるはずの部分に違う色が混じるという色モアレ等も
多いのでコントラストの低い画像しか得られないと言う
課題もある。この課題を解決する従来の方法として、株
式会社インプレスコミュニケーションズ刊“デジタルカ
メラ・マガジン”vol.15,2000年の96ペー
ジから98ページに書かれているカラーフィルターと遮
光膜の間に層内レンズと呼ばれるマイクロレンズを入
れ、2つの凸レンズで集光する手段がある。
In addition, since light condensed outside the range of the photoelectric conversion element enters an adjacent photoelectric conversion element, there are many color moirés in which a different color is mixed in a portion that should be a single color, and the contrast is low. There is also a problem that only images can be obtained. As a conventional method for solving this problem, “Digital Camera Magazine” vol. There is a means in which a microlens called an intralayer lens is inserted between a color filter and a light-shielding film described on pages 96 to 98 in pages 15 and 2000, and two convex lenses collect light.

【0006】この方法でも集光力は高められ、感度向上
は期待できるが、極端に斜めから入射した光は、完全に
該当の光電変換素子へ導く事はできないので、色モアレ
は改良されるものの完全に除去できるものではない。
[0006] Even with this method, the light condensing power can be increased and the sensitivity can be expected to be improved. However, since the light incident at an extremely oblique angle cannot be completely guided to the corresponding photoelectric conversion element, the color moiré is improved. It cannot be completely removed.

【0007】本発明は上記従来の欠点を鑑みてなされた
ものであり、その目的とするところは、マイクロレンズ
200にて集光し、遮光膜101に導入された光はすべ
て光電変換素子へ導入する層内マイクロレンズアレイの
構造とその製造方法を提供するところにある。
The present invention has been made in view of the above-mentioned conventional disadvantages, and has as its object to condense light by a microlens 200 and to introduce all light introduced into a light shielding film 101 into a photoelectric conversion element. And a method of manufacturing the same.

【0008】[0008]

【課題を解決しようとする手段】本発明の固体撮像素子
は、シリコン基板にマトリクス状に設けられた複数の光
電変換素子を有し、該光電変換素子に隣接してスイッチ
ング素子及び配線が形成されてなり、該スイッチング素
子及び該配線の上に遮光膜が形成されてなり、前記配線
と前記遮光膜との間に層間絶縁膜が形成されてなる固体
撮像素子において、前記遮光膜に形成された開口部に、
前記層間絶縁膜の屈折率より高い屈折率を有する透明材
料が充填されてなることを特徴とする。また、前記透明
材料が窒化シリコンである事、また、前記透明材料が光
硬化性樹脂である事を特徴とする。
The solid-state imaging device of the present invention has a plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, and a switching element and a wiring are formed adjacent to the photoelectric conversion elements. A light-shielding film is formed on the switching element and the wiring, and in the solid-state imaging device, an interlayer insulating film is formed between the wiring and the light-shielding film. In the opening,
It is characterized by being filled with a transparent material having a refractive index higher than the refractive index of the interlayer insulating film. Further, the transparent material is silicon nitride, and the transparent material is a photocurable resin.

【0009】また、本発明の固体撮像素子の製造方法
は、シリコン基板にマトリクス状に設けられた複数の光
電変換素子を有し、該光電変換素子に隣接してスイッチ
ング素子及び配線が形成されてなり、該スイッチング素
子及び該配線の上に遮光膜が形成されてなり、前記配線
と前記遮光膜との間に層間絶縁膜が形成されてなる固体
撮像素子の製造方法において、(a)遮光膜成膜後に、開
口部を形成するためにレジストパターニングを行い、
(b)遮光膜をパターニングし、(c)前記層間絶縁膜を光
電変換素子直上付近までドライエッチングを行ない穴を
形成した後、前記レジストを除去し、(d)前記穴に前記
層間絶縁膜の屈折率より高い屈折率を有する透明材料で
充填した後、前記層間絶縁膜の平坦化処理を行う事を特
徴とする。
Further, a method of manufacturing a solid-state imaging device according to the present invention includes a plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, wherein a switching element and a wiring are formed adjacent to the photoelectric conversion elements. Wherein a light-shielding film is formed on the switching element and the wiring, and an interlayer insulating film is formed between the wiring and the light-shielding film. After film formation, resist patterning is performed to form an opening,
(b) patterning a light-shielding film, (c) forming a hole by performing dry etching on the interlayer insulating film up to immediately above a photoelectric conversion element, removing the resist, and (d) forming the interlayer insulating film in the hole. After filling with a transparent material having a refractive index higher than the refractive index, the interlayer insulating film is flattened.

【0010】更に、前記透明材料は光硬化性樹脂からな
り、前記平坦化処理は、不活性化処理を行ったガラス基
板を前記光効果性樹脂と貼り合わせ、前記ガラス基板を
介して前記光硬化性樹脂に光を照射して前記光硬化性樹
脂の硬化処理を行い、前記ガラス基板を引き剥がす事に
より行うこと特徴とする。
[0010] Further, the transparent material is made of a photo-curable resin, and the flattening process is performed by laminating a glass substrate subjected to an inactivation process with the photo-effective resin, The photocurable resin is cured by irradiating the resin with light, and the glass substrate is peeled off.

【0011】更に、前記ガラス基板と前記光硬化性樹脂
とを貼りあわせをする時の雰囲気を減圧雰囲気で行うこ
とを特徴とする。
Further, the present invention is characterized in that the bonding of the glass substrate and the photocurable resin is performed in a reduced pressure atmosphere.

【0012】また、本発明の固体撮像素子は、シリコン
基板にマトリクス状に設けられた複数の光電変換素子を
有し、該光電変換素子に隣接してスイッチング素子及び
配線が形成されてなり、該スイッチング素子及び該配線
の上に遮光膜が形成されてなり、前記配線と前記遮光膜
との間に層間絶縁膜が形成されてなる固体撮像素子にお
いて、前記遮光膜と、前記遮光膜に形成された開口部の
下に設けられた穴の側面及び底面にシリコン窒化膜が形
成されてなる事を特徴とする。
Further, the solid-state imaging device of the present invention has a plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, and a switching element and a wiring are formed adjacent to the photoelectric conversion elements. In a solid-state imaging device in which a light-shielding film is formed on a switching element and the wiring, and an interlayer insulating film is formed between the wiring and the light-shielding film, the solid-state imaging element is formed on the light-shielding film. A silicon nitride film is formed on the side and bottom surfaces of the hole provided below the opening.

【0013】更に、シリコン基板にマトリクス状に設け
られた複数の光電変換素子を有し、該光電変換素子に隣
接してスイッチング素子及び配線が形成されてなり、該
スイッチング素子及び該配線の上に遮光膜が形成されて
なり、前記配線と前記遮光膜との間に層間絶縁膜が形成
されてなる固体撮像素子の製造方法であって、(a)前記
遮光膜成膜後に、開口部を形成するためにレジストパタ
ーニングを行い、(b)前記遮光膜をドライエッチングに
てパターニングし、(c)前記開口部の下の前記層間絶縁
膜を光電変換素子直上付近までドライエッチングを行な
って穴を形成した後、前記レジストを除去し、(d)前記
遮光膜、前記穴の側壁と底部にシリコン窒化膜を成膜
し、(e)前記シリコン窒化膜より屈折率の低い透明材料
を塗布して平坦化処理を行う、事を特徴とする。
Further, the semiconductor device has a plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, and a switching element and a wiring are formed adjacent to the photoelectric conversion element, and the switching element and the wiring are formed on the switching element and the wiring. A method for manufacturing a solid-state imaging device in which a light-shielding film is formed, and an interlayer insulating film is formed between the wiring and the light-shielding film, wherein (a) forming an opening after forming the light-shielding film (B) pattern the light-shielding film by dry etching, and (c) dry-etch the interlayer insulating film under the opening to a position immediately above the photoelectric conversion element to form a hole. After that, the resist is removed, (d) a silicon nitride film is formed on the side walls and the bottom of the light shielding film and the hole, and (e) a transparent material having a lower refractive index than the silicon nitride film is applied and flattened. Conversion process Do, characterized by things.

【0014】[0014]

【発明の実施の形態】以下に発明の実施の形態を図面を
用いて、詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】(実施例1)図1は本発明の固体撮像素子
としてのマイクロレンズアレイの構造を説明する断面図
である。遮光膜101と光電変換素子100との間に層
間絶縁膜102が存在しており、この中で遮光膜101
の下にAl合金の配線103が埋め込まれている。実際
には層間絶縁膜102には、酸化シリコン膜が用いられ
る事が多い。一方、遮光膜101の開口部の下のSi基
板110内に光電変換素子100が形成されている。そ
の光電変換素子100の直上と遮光膜101の開口部の
間には層間絶縁膜102に未貫通穴108が形成されて
おりその未貫通穴108には層間絶縁膜102よりも高
い屈折率を有する透明材料203が充填されている。そ
してこの部分が本発明の層内マイクロレンズになる、そ
してその透明材料203の表面は平坦化が施されてい
る。
(Embodiment 1) FIG. 1 is a sectional view for explaining the structure of a microlens array as a solid-state imaging device according to the present invention. An interlayer insulating film 102 exists between the light-shielding film 101 and the photoelectric conversion element 100.
A wiring 103 of an Al alloy is buried underneath. In practice, a silicon oxide film is often used for the interlayer insulating film 102. On the other hand, the photoelectric conversion element 100 is formed in the Si substrate 110 below the opening of the light shielding film 101. A non-penetrating hole 108 is formed in the interlayer insulating film 102 just above the photoelectric conversion element 100 and the opening of the light-shielding film 101, and the non-penetrating hole 108 has a higher refractive index than the interlayer insulating film 102. The transparent material 203 is filled. This portion becomes the in-layer microlens of the present invention, and the surface of the transparent material 203 is flattened.

【0016】この透明材料203には屈折率が層間絶縁
膜102よりも十分高い必要があるため、シリコン窒化
膜やアクリル系またはエポキシ系の高屈折率樹脂等が望
ましい。
Since the refractive index of the transparent material 203 needs to be sufficiently higher than that of the interlayer insulating film 102, a silicon nitride film or an acrylic or epoxy high refractive index resin is preferably used.

【0017】特にシリコン窒化膜は屈折率(nD)が
1.9ないし2.0と非常に高く、また半導体では汎用
的に用いる薄膜であるため、プロセス的にも導入が非常
に容易な材料として好適である。
In particular, the silicon nitride film has a very high refractive index (nD) of 1.9 to 2.0, and is a thin film generally used in semiconductors. It is suitable.

【0018】さら透明材料203の上に各画素の色に対
応するカラーフィルター201が形成され、その上に平
坦化樹脂202の層があり、最上部にマイクロレンズ2
00が形成されている。
Further, a color filter 201 corresponding to the color of each pixel is formed on a transparent material 203, and a layer of a flattening resin 202 is provided thereon.
00 is formed.

【0019】以上、図1を用いて本発明の層内マイクロ
レンズアレイの構造を説明した。
The structure of the in-layer microlens array of the present invention has been described above with reference to FIG.

【0020】次に、本発明の層内マイクロレンズの集光
原理について説明する。本発明の層内マイクロレンズは
全反射現象を応用して集光を行っている。すなわち図2
に示すように、屈折率n2の物質から屈折率n1の物質
に光がQの角度をもって進んできたとき、Qの角度が、 n2>n1 の場合において、 SIN Q0=n1/n2 を満たすQ0の角度より大きいとき、進んできた光は界
面において、反射する事を利用しているのである。
Next, the light-condensing principle of the in-layer microlens of the present invention will be described. The in-layer microlens of the present invention collects light by applying the total reflection phenomenon. That is, FIG.
As shown in FIG. 7, when light travels from a substance having a refractive index n2 to a substance having a refractive index n1 at an angle of Q, when the angle of Q is n2> n1, Q0 satisfying SIN Q0 = n1 / n2 is satisfied. When the angle is larger than the angle, the traveling light utilizes the reflection at the interface.

【0021】このことを利用すると、図3(a)に示す
ように光軸に平行に入る光だけでなく、図3(b)に示
すような従来では取りこぼしていた斜めから入って来る
光もほとんど光電変換素子100に導き入れることがで
きるので、マイクロレンズ200の効果を非常に高める
ことになる。従って、ほぼ画素面積で集光できる光の理
論値に極めて近い値の光を集光でき、感度が高く、ノイ
ズの少ない撮像素子を容易に提供する事が出来る。
By utilizing this fact, not only light entering parallel to the optical axis as shown in FIG. 3A, but also light entering obliquely as shown in FIG. Since almost all the light can be led into the photoelectric conversion element 100, the effect of the microlens 200 is greatly enhanced. Therefore, it is possible to condense light having a value very close to the theoretical value of light that can be condensed in a substantially pixel area, and it is possible to easily provide an imaging device having high sensitivity and low noise.

【0022】また、この未貫通穴108に入射した光は
全反射現象により、ほぼ該当光電変換素子に入射するの
で、隣接する光電変換素子に入射する事が無く色モアレ
の発生も無い。
Further, since the light that has entered the non-through hole 108 substantially enters the corresponding photoelectric conversion element due to the total reflection phenomenon, it does not enter the adjacent photoelectric conversion element and does not generate color moire.

【0023】実際に、この構造の層内マイクロレンズア
レイを形成し、表面層にはマイクロレンズ200を一般
的な感光性樹脂のフォトリソグラフィと熱溶融により形
成し評価した結果を表1に示す。
Actually, an in-layer microlens array having this structure was formed, and microlenses 200 were formed on the surface layer by photolithography and heat melting of a general photosensitive resin, and the results of evaluation were shown in Table 1.

【0024】[0024]

【表1】 表1では、本発明の層内マイクロレンズアレイを形成し
ていない場合を1とすると、本発明のマイクロレンズア
レイでは1.6倍まで向上している事が解る
[Table 1] In Table 1, assuming that the case where the in-layer microlens array of the present invention is not formed is 1, it can be understood that the microlens array of the present invention has improved up to 1.6 times.

【0025】(実施例2)次に本発明の層内マイクロレ
ンズの製造方法について説明する。図4は本発明の層内
マイクロレンズの製造方法を説明する図である。この図
を用いて説明する。
(Embodiment 2) Next, a method for manufacturing an in-layer microlens of the present invention will be described. FIG. 4 is a view for explaining a method of manufacturing the in-layer microlens of the present invention. The description will be made with reference to this figure.

【0026】最初に、図4の(a)に示す様に半導体プ
ロセスにより、Si基板110内に光電変換素子100
と電荷を増幅・転送制御するためのトランジスター(図
示は省略している。)を形成した後、層間絶縁膜102
と配線103を形成し、平坦化処理の後に遮光膜101
となるAl合金膜106を0.8μmの膜厚で成膜す
る。
First, as shown in FIG. 4A, a photoelectric conversion element 100 is placed in a Si substrate 110 by a semiconductor process.
After forming a transistor (not shown) for amplifying and transferring charges, the interlayer insulating film 102 is formed.
And the wiring 103 are formed, and after the planarization process, the light shielding film 101 is formed.
Is formed to a thickness of 0.8 μm.

【0027】次にAl合金膜106に開口部を形成する
ためにフォトリソグラフィを用いて遮光膜レジストパタ
ーン107を形成し、このレジストパターン107をマ
スクにしてAl合金をエッチングし遮光膜パターン10
1を形成し、図4の(b)の形態にする。この時、Al
膜エッチングガスは塩素系ガスを用いた反応性イオンエ
ッチングを行った。反応性イオンエッチング法により異
方性エッチングが出来るため、レジストパターン107
とAl合金膜106で形成できたパターンとの寸法変換
差がほぼゼロになり、非常に精度の高い開口部が形成で
きる。
Next, a light-shielding film resist pattern 107 is formed by photolithography in order to form an opening in the Al alloy film 106, and the Al alloy is etched using the resist pattern 107 as a mask to etch the light-shielding film pattern 10.
1 to form the configuration shown in FIG. At this time, Al
Reactive ion etching using a chlorine-based gas as a film etching gas was performed. Since anisotropic etching can be performed by the reactive ion etching method, the resist pattern 107
And the dimensional conversion difference between the pattern formed by the Al alloy film 106 and the pattern formed by the Al alloy film 106 becomes almost zero, so that an extremely accurate opening can be formed.

【0028】さらに、図4(c)に示す様に、レジスト
パターン107をマスクにして、膜厚3.8μmの層間
絶縁膜102を光電変換素子100に達するまでエッチ
ングして未貫通穴108を形成する。この未貫通穴10
8はエッチングガスにCHF3を用いて反応性イオンエ
ッチング方式によりエッチングを行なって形成される。
こうすることにより異方性エッチングが出来るため、表
面に対して垂直な側壁を持つ穴を形成できる。
Further, as shown in FIG. 4C, using the resist pattern 107 as a mask, the 3.8 μm-thick interlayer insulating film 102 is etched until it reaches the photoelectric conversion element 100 to form a non-through hole 108. I do. This unpenetrated hole 10
8 is formed by performing etching by a reactive ion etching method using CHF3 as an etching gas.
By doing so, since anisotropic etching can be performed, a hole having a side wall perpendicular to the surface can be formed.

【0029】その後、レジストパターン107を酸素プ
ラズマにより除去した後、透明材料203を穴108が
完全に埋まるまで成膜する。具体的には、モノシランガ
スとアンモニアガス、窒素ガスを材料にしてプラズマC
VDを用いて窒化シリコン膜を4μmの膜厚で成膜する
事により形成できる。
After the resist pattern 107 is removed by oxygen plasma, a transparent material 203 is formed until the hole 108 is completely filled. Specifically, the plasma C is formed by using monosilane gas, ammonia gas, and nitrogen gas as materials.
It can be formed by forming a silicon nitride film with a thickness of 4 μm using VD.

【0030】さらにこの透明材料203の表面を化学的
機械研磨法(CMP)により図4の(d)のように平坦
化を行う。
Further, the surface of the transparent material 203 is flattened by chemical mechanical polishing (CMP) as shown in FIG.

【0031】もちろん、レジストと反応性イオンエッチ
ングによるエッチバック法により平坦化を行っても良
い。
Of course, planarization may be performed by an etch-back method using a resist and reactive ion etching.

【0032】この後、図4の(e)に示すようにカラー
フィルター201を顔料レジストを用いてフォトリソグ
ラフィを緑、赤、青の順で繰り返し形成した。
Thereafter, as shown in FIG. 4E, a color filter 201 was repeatedly formed by photolithography using a pigment resist in the order of green, red and blue.

【0033】さらに、この上に、平坦化樹脂202を塗
布し、高温ベークして平坦な表面を形成した。その後、
マイクロレンズアレイ200になるべき感光性樹脂を塗
布し、画素をパターニングした。
Further, a flattening resin 202 was applied thereon and baked at a high temperature to form a flat surface. afterwards,
A photosensitive resin to be the microlens array 200 was applied, and pixels were patterned.

【0034】そして高温ベークすることにより画素パタ
ーンをリフローさせ、マイクロレンズアレイ200の形
状を形成し図4(f)に示す構造になる。
Then, the pixel pattern is reflowed by baking at a high temperature, and the shape of the microlens array 200 is formed to obtain the structure shown in FIG.

【0035】最後に図には示していないが、電極パッド
の部分の樹脂をフォトリソとドライエッチングにより露
出させ、配線を行い撮像素子の完成である。
Finally, although not shown in the figure, the resin in the electrode pad portion is exposed by photolithography and dry etching, and wiring is performed to complete the imaging device.

【0036】この撮像素子は150万画素であり、画素
は5μmピッチで形成されており、従来の製造方法と比
べて歩留まり低下もほとんどなく、非常に生産性が高い
事が分かった。
This image pickup device has 1.5 million pixels, and the pixels are formed at a pitch of 5 μm. It has been found that there is almost no reduction in yield as compared with the conventional manufacturing method, and the productivity is extremely high.

【0037】さらにこの撮像素子に光を当て、感度及び
S/N比を調査すると従来の撮像素子の感度に比べ1.
64倍の性能向上が認められ、S/Nも非常に高いこと
も確認された。
Further, when the sensitivity and S / N ratio of the image pickup device were examined by irradiating light, the sensitivity was 1.
A performance improvement of 64 times was recognized, and it was also confirmed that the S / N was very high.

【0038】(実施例3)実施例2においては透明材料
203を窒化シリコン膜を使用した場合の製造方法につ
いて述べた。今度は光硬化性高屈折率樹脂を用いる事に
よりCMP等の高価な装置を用いないで、安価な設備投
資で形成出来る製造方法を提供する。
(Embodiment 3) In Embodiment 2, the manufacturing method when the transparent material 203 is a silicon nitride film has been described. This time, by using a photocurable high-refractive index resin, there is provided a manufacturing method which can be formed with low capital investment without using expensive equipment such as CMP.

【0039】図5は本発明の層内マイクロレンズの製造
方法を説明する図である。この図を用いて説明する。
FIG. 5 is a view for explaining a method of manufacturing an in-layer microlens of the present invention. The description will be made with reference to this figure.

【0040】最初に、図5の(a)に示す様に半導体プ
ロセスにより、Si基板110内に光電変換素子100
と電荷を増幅・転送制御するためのトランジスター10
5を形成した後、層間絶縁膜102配線を形成し、平坦
化処理の後に遮光膜101となるAl合金膜106を
0.8μmの膜厚で成膜する。
First, as shown in FIG. 5A, a photoelectric conversion element 100 is placed in a Si substrate 110 by a semiconductor process.
And transistor 10 for amplifying and transferring charge
After forming 5, an interlayer insulating film 102 wiring is formed, and after a planarization process, an Al alloy film 106 serving as the light shielding film 101 is formed to a thickness of 0.8 μm.

【0041】次にAl合金膜106に開口部を形成する
ためにフォトリソグラフィを用いてレジストパターニン
グ107する。このレジストパターン107をマスクに
して、Al合金をエッチングし図6の(b)に示すごと
く遮光膜101を形成した。この時、エッチングガスは
塩素ガスを用いた反応性イオンエッチングを行った。反
応性イオンエッチングを行う事により異方性エッチング
が出来るため、レジストパターン107とAl合金膜1
06との寸法変換差がほぼゼロになり、非常に精度の高
い開口部が形成できる。
Next, in order to form an opening in the Al alloy film 106, resist patterning 107 is performed using photolithography. Using this resist pattern 107 as a mask, the Al alloy was etched to form a light-shielding film 101 as shown in FIG. At this time, reactive ion etching using chlorine gas as an etching gas was performed. Since the anisotropic etching can be performed by performing the reactive ion etching, the resist pattern 107 and the Al alloy film 1
Since the dimensional conversion difference from 06 is almost zero, an opening with extremely high precision can be formed.

【0042】さらに、図5(c)に示す様に、レジスト
パターン107をマスクにして、膜厚3.8μmの層間
絶縁膜102を光電変換素子100に達するまでエッチ
ングして穴108を形成する。この穴108はエッチン
グガスにC4F8を用いて反応性イオンエッチング方式
により形成される。こうすることにより異方性エッチン
グが出来るため、表面に対して垂直な側壁を持つ穴を形
成できる。
Further, as shown in FIG. 5C, using the resist pattern 107 as a mask, the interlayer insulating film 102 having a thickness of 3.8 μm is etched until it reaches the photoelectric conversion element 100 to form a hole 108. The hole 108 is formed by a reactive ion etching method using C4F8 as an etching gas. By doing so, since anisotropic etching can be performed, a hole having a side wall perpendicular to the surface can be formed.

【0043】その後、レジストパターン107を酸素プ
ラズマにより除去した後、屈折率が1.56以上の紫外線
硬化型のアクリル系光学樹脂205をディスペンサーに
より塗布する。一方、Siウェハーと同じ大きさの表面
が鏡面に研磨された石英基板206の表面にテフロン
(登録商標)の蒸着等の不活性処理を施す。その後、こ
の石英基板206とSi基板110を貼り合わせる。
Then, after the resist pattern 107 is removed by oxygen plasma, a UV-curable acrylic optical resin 205 having a refractive index of 1.56 or more is applied by a dispenser. On the other hand, the surface of the quartz substrate 206 having the same size as the Si wafer and having a mirror-polished surface is subjected to an inert treatment such as vapor deposition of Teflon (registered trademark). After that, the quartz substrate 206 and the Si substrate 110 are bonded.

【0044】図6は石英基板206とSi基板110を
貼り合わせる装置の構造図である。
FIG. 6 is a structural view of an apparatus for bonding the quartz substrate 206 and the Si substrate 110 together.

【0045】この装置のチャンバー302には真空ポン
プ307が接続されており、チャンバー内部を真空にす
ることができる。
A vacuum pump 307 is connected to the chamber 302 of this apparatus, and the inside of the chamber can be evacuated.

【0046】この装置ではチャンバー302内部に昇降
機構のついたテーブル300があり、チャンバー302
の天板304は真空でも撓まないくらい厚くした石英で
製造されている。
In this apparatus, a table 300 having a lifting mechanism is provided inside a chamber 302.
The top plate 304 is made of quartz thick enough not to bend even in vacuum.

【0047】この天板304にSi基板110と石英基
板206を貼り合わせた基板を押し付けて接着剤205
の膜厚を均一にするのである。
A substrate obtained by bonding the Si substrate 110 and the quartz substrate 206 to the top plate 304 is pressed to form an adhesive 205
Is made uniform.

【0048】その天板304の上には紫外線ランプ30
5が配置してあり、真空中でUV硬化させることができ
るのである。
The ultraviolet lamp 30 is placed on the top plate 304.
5 are arranged and can be UV-cured in a vacuum.

【0049】テーブル300にSi基板110を乗せ、
その上のアーム301の上に前記石英基板206を置
く、その後、真空ポンプ307でこのチャンバー302
内部を真空にした後、テーブル300をゆっくり上昇さ
せて石英基板206とSi基板110を静かに接触した
後、チャンバー上部にある天板304に押し付ける。こ
の天板は厚い石英ガラスでできているため、上部にある
紫外線ランプの紫外線は透過する性質をもつ。紫外線紫
外線硬化型アクリル系光学接着剤205の膜厚が均一に
なるまでしばらく放置した後に、紫外線ランプ305を
発光させて、紫外線硬化型アクリル系光学接着剤205
を硬化させる。
The Si substrate 110 is placed on the table 300,
The quartz substrate 206 is placed on the arm 301 thereon, and then the chamber 302 is
After evacuating the inside, the table 300 is slowly raised to gently contact the quartz substrate 206 and the Si substrate 110, and then pressed against the top plate 304 at the top of the chamber. Since this top plate is made of thick quartz glass, it has a property of transmitting the ultraviolet light of the ultraviolet lamp at the top. After standing for a while until the film thickness of the UV-curable acrylic optical adhesive 205 becomes uniform, the UV lamp 305 is caused to emit light, and the UV-curable acrylic optical adhesive 205 is emitted.
To cure.

【0050】このようにして、図5の(d)の様に硬化
させる。この時、石英基板206は不活性処理を行って
いるため、石英基板206とSi基板の間の密着性はほ
とんどないため、少量の力で引き剥がす事が出来る。従
って、石英基板を引き剥がすと図5の(e)のように平
坦な表面を持った光学樹脂層205が高価なCMPを必
要とせずに形成できる。
In this manner, curing is performed as shown in FIG. At this time, since the quartz substrate 206 has been subjected to the inert treatment, there is almost no adhesion between the quartz substrate 206 and the Si substrate, so that the quartz substrate 206 can be peeled off with a small amount of force. Therefore, when the quartz substrate is peeled off, the optical resin layer 205 having a flat surface as shown in FIG. 5E can be formed without requiring expensive CMP.

【0051】この後、この上部にカラーフィルター20
1を顔料レジストを用いてフォトリソグラフィを繰り返
してにより緑、赤、青の順で形成した。
After that, the color filter 20 is
No. 1 was formed in the order of green, red and blue by repeating photolithography using a pigment resist.

【0052】さらに、この上に平坦化樹脂を塗布し、高
温ベークして平坦な表面を形成し、マイクロレンズアレ
イ200になるべき感光性樹脂を塗布し画素をパターニ
ングした。そして、高温ベークすることにより画素パタ
ーンをリフローさせ、マイクロレンズアレイ200の形
状を形成し図5(f)に示す構造になる。
Further, a flattening resin was applied thereon, baked at a high temperature to form a flat surface, and a photosensitive resin to become the microlens array 200 was applied and pixels were patterned. Then, the pixel pattern is reflowed by baking at a high temperature to form the shape of the microlens array 200, resulting in the structure shown in FIG.

【0053】最後に図には示していないが、電極パッド
の部分の樹脂をフォトリソとドライエッチングにより露
出させ、配線を行い撮像素子の完成である。
Finally, although not shown in the figure, the resin at the electrode pad portion is exposed by photolithography and dry etching, and wiring is performed to complete the imaging device.

【0054】この撮像素子も同様に150万画素であ
り、画素は5μmピッチで形成されており、従来の製造
方法と比べて歩留まり低下もほとんどなく、非常に生産
性が高い事が分かった。
Similarly, this image pickup device has 1.5 million pixels, and the pixels are formed at a pitch of 5 μm. It has been found that there is almost no decrease in yield as compared with the conventional manufacturing method, and the productivity is very high.

【0055】さらにこの撮像素子に光を当て、感度及び
S/N比を調査すると従来の撮像素子の感度に比べ1.
63倍の性能向上が認められS/Nも非常に高いことも
確認された。
Further, when the sensitivity and S / N ratio of the image pickup device were examined by irradiating light, the sensitivity was 1.
It was confirmed that the performance was improved 63 times and the S / N was very high.

【0056】(実施例4)次に、本発明において、実施
例2の製造方法に示す高アスペクトの未貫通穴をシリコ
ン窒化膜の製膜で埋めるためには高密度プラズマCVD
を使用する必要があるが、それを使用することなく、ま
た、高価でプロセス管理の難しいCMPを使用すること
なく本発明の効果を有する層内マイクロレンズアレイの
製造方法を提供する。
(Embodiment 4) Next, in the present invention, in order to fill the high-aspect non-through hole shown in the manufacturing method of Embodiment 2 with a silicon nitride film, high-density plasma CVD is performed.
However, the present invention provides a method for manufacturing an in-layer microlens array having the effects of the present invention without using it, and without using an expensive and difficult-to-process CMP.

【0057】図7は本発明の層内マイクロレンズアレイ
の第3の製造方法を説明する図である。
FIG. 7 is a view for explaining a third method of manufacturing the in-layer microlens array of the present invention.

【0058】この図を用いて説明する。最初に、図7の
(a)に示す様に半導体プロセスにより、Si基板11
0内に光電変換素子100と電荷を増幅・転送制御する
ためのトランジスター(図示は省略している。)を形成
した後、層間絶縁膜102と配線103を形成し、平坦
化処理の後に遮光膜101となるAl合金膜106を
0.8μmの膜厚で成膜する。
A description will be given with reference to FIG. First, as shown in FIG. 7A, a semiconductor substrate 11 is formed by a semiconductor process.
After forming a photoelectric conversion element 100 and a transistor (not shown) for amplifying / transferring the charge in 0, an interlayer insulating film 102 and a wiring 103 are formed, and after a flattening process, a light shielding film is formed. An Al alloy film 106 to be 101 is formed with a thickness of 0.8 μm.

【0059】次にAl合金膜106に開口部を形成する
ためにフォトリソグラフィを用いて遮光膜レジストパタ
ーン107を形成し、このレジストパターン107をマ
スクにしてAl合金をエッチングし遮光膜パターン10
1を形成し、図7の(b)の形態にする。この時、Al
膜エッチングガスは塩素系ガスを用いた反応性イオンエ
ッチングを行った。反応性イオンエッチング法により異
方性エッチングが出来るため、レジストパターン107
とAl合金膜106で形成できたパターンとの寸法変換
差がほぼゼロになり、非常に精度の高い開口部が形成で
きる。
Next, a light-shielding film resist pattern 107 is formed by photolithography in order to form an opening in the Al alloy film 106, and the Al alloy is etched using the resist pattern 107 as a mask to etch the light-shielding film pattern 10
1 to form the configuration shown in FIG. At this time, Al
Reactive ion etching using a chlorine-based gas as a film etching gas was performed. Since anisotropic etching can be performed by the reactive ion etching method, the resist pattern 107
And the dimensional conversion difference between the pattern formed by the Al alloy film 106 and the pattern formed by the Al alloy film 106 becomes almost zero, so that an extremely accurate opening can be formed.

【0060】さらに、図4(c)に示す様に、レジスト
パターン107をマスクにして、膜厚3.8ミクロンの
層間絶縁膜102を光電変換素子100に達するまでエ
ッチングして穴108を形成する。この穴108はエッ
チングガスにCHF3を用いて反応性イオンエッチング
方式によりエッチングを行なって形成される。こうする
ことにより異方性エッチングが出来るため、表面に対し
て垂直な側壁を持つ未貫通穴108を形成できる。その
後、レジストパターン107を酸素プラズマにより除去
する。
Further, as shown in FIG. 4C, a hole 108 is formed by etching the 3.8-μm-thick interlayer insulating film 102 using the resist pattern 107 as a mask until it reaches the photoelectric conversion element 100. . This hole 108 is formed by performing etching by a reactive ion etching method using CHF3 as an etching gas. By doing so, anisotropic etching can be performed, so that a non-through hole 108 having a side wall perpendicular to the surface can be formed. After that, the resist pattern 107 is removed by oxygen plasma.

【0061】続いて、プラズマCVDを用いて、窒化シ
リコン膜を製膜する。製膜の膜厚は0.2ミクロン以上
が望ましい。0.2ミクロン以上であれば、図7(d)
に示すように未貫通穴108の側壁および底面に一応に
窒化シリコン膜207で被覆されるからである。
Subsequently, a silicon nitride film is formed by using plasma CVD. The thickness of the film is desirably 0.2 μm or more. If it is 0.2 microns or more, FIG.
This is because the side wall and the bottom surface of the non-through hole 108 are covered with the silicon nitride film 207 as shown in FIG.

【0062】次に、図7(e)に示すようにプラズマC
VDを用いて、酸化シリコン膜208を製膜した後に、
さらにスピンコート法によりSOG209を付与して平
坦化を行う。もちろん、レジストと反応性イオンエッチ
ングによるエッチバック法により平坦化を行っても良
い。
Next, as shown in FIG.
After forming the silicon oxide film 208 using VD,
Further, SOG 209 is applied by a spin coating method to perform flattening. Of course, planarization may be performed by an etch-back method using a resist and reactive ion etching.

【0063】この後、カラーフィルター201を顔料レ
ジストを用いてフォトリソグラフィを緑、赤、青の順で
繰り返し形成した後に、平坦化樹脂202を塗布し、高
温ベークして平坦な表面を形成した。その後、マイクロ
レンズアレイ200になるべき感光性樹脂を塗布し、画
素をパターニングした。
Thereafter, the color filter 201 was formed by repeatedly performing photolithography using a pigment resist in the order of green, red, and blue, and then a flattening resin 202 was applied and baked at a high temperature to form a flat surface. Thereafter, a photosensitive resin to be the microlens array 200 was applied, and the pixels were patterned.

【0064】そして高温ベークすることにより画素パタ
ーンをリフローさせ、マイクロレンズアレイ200の形
状を形成し図7(f)に示す構造になる。
Then, the pixel pattern is reflowed by baking at a high temperature to form the shape of the microlens array 200, and the structure shown in FIG. 7F is obtained.

【0065】最後に図には示していないが、電極パッド
の部分の樹脂をフォトリソとドライエッチングにより露
出させ、配線を行い撮像素子の完成である。
Finally, although not shown in the figure, the resin at the electrode pad portion is exposed by photolithography and dry etching, and wiring is performed to complete the imaging device.

【0066】この撮像素子は200万画素であり、画素
は4.2μmピッチで形成されており、従来の製造方法
と比べて歩留まり低下もほとんどなく、非常に生産性が
高い事が分かった。
This image pickup device has 2 million pixels, the pixels are formed at a pitch of 4.2 μm, and it has been found that there is almost no reduction in yield as compared with the conventional manufacturing method, and that the productivity is extremely high.

【0067】さらにこの撮像素子に光を当て、感度及び
S/N比を調査すると従来の撮像素子の感度に比べ1.
70倍の性能向上が認められ、S/Nも非常に高いこと
も確認された。
Further, when the sensitivity and the S / N ratio were examined by irradiating light to the image pickup device, the sensitivity was 1.
A 70-fold improvement in performance was observed, and it was also confirmed that the S / N was very high.

【0068】このように、本実施例を用いると、特殊な
高密度プラズマCVDやCMP等の高価な装置の導入な
く、既存の半導体設備で本発明の層内マイクロレンズア
レイを製造することができるため、設備投資がない上、
高い感度を有するCMOS光センサーを容易に低コスト
で製造することができる。
As described above, when this embodiment is used, the in-layer microlens array of the present invention can be manufactured with existing semiconductor equipment without introducing expensive equipment such as special high-density plasma CVD or CMP. Therefore, there is no capital investment,
A CMOS photosensor having high sensitivity can be easily manufactured at low cost.

【0069】[0069]

【発明の効果】以上説明した本発明の効果は下記のとお
りである。従来の製造設備を用いて、マイクロレンズに
て集光し、遮光膜の開口部に導入された光はすべて光電
変換素子へ導入するため、入射した光はほとんど利用さ
れ、非常に感度が良く、色モアレの無い撮像デバイスを
容易にしかも安価に製造する事が出来る。
The effects of the present invention described above are as follows. Using conventional manufacturing equipment, light is collected by a microlens and all the light introduced into the opening of the light-shielding film is introduced into the photoelectric conversion element. An imaging device without color moiré can be easily and inexpensively manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す層内マイクロレン
ズの断面構造図である。
FIG. 1 is a sectional structural view of an in-layer microlens showing a first embodiment of the present invention.

【図2】本発明の原理となる全反射現象を説明する図で
ある。
FIG. 2 is a diagram illustrating a total reflection phenomenon that is a principle of the present invention.

【図3】本発明の層内マイクロレンズの効果の説明図で
ある。
FIG. 3 is an explanatory diagram of an effect of the in-layer microlens of the present invention.

【図4】本発明の第2の実施例を示す層内マイクロレン
ズの製造方法の説明図である。
FIG. 4 is an explanatory view of a method for manufacturing an in-layer microlens according to a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す層内マイクロレン
ズの製造方法の説明図である。
FIG. 5 is an explanatory view of a method for manufacturing an in-layer microlens according to a third embodiment of the present invention.

【図6】本発明の第3の実施例を実現するために必要な
真空接着装置の構造を示す断面図である。
FIG. 6 is a cross-sectional view showing a structure of a vacuum bonding apparatus necessary for realizing a third embodiment of the present invention.

【図7】本発明の第4の実施例を示す層内マイクロレン
ズの製造方法の説明図である。
FIG. 7 is an explanatory diagram of a method for manufacturing an in-layer microlens according to a fourth embodiment of the present invention.

【図8】従来の撮像素子の構造を説明する図である。FIG. 8 is a diagram illustrating the structure of a conventional image sensor.

【符号の説明】[Explanation of symbols]

100 光電変換素子 101 遮光膜 102 層間絶縁膜 103 配線 106 Al膜 107 レジストパターン 108 未貫通穴 110 シリコン基板 200 マイクロレンズアレイ 201 カラーフィルター 202 平坦化膜 203 透明材料 205 光学接着剤 206 石英基板 207 窒化シリコン膜 208 酸化シリコン膜 209 SOG膜 300 テーブル 301 アーム 302 チャンバー 304 天板 305 紫外線ランプ 307 真空ポンプ REFERENCE SIGNS LIST 100 photoelectric conversion element 101 light-shielding film 102 interlayer insulating film 103 wiring 106 Al film 107 resist pattern 108 non-through hole 110 silicon substrate 200 microlens array 201 color filter 202 flattening film 203 transparent material 205 optical adhesive 206 quartz substrate 207 silicon nitride Film 208 silicon oxide film 209 SOG film 300 table 301 arm 302 chamber 304 top plate 305 ultraviolet lamp 307 vacuum pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 5/335 H01L 27/14 D 31/02 D Fターム(参考) 4M118 AA01 AA05 AA10 AB01 BA14 CA03 CA40 CB14 EA01 FA06 GA09 GB11 GC08 GD04 5C024 CX41 CY47 CY48 CY49 EX43 EX52 GX03 GY31 5F052 KB06 5F088 BA01 BB03 EA04 HA10 HA20──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04N 5/335 H01L 27/14 D 31/02 DF Term (Reference) 4M118 AA01 AA05 AA10 AB01 BA14 CA03 CA40 CB14 EA01 FA06 GA09 GB11 GC08 GD04 5C024 CX41 CY47 CY48 CY49 EX43 EX52 GX03 GY31 5F052 KB06 5F088 BA01 BB03 EA04 HA10 HA20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板にマトリクス状に設けられ
た複数の光電変換素子を有し、該光電変換素子に隣接し
てスイッチング素子及び配線が形成されてなり、該スイ
ッチング素子及び該配線の上に遮光膜が形成されてな
り、前記配線と前記遮光膜との間に層間絶縁膜が形成さ
れてなる固体撮像素子において、 前記遮光膜に形成された開口部に、前記層間絶縁膜の屈
折率より高い屈折率を有する透明材料が充填されてなる
ことを特徴とする固体撮像素子。
A plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, wherein a switching element and a wiring are formed adjacent to the photoelectric conversion element, and the switching element and the wiring are formed on the switching element and the wiring; In a solid-state imaging device in which a light-shielding film is formed and an interlayer insulating film is formed between the wiring and the light-shielding film, an opening formed in the light-shielding film has a refractive index higher than that of the interlayer insulating film. A solid-state imaging device, which is filled with a transparent material having a high refractive index.
【請求項2】 請求項1において、前記透明材料が窒化
シリコンである事を特徴とする固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein said transparent material is silicon nitride.
【請求項3】 請求項1において、前記透明材料が光硬
化性樹脂である事を特徴とする固体撮像素子。
3. The solid-state imaging device according to claim 1, wherein said transparent material is a photocurable resin.
【請求項4】 シリコン基板にマトリクス状に設けられ
た複数の光電変換素子を有し、該光電変換素子に隣接し
てスイッチング素子及び配線が形成されてなり、該スイ
ッチング素子及び該配線の上に遮光膜が形成されてな
り、前記配線と前記遮光膜との間に層間絶縁膜が形成さ
れてなる固体撮像素子の製造方法において、(a)遮光膜
成膜後に、開口部を形成するためにレジストパターニン
グを行い、(b)遮光膜をパターニングし、(c)前記層間
絶縁膜を光電変換素子直上付近までドライエッチングを
行ない穴を形成した後、前記レジストを除去し、(d)前
記穴に前記層間絶縁膜の屈折率より高い屈折率を有する
透明材料で充填した後、前記層間絶縁膜の平坦化処理を
行う事を特徴とする固体撮像素子の製造方法。
4. A plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, wherein a switching element and a wiring are formed adjacent to the photoelectric conversion element, and the switching element and the wiring are formed on the switching element and the wiring. A light-shielding film is formed, and in a method of manufacturing a solid-state imaging device in which an interlayer insulating film is formed between the wiring and the light-shielding film, (a) after forming the light-shielding film, forming an opening. Perform resist patterning, (b) pattern the light-shielding film, (c) dry-etch the interlayer insulating film up to immediately above the photoelectric conversion element to form a hole, remove the resist, (d) in the hole A method for manufacturing a solid-state imaging device, characterized in that after filling with a transparent material having a refractive index higher than the refractive index of the interlayer insulating film, the interlayer insulating film is flattened.
【請求項5】 請求項4に記載の固体撮像素子の製造方
法において、前記透明材料は光硬化性樹脂からなり、前
記平坦化処理は、不活性化処理を行ったガラス基板を前
記光効果性樹脂と貼り合わせ、前記ガラス基板を介して
前記光硬化性樹脂に光を照射して前記光硬化性樹脂の硬
化処理を行い、前記ガラス基板を引き剥がす事により行
うこと特徴とする固体撮像素子の製造方法。
5. The method for manufacturing a solid-state imaging device according to claim 4, wherein the transparent material is made of a photocurable resin, and the flattening processing is performed by removing the glass substrate that has been inactivated by the light effecting. The solid-state imaging device is characterized in that the solid-state imaging device is bonded to a resin, performs a curing process on the photocurable resin by irradiating the photocurable resin with light through the glass substrate, and peels off the glass substrate. Production method.
【請求項6】 請求項5に記載の固体撮像素子の製造方
法において、前記ガラス基板と前記光硬化性樹脂とを貼
りあわせをする時の雰囲気を減圧雰囲気で行うことを特
徴とする固体撮像素子の製造方法。
6. The method for manufacturing a solid-state imaging device according to claim 5, wherein the bonding of the glass substrate and the photocurable resin is performed in a reduced-pressure atmosphere. Manufacturing method.
【請求項7】 シリコン基板にマトリクス状に設けられ
た複数の光電変換素子を有し、該光電変換素子に隣接し
てスイッチング素子及び配線が形成されてなり、該スイ
ッチング素子及び該配線の上に遮光膜が形成されてな
り、前記配線と前記遮光膜との間に層間絶縁膜が形成さ
れてなる固体撮像素子において、 前記遮光膜と、前記遮光膜に形成された開口部の下に設
けられた穴の側面及び底面にシリコン窒化膜が形成され
てなる事を特徴とする固体撮像素子。
7. A plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, wherein a switching element and a wiring are formed adjacent to the photoelectric conversion element, and the switching element and the wiring are formed on the switching element and the wiring. In a solid-state imaging device in which a light-shielding film is formed and an interlayer insulating film is formed between the wiring and the light-shielding film, the solid-state imaging device is provided below the light-shielding film and an opening formed in the light-shielding film. A solid-state imaging device comprising a silicon nitride film formed on the side and bottom surfaces of the hole.
【請求項8】 シリコン基板にマトリクス状に設けられ
た複数の光電変換素子を有し、該光電変換素子に隣接し
てスイッチング素子及び配線が形成されてなり、該スイ
ッチング素子及び該配線の上に遮光膜が形成されてな
り、前記配線と前記遮光膜との間に層間絶縁膜が形成さ
れてなる固体撮像素子の製造方法であって、(a)前記遮
光膜成膜後に、開口部を形成するためにレジストパター
ニングを行い、(b)前記遮光膜をドライエッチングにて
パターニングし、(c)前記開口部の下の前記層間絶縁膜
を光電変換素子直上付近までドライエッチングを行なっ
て穴を形成した後、前記レジストを除去し、(d)前記遮
光膜、前記穴の側壁と底部にシリコン窒化膜を成膜し、
(e)前記シリコン窒化膜より屈折率の低い透明材料を塗
布して平坦化処理を行う、事を特徴とする固体撮像素子
の製造方法。
8. A plurality of photoelectric conversion elements provided in a matrix on a silicon substrate, wherein a switching element and a wiring are formed adjacent to the photoelectric conversion element, and the switching element and the wiring are formed on the switching element and the wiring. A method for manufacturing a solid-state imaging device in which a light-shielding film is formed, and an interlayer insulating film is formed between the wiring and the light-shielding film, wherein (a) forming an opening after forming the light-shielding film (B) pattern the light-shielding film by dry etching, and (c) dry-etch the interlayer insulating film under the opening to a position immediately above the photoelectric conversion element to form a hole. After that, the resist is removed, (d) the light shielding film, a silicon nitride film is formed on the side wall and the bottom of the hole,
(e) A method of manufacturing a solid-state imaging device, comprising applying a transparent material having a lower refractive index than that of the silicon nitride film and performing a flattening process.
JP2001038888A 2001-02-15 2001-02-15 Solid-state image pickup element and manufacturing method thereof Withdrawn JP2002246579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038888A JP2002246579A (en) 2001-02-15 2001-02-15 Solid-state image pickup element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038888A JP2002246579A (en) 2001-02-15 2001-02-15 Solid-state image pickup element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002246579A true JP2002246579A (en) 2002-08-30

Family

ID=18901790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038888A Withdrawn JP2002246579A (en) 2001-02-15 2001-02-15 Solid-state image pickup element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002246579A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055898A1 (en) * 2002-12-13 2004-07-01 Sony Corporation Solid-state imaging device and production method therefor
JP2004221527A (en) * 2003-01-16 2004-08-05 Samsung Electronics Co Ltd Imaging element and its manufacturing method
GB2403847A (en) * 2003-07-01 2005-01-12 Micron Technology Inc Optical channels for multi-level metal optical imagers
WO2005076360A1 (en) * 2004-02-04 2005-08-18 Koninklijke Philips Electronics N.V. Opto-electronic semiconductor device, method of manufacturing same, and camera provided with such a device
JP2005302884A (en) * 2004-04-08 2005-10-27 Canon Inc Solid-state imaging device, and design support method and device
WO2005124868A1 (en) * 2004-06-10 2005-12-29 Micron Technology, Inc. Method and apparatus for collecting photons in a solid state imaging sensor
JP2006128383A (en) * 2004-10-28 2006-05-18 Canon Inc Imaging device and its manufacturing method
JP2006261249A (en) * 2005-03-15 2006-09-28 Canon Inc Solid state imaging device
KR100677040B1 (en) 2003-04-30 2007-01-31 매그나칩 반도체 유한회사 Cmos image sensor compensating quality degradation owing to the outer lense
JP2007059834A (en) * 2005-08-26 2007-03-08 Sharp Corp Solid-state imaging apparatus and manufacturing method thereof, and electronic information apparatus
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US7297570B2 (en) * 2004-07-15 2007-11-20 Dongbu Electronics Co., Ltd. Complementary metal oxide semiconductor image sensor and method for fabricating the same
JP2008103757A (en) * 2002-12-25 2008-05-01 Sony Corp Solid-state imaging device and its manufacturing method
JP2008109153A (en) * 2007-12-18 2008-05-08 Sony Corp Solid-state image sensing device and its manufacturing method
JP2009218382A (en) * 2008-03-11 2009-09-24 Sony Corp Solid state imaging device, manufacturing method thereof and imaging device
US8334497B2 (en) 2008-08-27 2012-12-18 Canon Kabushiki Kaisha Image sensor comprising a waveguide structure and imaging apparatus
CN103928480A (en) * 2013-01-16 2014-07-16 佳能株式会社 Solid State Image Pickup Apparatus And Method For Manufacturing The Same
JP2016146653A (en) * 2005-02-04 2016-08-12 キヤノン株式会社 Imaging apparatus and imaging system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442973B2 (en) 2002-12-13 2008-10-28 Sony Corporation Solid-state imaging device and production method therefor
WO2004055898A1 (en) * 2002-12-13 2004-07-01 Sony Corporation Solid-state imaging device and production method therefor
US7842986B2 (en) 2002-12-13 2010-11-30 Sony Corporation Solid-state imaging device and method for fabricating the same related application data
JP2008103757A (en) * 2002-12-25 2008-05-01 Sony Corp Solid-state imaging device and its manufacturing method
JP2004221527A (en) * 2003-01-16 2004-08-05 Samsung Electronics Co Ltd Imaging element and its manufacturing method
CN100416842C (en) * 2003-01-16 2008-09-03 三星电子株式会社 Structure of complementary metal oxide semiconductor image sensor and its manufacturing method
KR100677040B1 (en) 2003-04-30 2007-01-31 매그나칩 반도체 유한회사 Cmos image sensor compensating quality degradation owing to the outer lense
GB2403847A (en) * 2003-07-01 2005-01-12 Micron Technology Inc Optical channels for multi-level metal optical imagers
GB2403847B (en) * 2003-07-01 2005-11-16 Micron Technology Inc Optical channels for multi-level metal optical imagers and method for manufacturing same
US7368701B2 (en) 2003-07-01 2008-05-06 Micron Technology, Inc. Optical channels for multi-level metal optical imagers and method for manufacturing same
US7119321B2 (en) 2003-07-01 2006-10-10 Micron Technology, Inc. Optical channels for multi-level metal optical imagers
WO2005076360A1 (en) * 2004-02-04 2005-08-18 Koninklijke Philips Electronics N.V. Opto-electronic semiconductor device, method of manufacturing same, and camera provided with such a device
JP2005302884A (en) * 2004-04-08 2005-10-27 Canon Inc Solid-state imaging device, and design support method and device
US7358103B2 (en) 2004-06-10 2008-04-15 Micron Technology, Inc. Method of fabricating an imaging device for collecting photons
USRE44637E1 (en) 2004-06-10 2013-12-10 Round Rock Research, Llc Method of fabricating an imaging device for collecting photons
WO2005124868A1 (en) * 2004-06-10 2005-12-29 Micron Technology, Inc. Method and apparatus for collecting photons in a solid state imaging sensor
US7297570B2 (en) * 2004-07-15 2007-11-20 Dongbu Electronics Co., Ltd. Complementary metal oxide semiconductor image sensor and method for fabricating the same
JP2006128383A (en) * 2004-10-28 2006-05-18 Canon Inc Imaging device and its manufacturing method
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US7655495B2 (en) 2004-11-30 2010-02-02 International Business Machiens Corporation Damascene copper wiring optical image sensor
JP2016146653A (en) * 2005-02-04 2016-08-12 キヤノン株式会社 Imaging apparatus and imaging system
JP2006261249A (en) * 2005-03-15 2006-09-28 Canon Inc Solid state imaging device
JP2007059834A (en) * 2005-08-26 2007-03-08 Sharp Corp Solid-state imaging apparatus and manufacturing method thereof, and electronic information apparatus
JP2008109153A (en) * 2007-12-18 2008-05-08 Sony Corp Solid-state image sensing device and its manufacturing method
JP2009218382A (en) * 2008-03-11 2009-09-24 Sony Corp Solid state imaging device, manufacturing method thereof and imaging device
US8895346B2 (en) 2008-03-11 2014-11-25 Sony Corporation Solid-state imaging device, manufacturing method for the same, and imaging apparatus
US8334497B2 (en) 2008-08-27 2012-12-18 Canon Kabushiki Kaisha Image sensor comprising a waveguide structure and imaging apparatus
CN103928480A (en) * 2013-01-16 2014-07-16 佳能株式会社 Solid State Image Pickup Apparatus And Method For Manufacturing The Same
US9806124B2 (en) 2013-01-16 2017-10-31 Canon Kabushiki Kaisha Solid state image pickup apparatus and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2002246579A (en) Solid-state image pickup element and manufacturing method thereof
US7691696B2 (en) Hemi-spherical structure and method for fabricating the same
USRE46903E1 (en) Imaging device
KR102098418B1 (en) Image pickup element, image pickup device, and manufacturing device and method
CN109037251B (en) Solid-state imaging device and method for manufacturing the same
JP4674302B2 (en) CMOS image sensor and manufacturing method thereof
KR100731128B1 (en) Method for manufacturing cmos image sensor
US8013370B2 (en) Solid-state imaging device
US7986019B2 (en) Solid-state imaging device and its manufacturing method
US20060292731A1 (en) CMOS image sensor and manufacturing method thereof
JP5098310B2 (en) Method for manufacturing solid-state imaging device
KR20060091518A (en) Image sensor and method of fabricating the same
KR100900869B1 (en) Image Sensor and Method for Manufacturing the same
JP2013089898A (en) Manufacturing method of solid-state imaging element, solid-state imaging element, and imaging device
US7776632B2 (en) Method for manufacturing a CMOS image sensor device
KR100660329B1 (en) Cmos image sensor and method for manufacturing the same
CN115985846B (en) Method for manufacturing semiconductor structure and semiconductor structure
KR100727267B1 (en) A image device having microlens and method of manufacturing the same
CN110379828B (en) Method for forming image sensor
TWI413244B (en) Image sensor and fabricating method thereof
JP2009277885A (en) Production method of solid-state imaging element
TW200811477A (en) Microlens structure and fabricating method thereof
KR20100062287A (en) Method for manufacturing an image sensor
KR20090070575A (en) A micro lens of cmos image sensor and a method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050829