JP2002244063A - Laser beam scanner - Google Patents

Laser beam scanner

Info

Publication number
JP2002244063A
JP2002244063A JP2001044027A JP2001044027A JP2002244063A JP 2002244063 A JP2002244063 A JP 2002244063A JP 2001044027 A JP2001044027 A JP 2001044027A JP 2001044027 A JP2001044027 A JP 2001044027A JP 2002244063 A JP2002244063 A JP 2002244063A
Authority
JP
Japan
Prior art keywords
concave mirror
laser beam
beam scanning
scanning device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001044027A
Other languages
Japanese (ja)
Inventor
Seiichi Kato
静一 加藤
Koichi Otaka
剛一 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001044027A priority Critical patent/JP2002244063A/en
Publication of JP2002244063A publication Critical patent/JP2002244063A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laser beam scanner which introduces the light from a laser beam source to a photosensitive drum surface to correct its curvature of the field by changing the curvature of a variable focus concave mirror. SOLUTION: A supporting member 26 having the rigidity of the concave mirror 28 is formed of single crystal Si and electrodes facing each other are formed on an Si substrate 21. A spacing 25 is formed in the Is substrate 21 and the counter electrodes 23 and a passivation oxidized film 24 are formed thereon. The concave mirror 28 is formed of a metallic thin film on the supporting member 26 of the concave mirror. The feeding of electricity to the counter electrodes 23 and the concave mirror 28 is effected by an extraction electrode pad 29 for the counter electrodes existing in a pad segment 31 and an extraction electrode pad 30 for the concave mirror 28. A voltage is impressed between the electrodes 23 facing each other and the supporting member 26 of the concave mirror to displace the concave mirror by electrostatic force. The supporting member 26 of the concave mirror is displaced within a range of about 1/3 of the spacing 25 by the impression of the voltage and the curvature of the concave mirror can be changed by increasing or decreasing the voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザプリンタの
レーザ光走査装置に関する。
The present invention relates to a laser beam scanning device for a laser printer.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】レーザ
プリンタに用いるレーザ光走査装置は、ポリゴンミラー
による偏向とfθレンズ系とで感光ドラム上に均一なス
ポット径が得られるように構成されている。このような
レーザ光走査装置では、低コスト化のため、fθレンズ
をプラスチックで製作することが多い。しかしながら、
プラスチック製のfθレンズは熱により変形しやすく、
それによって感光ドラム面で像面湾曲を生じさせる。
2. Description of the Related Art A laser beam scanning device used in a laser printer is configured so that a uniform spot diameter can be obtained on a photosensitive drum by a deflection by a polygon mirror and an fθ lens system. . In such a laser beam scanning device, the fθ lens is often made of plastic for cost reduction. However,
Plastic fθ lenses are easily deformed by heat,
As a result, a field curvature occurs on the photosensitive drum surface.

【0003】このため特開平8-62522号公報に開
示された技術では、光源近傍のレンズ位置を温度変化に
対応させて光軸と平行に移動させることで、感光ドラム
面の像面湾曲を補正している。すなわち従来の技術で
は、fθレンズの温度変形等によるレーザ光スポットの
感光ドラム面での像面湾曲を、光源近傍のレンズ系の位
置を光軸に平行に移動させて補正している。
For this reason, in the technique disclosed in Japanese Patent Application Laid-Open No. 8-62522, the field curvature of the photosensitive drum surface is corrected by moving the lens position near the light source in parallel with the optical axis in accordance with the temperature change. are doing. That is, in the related art, the field curvature of the laser beam spot on the photosensitive drum surface due to the temperature deformation or the like of the fθ lens is corrected by moving the position of the lens system near the light source parallel to the optical axis.

【0004】このようなレンズ系の駆動には、小型モー
タによる駆動系や、ピエゾアクチュエータが用いるが、
これらの駆動系は高価であり、プラスチック製のfθレ
ンズによる低コスト化を相殺してしまうという問題があ
る。
A drive system using a small motor or a piezo actuator is used to drive such a lens system.
These drive systems are expensive and have the problem of offsetting the cost reduction by the plastic fθ lens.

【0005】本発明は、このような従来の問題点にかん
がみ、レーザ光源からの光を可変焦点凹面鏡の曲率を変
化させて感光ドラム面の像面湾曲を補正することで解決
するレーザ光走査装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is directed to a laser beam scanning apparatus that solves the problem by correcting the curvature of field of a photosensitive drum surface by changing the curvature of a variable focal length concave mirror. The purpose is to provide.

【0006】また本発明は、入射光と反射光の光軸を変
更でき、反射光が容易に取り出せるレーザ光走査装置を
提供することを目的とする。
Another object of the present invention is to provide a laser beam scanning device capable of changing the optical axes of incident light and reflected light and easily extracting reflected light.

【0007】さらに本発明は、マイクロマシニング技術
で製作することができ、構造が簡単で、一般的な半導体
製造工程と互換でき、大量に安価に製作できるレーザ光
走査装置を提供することを目的とする。
Another object of the present invention is to provide a laser beam scanning device which can be manufactured by micromachining technology, has a simple structure, is compatible with a general semiconductor manufacturing process, and can be manufactured in large quantities at low cost. I do.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に係る
画像形成装置は、上記目的を達成するために、レーザ光
源と偏向手段との間に第一の光学部品群を備え、上記偏
向手段と被走査媒体との間に第二の光学部品群を備える
レーザ光走査装置において、上記第二の光学部品群のな
す光学系の温度変化による上記被走査媒体上のスポット
径の相違を、上記第一の光学部品群において、所定の剛
性を有する支持部材に凹面鏡と電極を備え該電極と隙間
を介して対向する電極との間に電圧を印加し、静電力で
上記凹面鏡部材を変形して焦点距離を変化できる凹面鏡
により補正することを特徴とする。
According to a first aspect of the present invention, there is provided an image forming apparatus comprising a first optical component group between a laser light source and a deflecting means, and In the laser light scanning device having a second optical component group between the means and the medium to be scanned, the difference in spot diameter on the medium to be scanned due to a temperature change of the optical system formed by the second optical component group, In the first optical component group, a concave member and an electrode are provided on a support member having a predetermined rigidity, a voltage is applied between the electrode and an electrode facing the electrode via a gap, and the concave mirror member is deformed by electrostatic force. Correction by a concave mirror that can change the focal length.

【0009】同請求項2に係るものは、上記目的を達成
するために、請求項1のレーザ光走査装置において、上
記凹面鏡の焦点がオフセットであることを特徴とする。
According to a second aspect of the present invention, in order to achieve the above object, in the laser beam scanning device of the first aspect, the focal point of the concave mirror is offset.

【0010】同請求項3に係るものは、上記目的を達成
するために、請求項1または2のレーザ光走査装置にお
いて、温度検出手段を備え、温度変化に応じて上記スポ
ット径の補正を行うことを特徴とする。
According to a third aspect of the present invention, in order to achieve the above object, the laser beam scanning device of the first or second aspect further comprises a temperature detecting means, and corrects the spot diameter according to a temperature change. It is characterized by the following.

【0011】同請求項4に係るものは、上記目的を達成
するために、請求項2のレーザ光走査装置において、上
記凹面鏡の支持部材に対向する電極を分割し、オフセッ
ト焦点移動の変位に対応させてなることを特徴とする。
According to a fourth aspect of the present invention, in order to achieve the above object, in the laser beam scanning device of the second aspect, the electrode facing the support member of the concave mirror is divided to correspond to the displacement of the offset focal point movement. It is characterized by being made.

【0012】同請求項5に係るものは、上記目的を達成
するために、請求項2のレーザ光走査装置において、上
記凹面鏡が、その支持部材の厚みを変化させてオフセッ
ト焦点としてなるものであることを特徴とする。
According to a fifth aspect of the present invention, in order to achieve the above object, in the laser beam scanning device of the second aspect, the concave mirror serves as an offset focus by changing the thickness of the supporting member. It is characterized by the following.

【0013】同請求項6に係るものは、上記目的を達成
するために、請求項1ないし4のいずれかのレーザ走査
装置において、上記凹面鏡が、その支持部材が単結晶S
iからなる可変焦点凹面鏡であることを特徴とする。
According to a sixth aspect of the present invention, in order to achieve the above object, in the laser scanning apparatus according to any one of the first to fourth aspects, the concave mirror comprises a single crystal S
i is a variable focal length concave mirror.

【0014】[0014]

【発明の実施の形態及び実施例】以下本発明の実施の形
態及び実施例を図面を参照して説明する。本発明に係る
レーザ光走査装置の一実施形態を図1に示す。本装置
は、図示のようにレーザ素子1からのレーザ光をコリメ
ータレンズ系2を経た後、可変焦点凹面鏡3に入射し、
必要があればミラー4で方向を変更し、反射光をシリン
ダレンズ5で集光し、ポリゴンミラー6に供給する。そ
の他は一般的なレーザ光走査装置と同様に、第一レンズ
7と第二レンズ8からなるfθレンズ系で感光ドラム1
0にレーザ光を供給する。
Embodiments and examples of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a laser beam scanning device according to the present invention. As shown in the figure, the laser beam from a laser element 1 passes through a collimator lens system 2 and then enters a varifocal concave mirror 3,
If necessary, the direction is changed by the mirror 4, and the reflected light is condensed by the cylinder lens 5 and supplied to the polygon mirror 6. In other respects, as in a general laser beam scanning device, the photosensitive drum 1 is an fθ lens system including a first lens 7 and a second lens 8.
0 is supplied with laser light.

【0015】fθレンズ系に温度変化が生じた場合、熱
膨張によりレンズが変形し、スポット径に像面湾曲が発
生する。そこで、温度検出手段9で温度変化を検出し、
可変焦点凹面鏡の駆動回路で温度変化による感光ドラム
上のレーザスポット径を補償するように可変焦点凹面鏡
3の駆動電圧を変化させる。CCD等でレーザ光を受光
し、スポット径を測定して可変焦点凹面鏡にフィードバ
ックして補正する構成とすることもできる。
If a temperature change occurs in the fθ lens system, the lens is deformed due to thermal expansion, and a field curvature occurs in the spot diameter. Then, the temperature change is detected by the temperature detecting means 9,
The driving voltage of the variable focal length concave mirror 3 is changed by the driving circuit of the variable focal length concave mirror so as to compensate for the laser spot diameter on the photosensitive drum due to the temperature change. It is also possible to adopt a configuration in which a laser beam is received by a CCD or the like, the spot diameter is measured, and the spot diameter is fed back to the variable focal length concave mirror for correction.

【0016】本実施形態で用いるレーザ光走査装置の可
変焦点凹面鏡の構造を図2に示す。例えば、凹面鏡の剛
性を持つ支持部材26を単結晶Siで形成する。対向す
る電極をSi基板21上に形成する。硼珪酸ガラスを基
板21に用いることは可能である。Si基板21に隙間
25を形成し、対向電極23とその上にパッシベーショ
ン酸化膜24を形成する。凹面鏡の支持部材26上に金
属薄膜で凹面鏡28を形成する。対向電極23と凹面鏡
28への給電はパッド部分31にある対向電極用引出し
電極パッド29と凹面鏡用引出し電極パッド30により
行う。
FIG. 2 shows the structure of the variable focal length concave mirror of the laser beam scanning device used in this embodiment. For example, the support member 26 having the rigidity of the concave mirror is formed of single crystal Si. Opposing electrodes are formed on the Si substrate 21. It is possible to use borosilicate glass for the substrate 21. A gap 25 is formed in the Si substrate 21, and a counter electrode 23 and a passivation oxide film 24 are formed thereon. A concave mirror 28 is formed of a metal thin film on a support member 26 of the concave mirror. The power supply to the counter electrode 23 and the concave mirror 28 is performed by the counter electrode lead electrode pad 29 and the concave mirror lead electrode pad 30 in the pad portion 31.

【0017】対向する電極間23と凹面鏡の支持部材2
6に電圧を印加し、凹面鏡を静電力で変位させる。この
とき、凹面鏡の支持部材26の剛性と静電力がバランス
している。電圧の印加により凹面鏡の支持部材26が隙
間25の約1/3の範囲で変位し、電圧の加減で凹面鏡
の曲率を変化させることができる。図3に変位の略図を
示す。図3は、図2(C)中のD−D線に沿う断面図
で、図3(A)は電圧印加のない状態、同(B)は電圧
印加状態である。
The distance between the opposing electrodes 23 and the support member 2 for the concave mirror
A voltage is applied to 6, and the concave mirror is displaced by electrostatic force. At this time, the rigidity and the electrostatic force of the support member 26 of the concave mirror are balanced. By applying the voltage, the support member 26 of the concave mirror is displaced in a range of about 1/3 of the gap 25, and the curvature of the concave mirror can be changed by adjusting the voltage. FIG. 3 shows a schematic diagram of the displacement. 3A and 3B are cross-sectional views taken along line DD in FIG. 2C. FIG. 3A shows a state where no voltage is applied, and FIG. 3B shows a state where a voltage is applied.

【0018】図4は可変焦点凹面鏡の製造工程を示す。
この例は、凹面鏡の直径5mm、凹面鏡の支持部材2μ
m、対向電極と凹面鏡支持部材の隙間を30μmした場
合を例とした。この製造工程は、 (a)単結晶Si基板21にフォトレジストを10μm
塗布し、フォトリソグラフィでパターンニングを行い、
SF6+Arの混合ガスでRIE(リアクティブ、イオ
ン、エッチング)を行う。エッチング深さは30μmで
ある。熱酸化を行い1μmの酸化膜22を形成する。 (b)N2を添加したArでTiNを150nmスパッ
タ法で成膜し、次にプラズマCVD法でN2OとSiH
4の混合ガスにより酸化膜を形成する。フォトリソグラ
フィでTiNと酸化膜をパターンニングする。フォトリ
ソグラフィで有機レジストをパターンニングした後酸化
膜エッチングし、アッシングする。さらに過酸化水素と
アンモニアの混合液でエッチングし、TiN電極を形成
する。このようにして対向電極23とパッシベーション
酸化膜24を形成した。電極材料には高融点金属やその
化合物が使用できる。W、WSix、Mo等も使用でき
る。 (c)例えば400μmの厚みで薄いSiが2μmのS
OIウエハを凹面鏡用支持部材に用いる。SOIウエハ
の薄いSi側を上記(b)工程で製作した対向電極用S
i電極基板に真空中で重ね、1050℃で処理すること
で直接接合を行う。高濃度B層を形成したSi基板で、
高濃度B層をエッチングストップ層も使用できる。この
場合は1E20cm-3以上の高濃度のBを振動板の厚
みに対応した深さに拡散した後に直接接合する。 (d)次にSiNを熱CVD法で成膜し、フォトリソグ
ラフィでパターンニングし、SiN膜マスクを形成す
る。KOH水溶液でSiの異方性エッチングを行う。エ
ッチング速度の遅い111面で囲まれた部分がSi隔壁
27として残る。エッチングされた部分では、Siエッ
チングが進行し、酸化膜でエッチングが停止することで
凹面鏡支持部材26を残すことができる。また、高濃度
B層を用いた場合は高濃度B層でエッチング速度が急速
に低下し、所定の厚みのSi凹面鏡支持部材が形成され
る。次に、SiN膜を熱りん酸で処理して取り除く。 (e)SOI基板を用いる場合は、緩衝ふっ酸等で酸化
膜を取り去り、メタルマスクを用い凹面鏡となる金属薄
膜28を形成する。たとえばAlやCr等の金属を基板
にメタルマスクを用いスパッタ装置や蒸着装置をで成膜
する。図5に符号30で示すように、電極がパッド部分
に残るようにメタルマスクを使用する。 (f)石英ガラス等のマスクしSF6ガスのRIEで対
向電極取り出しパッドの上のSiをエッチングし取り除
く。さらにCHF3ガスのRIEでTiN電極上の酸化
膜24を取り除く。 (g)引き出し電極パッド29を露出した状態。
FIG. 4 shows a manufacturing process of the variable focal length concave mirror.
In this example, the concave mirror has a diameter of 5 mm and the concave mirror support member 2 μm.
m, the case where the gap between the counter electrode and the concave mirror supporting member was 30 μm was taken as an example. In this manufacturing process, (a) a single-crystal Si substrate 21 is coated with a photoresist of 10 μm
Apply, pattern by photolithography,
RIE (reactive, ion, etching) is performed with a mixed gas of SF6 + Ar. The etching depth is 30 μm. Thermal oxidation is performed to form a 1 μm oxide film 22. (B) A TiN film is formed by a 150 nm sputtering method using N2 added Ar, and then N2O and SiH are formed by a plasma CVD method.
An oxide film is formed with the mixed gas of No. 4. The TiN and oxide film are patterned by photolithography. After patterning the organic resist by photolithography, the oxide film is etched and ashing is performed. Further, etching is performed with a mixed solution of hydrogen peroxide and ammonia to form a TiN electrode. Thus, the counter electrode 23 and the passivation oxide film 24 were formed. As the electrode material, a high melting point metal or a compound thereof can be used. W, WSix, Mo, etc. can also be used. (C) For example, S having a thickness of 400 μm and a thin Si of 2 μm
The OI wafer is used as a support member for a concave mirror. The thin Si side of the SOI wafer is used for the counter electrode S manufactured in the above step (b).
Direct bonding is performed by stacking on an i-electrode substrate in a vacuum and treating at 1050 ° C. On a Si substrate on which a high concentration B layer is formed,
An etching stop layer with a high concentration B layer can also be used. In this case, high-concentration B of 1E20 cm-3 or more is diffused to a depth corresponding to the thickness of the diaphragm, and then directly joined. (D) Next, a SiN film is formed by a thermal CVD method, and is patterned by photolithography to form a SiN film mask. Anisotropic etching of Si is performed with a KOH aqueous solution. A portion surrounded by the 111 surface having a low etching rate remains as the Si partition wall 27. In the etched portion, the Si etching proceeds, and the etching stops at the oxide film, so that the concave mirror support member 26 can be left. When the high-concentration B layer is used, the etching rate is rapidly reduced by the high-concentration B layer, and a Si concave mirror support member having a predetermined thickness is formed. Next, the SiN film is removed by treatment with hot phosphoric acid. (E) If an SOI substrate is used, the oxide film is removed with buffered hydrofluoric acid or the like, and a metal thin film 28 serving as a concave mirror is formed using a metal mask. For example, a film of a metal such as Al or Cr is formed on a substrate by a sputtering device or a vapor deposition device using a metal mask. As shown by reference numeral 30 in FIG. 5, a metal mask is used so that the electrodes remain on the pad portions. (F) Using a mask made of quartz glass or the like, Si on the counter electrode take-out pad is etched away by RIE of SF6 gas to remove it. Further, the oxide film 24 on the TiN electrode is removed by RIE using CHF3 gas. (G) A state in which the extraction electrode pad 29 is exposed.

【0019】図5にこのようにして製作した可変焦点凹
面鏡デバイスの印加電圧と曲率半径の関係の測定結果を
示す。電圧の増加で曲率半径が減少していることがわか
る。
FIG. 5 shows the measurement results of the relationship between the applied voltage and the radius of curvature of the varifocal concave mirror device manufactured as described above. It can be seen that the radius of curvature decreases as the voltage increases.

【0020】次に本発明の第2の実施形態を説明する。
図6に示すように、凹面鏡支持部材の対向電極を符号2
3a、23b、23c、23d、23eで示すもののよ
うに分割し、電圧を配分して制御する。すると凹面鏡の
曲率を部分的に変化させることができ、オフセット焦点
を容易に得ることができる。図6(B)にその略図を示
す。分割した電極23d、23eに電極23a、23
b、23cよりも高い電圧を印加した場合、高い電圧を
印加した部分がより変位するので部分的に曲率を変化で
きる。
Next, a second embodiment of the present invention will be described.
As shown in FIG. 6, the opposite electrode of the concave mirror support member is denoted by reference numeral 2.
It is divided as shown by 3a, 23b, 23c, 23d and 23e, and the voltage is distributed and controlled. Then, the curvature of the concave mirror can be partially changed, and the offset focal point can be easily obtained. FIG. 6B is a schematic diagram thereof. The electrodes 23a and 23 are applied to the divided electrodes 23d and 23e.
When a voltage higher than b and 23c is applied, the portion to which the higher voltage is applied is more displaced, so that the curvature can be partially changed.

【0021】次に、本発明の第3の実施形態を説明す
る。図8に示すように、凹面鏡支持部材の厚さを半径方
向で変化させ、オフセット焦点を容易に得る。支持部材
の剛性は厚さの三乗に比例するため、半径方向で厚さが
異なると薄い部分がより変形する。図5の製造工程に従
って製作するが、図9に示すように(c)工程での接合
前に凹面鏡支持部材に次のような加工を行う。 (c-1)凹面鏡支持部材になるSOIの薄い基板を加
工する。有機レジストをたとえば5μm塗布し、グラデ
ーションマスクでオフセット焦点に対応した曲面にレジ
ストパターンを形成する。 (c-2)例えばSF6+O2+ArのガスでRIEす
ることでオフセット焦点に対応した曲面に変形するよう
に凹面鏡支持部材を加工する。 (c-3)図5の製造工程と同様に接合する。
Next, a third embodiment of the present invention will be described. As shown in FIG. 8, the thickness of the concave mirror supporting member is changed in the radial direction to easily obtain an offset focal point. Since the rigidity of the support member is proportional to the cube of the thickness, if the thickness differs in the radial direction, the thin portion is more deformed. It is manufactured according to the manufacturing process of FIG. 5, but as shown in FIG. 9, the following processing is performed on the concave mirror supporting member before the joining in the process (c). (C-1) A substrate having a thin SOI to be a concave mirror supporting member is processed. An organic resist is applied, for example, at 5 μm, and a resist pattern is formed on a curved surface corresponding to the offset focus using a gradation mask. (C-2) The concave mirror support member is processed so as to be deformed into a curved surface corresponding to the offset focus by performing RIE with, for example, SF6 + O2 + Ar gas. (C-3) Joining is performed in the same manner as in the manufacturing process of FIG.

【0022】[0022]

【発明の効果】本発明の請求項1に係るレーザ光走査装
置は、以上説明してきたように、剛性を持つ支持部材に
凹面鏡と電極を備え、この電極と隙間を介して対向する
電極との間に電圧を印加し、静電力で凹面鏡部材を変形
させて焦点距離を変化させ得る凹面鏡は半導体デバイス
製造プロセスに同等のマイクロマシンニング技術で量産
でき低コスト化できる。そして、高精度の像面湾曲補正
機能を持つレーザ光走査装置を低コストで提供できると
いう効果がある。
As described above, the laser beam scanning device according to the first aspect of the present invention includes a rigid supporting member provided with a concave mirror and an electrode. A concave mirror capable of changing the focal length by applying a voltage in between and deforming the concave mirror member by electrostatic force can be mass-produced by a micromachining technology equivalent to a semiconductor device manufacturing process, and cost can be reduced. And there is an effect that a laser beam scanning device having a highly accurate field curvature correction function can be provided at low cost.

【0023】本発明の請求項2に係るレーザ光走査装置
は、以上説明してきたように、可変焦点凹面鏡がオフセ
ット焦点であることで、入射光と反射光の光軸を変更す
ることができ、上記共通の効果に加え、反射光が容易に
取り出せ、高精度の像面湾曲補正機能を持つレーザ光走
査装置の低コスト化が実現できるという効果がある。
As described above, the laser beam scanning device according to the second aspect of the present invention can change the optical axes of the incident light and the reflected light by using the variable focus concave mirror having the offset focus, In addition to the above-mentioned common effect, there is an effect that the reflected light can be easily taken out and the cost of the laser beam scanning device having a highly accurate field curvature correction function can be reduced.

【0024】本発明の請求項3に係るレーザ光走査装置
は、以上説明してきたように、第二光学系に温度検出手
段を設けることで、上記共通の効果に加え、より実際の
光学素子の温度変化に対する補正ができ、より精密な像
面湾曲補正を行うことができるという効果がある。
In the laser beam scanning device according to the third aspect of the present invention, as described above, by providing the second optical system with the temperature detecting means, in addition to the above-mentioned common effect, a more actual optical element can be obtained. There is an effect that correction for a temperature change can be performed and more accurate field curvature correction can be performed.

【0025】本発明の請求項4に係るレーザ光走査装置
は、以上説明してきたように、可変焦点凹面鏡の対向電
極を分割することで、上記共通の効果に加え、オフセッ
ト焦点に対応した必要な曲面が容易に得られ、可変焦点
凹面鏡による高精度の像面湾曲補正機能を持つレーザ光
走査装置の低コスト化が実現できるという効果がある。
As described above, the laser beam scanning device according to the fourth aspect of the present invention divides the opposing electrode of the variable focal-length concave mirror so that, in addition to the above-mentioned common effect, it is also necessary to cope with the offset focus. There is an effect that a curved surface can be easily obtained, and cost reduction of a laser beam scanning device having a highly accurate field curvature correction function using a variable focal length concave mirror can be realized.

【0026】本発明の請求項5に係るレーザ光走査装置
は、以上説明してきたように、可変焦点凹面鏡の凹面鏡
支持部材の厚さを部分的に変化することで、上記共通の
効果に加え、オフセット焦点の可変焦点凹面鏡に対応し
た曲面が容易に得られ、高精度の像面湾曲補正機能を持
つレーザ光走査装置の低コスト化が実現できるという効
果がある。
As described above, the laser beam scanning device according to the fifth aspect of the present invention, in addition to the above-described common effects, partially changes the thickness of the concave mirror supporting member of the variable focal length concave mirror. There is an effect that a curved surface corresponding to the variable focal length concave mirror of the offset focal point can be easily obtained, and the cost of the laser beam scanning device having a highly accurate field curvature correction function can be reduced.

【0027】本発明の請求項5に係るレーザ光走査装置
は、以上説明してきたように、可変焦点凹面鏡の支持部
材が単結晶Siからなるものとしたので、上記共通の効
果に加え、半導体デバイスの製造工程を元にしたマイク
ロマシンデバイス製造方法が使用でき、低コスト化が実
現できるという効果がある。
According to the laser beam scanning device of the fifth aspect of the present invention, as described above, the supporting member of the variable focal length concave mirror is made of single crystal Si. Therefore, a micromachine device manufacturing method based on the above manufacturing process can be used, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るレーザ光走査装置の一実施形態を
示す斜視図である。
FIG. 1 is a perspective view showing one embodiment of a laser beam scanning device according to the present invention.

【図2】図1の実施形態で用いるレーザ光走査装置の可
変焦点凹面鏡の構造を示す断面図(A)、(B)及び平
面図(C)である。
FIGS. 2A and 2B are sectional views (A), (B) and a plan view (C) showing the structure of a variable focal length concave mirror of the laser beam scanning device used in the embodiment of FIG.

【図3】図2の可変焦点凹面鏡の変位の略図を示す断面
図である。
FIG. 3 is a sectional view showing a schematic view of the displacement of the variable focal length concave mirror of FIG. 2;

【図4】図2の可変焦点凹面鏡の製造工程を示す断面図
である。
FIG. 4 is a sectional view showing a manufacturing process of the variable focal length concave mirror of FIG. 2;

【図5】図4のように製作した可変焦点凹面鏡デバイス
の印加電圧と曲率半径の関係の測定結果を示す図であ
る。
FIG. 5 is a view showing a measurement result of a relationship between an applied voltage and a radius of curvature of the variable focal length concave mirror device manufactured as in FIG. 4;

【図6】本発明の第2の実施形態を示す断面図(A)、
(B)及び平面図(C)である。
FIG. 6 is a sectional view (A) showing a second embodiment of the present invention,
(B) and a plan view (C).

【図7】同断面図である。FIG. 7 is a sectional view of the same.

【図8】本発明の第3の実施形態を示す断面図である。FIG. 8 is a sectional view showing a third embodiment of the present invention.

【図9】図8の実施形態の製造工程を示す図である。FIG. 9 is a view showing a manufacturing process of the embodiment of FIG. 8;

【符号の説明】[Explanation of symbols]

1 レーザ素子 2 コリメータレンズ系 3 可変焦点凹面鏡 4 ミラー 5 シリンダレンズ 6 ポリゴンミラー 7 第一レンズ 8 第二レンズ 10 感光ドラム 21 Si基板 23 対向電極 23a、23b、23c、23d、23e 分割した対
向電極 24 パッシベーション酸化膜 25 隙間 26 支持部材 28 凹面鏡 29 対向電極用引出し電極パッド 30 凹面鏡用引出し電極パッド 31 パッド部分
DESCRIPTION OF SYMBOLS 1 Laser element 2 Collimator lens system 3 Variable focal length concave mirror 4 Mirror 5 Cylinder lens 6 Polygon mirror 7 First lens 8 Second lens 10 Photosensitive drum 21 Si substrate 23 Counter electrode 23a, 23b, 23c, 23d, 23e Split counter electrode 24 Passivation oxide film 25 Gap 26 Support member 28 Concave mirror 29 Leader electrode pad for counter electrode 30 Leader electrode pad for concave mirror 31 Pad part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 7/198 G02B 7/18 B Fターム(参考) 2C362 AA21 BB14 2H042 DA02 DA03 DA12 DA20 DA21 DB14 DC02 DC08 DC11 DD08 DD11 DE07 2H043 BC00 2H045 CB13 CB22 DA22 DA41 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 7/198 G02B 7/18 BFterm (Reference) 2C362 AA21 BB14 2H042 DA02 DA03 DA12 DA20 DA21 DB14 DC02 DC08 DC11 DD08 DD11 DE07 2H043 BC00 2H045 CB13 CB22 DA22 DA41

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源と偏向手段との間に第一の光
学部品群を備え、上記偏向手段と被走査媒体との間に第
二の光学部品群を備えるレーザ光走査装置において、上
記第二の光学部品群のなす光学系の温度変化による上記
被走査媒体上のスポット径の相違を、上記第一の光学部
品群において、所定の剛性を有する支持部材に凹面鏡と
電極を備え該電極と隙間を介して対向する電極との間に
電圧を印加し、静電力で上記凹面鏡部材を変形して焦点
距離を変化できる凹面鏡により補正することを特徴とす
るレーザ光走査装置。
1. A laser beam scanning apparatus comprising: a first optical component group between a laser light source and a deflecting unit; and a second optical component group between the deflecting unit and a medium to be scanned. The difference in the spot diameter on the medium to be scanned due to the temperature change of the optical system formed by the two optical component groups, the first optical component group, the supporting member having a predetermined rigidity provided with a concave mirror and an electrode, A laser beam scanning apparatus, wherein a voltage is applied between the electrode and a facing electrode through a gap, and the concave mirror member is deformed by electrostatic force to correct the focal length with a concave mirror.
【請求項2】 請求項1のレーザ光走査装置において、
上記凹面鏡の焦点がオフセットであることを特徴とする
レーザ光走査装置。
2. The laser beam scanning device according to claim 1, wherein
A laser beam scanning apparatus, wherein the focal point of the concave mirror is offset.
【請求項3】 請求項1または2のレーザ光走査装置に
おいて、温度検出手段を備え、温度変化に応じて上記ス
ポット径の補正を行うことを特徴とするレーザ光走査装
置。
3. A laser beam scanning apparatus according to claim 1, further comprising a temperature detecting means, wherein said spot diameter is corrected according to a temperature change.
【請求項4】 請求項2のレーザ光走査装置において、
上記凹面鏡の支持部材に対向する電極を分割し、オフセ
ット焦点移動の変位に対応させてなることを特徴とする
レーザ光走査装置。
4. The laser beam scanning device according to claim 2, wherein
A laser beam scanning device characterized in that an electrode facing a support member of the concave mirror is divided so as to correspond to the displacement of the offset focal point movement.
【請求項5】 請求項2のレーザ光走査装置において、
上記凹面鏡が、その支持部材の厚みを変化させてオフセ
ット焦点としてなるものであることを特徴とするレーザ
光走査装置。
5. The laser beam scanning device according to claim 2, wherein
A laser beam scanning device, wherein the concave mirror serves as an offset focus by changing the thickness of the support member.
【請求項6】 請求項1ないし4のいずれかのレーザ走
査装置において、上記凹面鏡が、その支持部材が単結晶
Siからなる可変焦点凹面鏡であることを特徴とするレ
ーザ光走査装置。
6. A laser beam scanning apparatus according to claim 1, wherein said concave mirror is a variable focal length concave mirror whose support member is made of single-crystal Si.
JP2001044027A 2001-02-20 2001-02-20 Laser beam scanner Withdrawn JP2002244063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044027A JP2002244063A (en) 2001-02-20 2001-02-20 Laser beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044027A JP2002244063A (en) 2001-02-20 2001-02-20 Laser beam scanner

Publications (1)

Publication Number Publication Date
JP2002244063A true JP2002244063A (en) 2002-08-28

Family

ID=18906090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044027A Withdrawn JP2002244063A (en) 2001-02-20 2001-02-20 Laser beam scanner

Country Status (1)

Country Link
JP (1) JP2002244063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023684A (en) * 2004-07-09 2006-01-26 Topcon Corp Deformable mirror and eyeground observation device
WO2009104524A1 (en) * 2008-02-18 2009-08-27 シャープ株式会社 Image display device
US7728861B2 (en) 2004-06-07 2010-06-01 Canon Kabushiki Kaisha Optical device
US7859558B2 (en) 2008-07-31 2010-12-28 Ricoh Company, Ltd. Optical scanning device, control method thereof, and image forming apparatus therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728861B2 (en) 2004-06-07 2010-06-01 Canon Kabushiki Kaisha Optical device
JP2006023684A (en) * 2004-07-09 2006-01-26 Topcon Corp Deformable mirror and eyeground observation device
WO2009104524A1 (en) * 2008-02-18 2009-08-27 シャープ株式会社 Image display device
JP2009193008A (en) * 2008-02-18 2009-08-27 Sharp Corp Image display device
US7859558B2 (en) 2008-07-31 2010-12-28 Ricoh Company, Ltd. Optical scanning device, control method thereof, and image forming apparatus therewith

Similar Documents

Publication Publication Date Title
Vdovin et al. Technology and applications of micromachined silicon adaptive mirrors
US20020048096A1 (en) Optical element deformation system
US20060098311A1 (en) Micro-mirror and a method for fabricating the same
CN103582830A (en) Production method for optical component and optical component
US7903313B2 (en) Micro movable element
JP2004157527A (en) Variable shape reflecting mirror and manufacturing method thereof
JP6412878B2 (en) Manufacturing method of electronic parts
Hisanaga et al. Fabrication of 3-dimensionally shaped Si diaphragm dynamic focusing mirror
JPH05241094A (en) Postobjective type scanning optical system and image formation device
JP2973272B2 (en) Variable optical surface and optical scanning system
JP2002122998A (en) High quality lithography method
US20080043310A1 (en) Vibrating mirror, light writing device, and image forming apparatus
US20110279919A1 (en) Method for manufacturing a micromechanical component, and micromechanical component
JP2002267996A (en) Optical scanner and its manufacturing method
JP2002244063A (en) Laser beam scanner
JP6808381B2 (en) Holding device, projection optical system, exposure device, and article manufacturing method
JP2773604B2 (en) Electrostatic driving optical scanning device and method of manufacturing the same
JP2007304411A (en) Variable shape mirror
JPH1090612A (en) Mxn array of thin film actuated mirror and its production
JP2008209616A (en) Optical deflector and method of manufacturing the same
JP5171489B2 (en) Method of manufacturing structure by anisotropic etching, and silicon substrate with etching mask
JP2003077823A (en) Exposure apparatus and method of exposure
JP2005249914A (en) Laser beam scanner
WO2018043314A1 (en) Optical device, projection optical system, exposure apparatus, and method for manufacturing article
KR100283529B1 (en) Thin Film Fluorescence Control System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070731