JP2002243620A - Method of counting particulate floating in water equivalent to refractive index of water - Google Patents

Method of counting particulate floating in water equivalent to refractive index of water

Info

Publication number
JP2002243620A
JP2002243620A JP2001045190A JP2001045190A JP2002243620A JP 2002243620 A JP2002243620 A JP 2002243620A JP 2001045190 A JP2001045190 A JP 2001045190A JP 2001045190 A JP2001045190 A JP 2001045190A JP 2002243620 A JP2002243620 A JP 2002243620A
Authority
JP
Japan
Prior art keywords
water
refractive index
fine particles
particles
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001045190A
Other languages
Japanese (ja)
Inventor
Shizuo Takeda
静雄 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP2001045190A priority Critical patent/JP2002243620A/en
Publication of JP2002243620A publication Critical patent/JP2002243620A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately measure particulates, after calibrating a measuring device through the use of reference particles of a refractive index of 1.4-1.46. SOLUTION: In the method for counting the particulates floating in the water equivalent to the refractive index of the water, the particulates (10) having high transparency contained in the water to be inspected (1) are counted through the use of the particulate measuring device (20), in which the particulates (10) are calibrated through the use of the reference particles of a refractive index of 1.4-1.46.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中に浮遊する水
の屈折率と同等な微粒子の計数方法に関し、特に、浄水
処理された水中に浮遊する病原性微生物、特に、クリプ
トスポリジウムオーシスト(嚢包体)を検出対象とした
浄水の汚水検査に適用可能な無色透明で水の屈折率に近
い微粒子を高精度で計数するための新規な改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for counting fine particles equivalent to the refractive index of water floating in water, and more particularly to pathogenic microorganisms floating in purified water, especially cryptosporidium oocysts (capsule). The present invention relates to a novel improvement for counting fine particles close to the refractive index of water, which is colorless and transparent and applicable to water purification inspection of purified water targeted for detection of water.

【0002】[0002]

【従来の技術】従来、用いられていたこの種の水中に浮
遊する水の屈折率と同等な微粒子の計数方法としては、
フローセル中に被検水を通し、これに光ビームを照射
し、フローセル中を流れる微粒子の散乱光や微粒子より
の遮光量を受光検出器で計測し、その検出信号を微粒子
の大きさに換算し、その頻度を濃度として測定する微粒
子測定装置を用いている。この微粒子の大きさを測定す
るには、予め直径の分かっているポリスチレンラテック
ス(以下、PSLと云う)製の標準粒子を用い、このP
SL標準粒子をフローセルに流し、前記微粒子測定装置
の検出する粒子径と光受光量の関係式を求めておき、校
正値としていた。一方、近年、病原性微生物であるクリ
プトスポリジウムによる集団下痢事件が発生し、社会問
題となっている。このクリプトスポリジウムは、その大
きさが3〜5μmの玉子形の被膜に覆われたオーシスト
(嚢包体)と云う形態をとる。このクリプトスポリジウ
ムオーシストを浄水処理された水中から微粒子として計
数する試みが、特開平11−300351号公報及び特
開2000−33000号公報に開示されている。
2. Description of the Related Art Conventionally, a method of counting fine particles equivalent to the refractive index of water floating in water of this kind has been used.
The test water is passed through the flow cell, irradiated with a light beam, the scattered light of the fine particles flowing in the flow cell and the amount of light shielding from the fine particles are measured by a light receiving detector, and the detection signal is converted into the size of the fine particles. And a fine particle measuring device that measures the frequency as a concentration. In order to measure the size of the fine particles, standard particles made of polystyrene latex (hereinafter, referred to as PSL) having a known diameter are used.
The SL standard particles were allowed to flow through the flow cell, and a relational expression between the particle diameter detected by the fine particle measuring device and the amount of light received was obtained and used as a calibration value. On the other hand, in recent years, a mass diarrhea case due to the pathogenic microorganism Cryptosporidium has occurred, which has become a social problem. This cryptosporidium takes the form of an oocyst (capsule) covered with an egg-shaped film having a size of 3 to 5 μm. An attempt to count the Cryptosporidium oocysts as fine particles from purified water is disclosed in JP-A-11-300351 and JP-A-2000-33000.

【0003】[0003]

【発明が解決しようとする課題】従来の水中に浮遊する
水の屈折率と同等な微粒子の計数方法は、以上のように
構成されていたため、次のような課題が存在していた。
すなわち、前述の各特許公開公報に開示された方法で
は、クリプトスポリジウムオーシストの被膜が、水に近
い無色透明性を有しているため、蛍光物質で微粒子であ
るオーシストからなる病原性微生物を蛍光染色し、観測
しやすくして計数する方法であり、この染色処理には複
雑で大掛かりな設備が必要で、コスト負担も多大となっ
ていた。
The conventional method of counting fine particles having a refractive index equal to the refractive index of water floating in water has the following problems because it has been configured as described above.
That is, in the method disclosed in each of the above-mentioned patent publications, the coating of Cryptosporidium oocysts has a colorless and transparent property close to that of water, so that the fluorescent substance is used to fluorescently stain pathogenic microorganisms composed of oocysts that are fine particles. In addition, this method is a method of counting by making it easy to observe, and this staining treatment requires complicated and large-scale equipment, and the cost burden is large.

【0004】本発明は、以上のような課題を解決するた
めになされたもので、特に、屈折率が1.4〜1.46
の標準粒子を用いて計数対象の微粒子の大きさを予め校
正した微粒子測定装置を用いて水中に含まれる透明度の
高い微粒子を高精度で計数するようにした水中に浮遊す
る水の屈折率と同等な微粒子の計数方法を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and in particular, has a refractive index of 1.4 to 1.46.
Equivalent to the refractive index of water suspended in water, so that highly transparent fine particles contained in water can be counted with high accuracy using a fine particle measuring device that has previously calibrated the size of fine particles to be counted using standard particles of It is an object of the present invention to provide a method for counting fine particles.

【0005】[0005]

【課題を解決するための手段】本発明による水中に浮遊
する水の屈折率と同等な微粒子の計数方法は、フローセ
ル中に被検水を通過させ、この被検水に光ビームを照射
し、この被検水中に含まれる微粒子による散乱光又は前
記微粒子による遮光量を受光検出器で検出し、前記受光
検出器からの検出信号により前記被検水中の前記微粒子
の大きさと濃度を測定するようにした微粒子測定装置を
用いる水中に浮遊する水の屈折率と同等な微粒子の計数
方法において、屈折率が1.4〜1.46の標準粒子を
用いて前記微粒子の大きさを校正した前記微粒子測定装
置を用いて被検水中に含まれる透明度の高い前記微粒子
を計数する方法であり、また、前記標準粒子は、シリカ
製の標準粒子を用いる方法である。
According to the method of the present invention for counting fine particles having a refractive index equal to that of water floating in water, the test water is passed through a flow cell, and the test water is irradiated with a light beam. A light receiving detector detects the amount of light scattered by the fine particles contained in the test water or the amount of light blocked by the fine particles, and measures the size and concentration of the fine particles in the test water by a detection signal from the light receiving detector. In the method for counting fine particles equivalent to the refractive index of water suspended in water using a fine particle measuring device, the fine particle measurement in which the size of the fine particles is calibrated using standard particles having a refractive index of 1.4 to 1.46 The method is a method for counting the fine particles having high transparency contained in the test water using an apparatus, and the standard particles are methods using silica standard particles.

【0006】[0006]

【発明の実施の形態】以下、図面と共に本発明による水
中に浮遊する水の屈折率と同等な微粒子の計数方法の好
適な実施の形態について説明する。図1は本発明におけ
る水に浮遊する水の屈折率と同等な微粒子の計数方法に
適用する微粒子測定装置20を示す概略図であり、この
微粒子測定装置20は、クリプトスポリジウムオーシス
ト(微粒子10)又はこれと同等の標準粒子を有する被
検水1を管状のフローセル2内を通過させ、これにレー
ザ光源3からの光ビーム4を照射し、この被検水1中に
含まれる微粒子10よりの散乱光又は微粒子10の遮光
量を受光検出器5で検出し、この受光検出器5の受光量
によって被検水1中の微粒子10の大きさと濃度を測定
することができるように構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for counting fine particles equivalent to the refractive index of water floating in water according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a fine particle measuring device 20 applied to a method for counting fine particles equivalent to the refractive index of water floating in water according to the present invention. The fine particle measuring device 20 is a cryptosporidium oocyst (fine particles 10) or A test water 1 having the same standard particles is passed through a tubular flow cell 2, and irradiated with a light beam 4 from a laser light source 3, and scattered from fine particles 10 contained in the test water 1. The light receiving amount of the light or the fine particles 10 is detected by the light receiving detector 5, and the size and the concentration of the fine particles 10 in the test water 1 can be measured based on the light receiving amount of the light receiving detector 5.

【0007】図2は、クリプトスポリジウムオーシスト
そのものと代替粒子であるシリカ製の標準粒子を用いて
粒径と個数の計測特性を評価した。ここでは、前記PS
L標準粒子で較正した前記微粒子測定装置20を用い、
前記PSL標準粒子10とは異なって粒径が小さく(図
2の横方向に示す)、かつ水の屈折率に近いシリカ製の
標準粒子(屈折率1.40〜1.46)の測定値の関係
を示している。尚、標準粒子の種類と物性は次の表1の
第1表の通りであり、水の屈折率(1.33)に最も近
いシリカを選択した。
FIG. 2 shows the evaluation characteristics of particle size and number using Cryptosporidium oocysts themselves and silica standard particles as substitute particles. Here, the PS
Using the fine particle measuring device 20 calibrated with L standard particles,
Unlike the PSL standard particles 10, the particle size is small (shown in the horizontal direction in FIG. 2) and the measured value of silica standard particles (refractive index: 1.40 to 1.46) close to the refractive index of water. Shows the relationship. The types and physical properties of the standard particles are as shown in Table 1 below, and silica closest to the refractive index (1.33) of water was selected.

【0008】[0008]

【表1】 [Table 1]

【0009】さらに、図2には3×5μmの楕円体のク
リプトスポリジウムオーシストの測定値も黒丸で併記し
てある。
FIG. 2 also shows the measured values of 3 × 5 μm ellipsoid cryptosporidium oocysts by black circles.

【0010】前記図2において、黒丸マークは前記クリ
プトスポリジウムオーシスト標準液、白三角マークは3
μm径のシリカ製の標準粒子、白菱形マークは4μm径
のシリカ製の標準粒子、白四角マークは5μm径のシリ
カ製の標準粒子、白丸マークは10μm径のシリカ製の
標準粒子の場合を示している。なお、標準粒子として
は、水に近い屈折率であれば、他の物質でも可である。
In FIG. 2, the black circle mark is the Cryptosporidium oocyst standard solution, and the white triangle mark is 3
μm diameter silica standard particles, open diamond marks indicate 4 μm diameter silica standard particles, open square marks indicate 5 μm diameter silica standard particles, and open circle marks indicate 10 μm diameter silica standard particles. ing. As the standard particles, other substances can be used as long as the refractive index is close to that of water.

【0011】前述の図2に示されているように、シリカ
製の標準粒子は、前記PSL標準粒子の0.6〜0.7
倍の粒子径として計測され、前記クリプトスポリジウム
オーシストはPSL標準粒子相当径で2〜2.5μmと
計測されたが、シリカ製の標準粒子の4μmとはほぼ一
致した。これは前記オーシストが、3×5μmの楕円体
であることを考慮(前述の3μmと5μmの平均値が4
μmである)すると、シリカ製の標準粒子径4μm相当
の計測値と一致している。従って、シリカ粒子がほぼ適
切なクリプトスポリジウムオーシスト代替標準粒子とし
て用いることができることが明らかである。
As shown in FIG. 2, the silica standard particles are 0.6 to 0.7 of the PSL standard particles.
The Cryptosporidium oocyst was measured as a PSL standard particle equivalent diameter of 2 to 2.5 μm, which was almost the same as 4 μm of silica standard particles. This takes into account that the oocyst is an ellipsoid of 3 × 5 μm (the above-mentioned average value of 3 μm and 5 μm is 4 μm).
μm), which is consistent with the measured value corresponding to a silica standard particle diameter of 4 μm. Thus, it is clear that silica particles can be used as nearly suitable Cryptosporidium oocyst replacement standard particles.

【0012】従って、前述のように、水に近い屈折率を
有するシリカ製の標準粒子で較正した微粒子測定装置2
0を用いて微粒子10の計数を行うことにより、浄水処
理された被検水1中に浮遊するクリプトスポリジウムオ
ーシスト有無の検査に適用可能となる。すなわち、前述
のシリカ製の標準粒子で較正した微粒子測定装置20で
図2で示す粒径4μmが計測されれば、クリプトスポリ
ジウムオーシストの存在が肯定されるが、この粒径4μ
mが計測されなければ、このクリプトスポリジウムオー
シストの存在は否定される。
Therefore, as described above, the fine particle measuring device 2 calibrated with silica standard particles having a refractive index close to water is used.
By performing the counting of the fine particles 10 using 0, the present invention can be applied to the inspection of the presence or absence of Cryptosporidium oocysts floating in the test water 1 subjected to the water purification treatment. That is, if the particle diameter of 4 μm shown in FIG. 2 is measured by the fine particle measuring device 20 calibrated with the silica standard particles described above, the existence of Cryptosporidium oocysts is affirmed.
If m is not measured, the presence of this cryptosporidium oocyst is denied.

【0013】[0013]

【発明の効果】本発明による水中に浮遊する水の屈折率
と同等な微粒子の計数方法は、以上のように構成されて
いるため、次のような効果を得ることができる。すなわ
ち、屈折率が1.4〜1.46のシリカ製の標準粒子を
用いて微粒子の大きさを較正した微粒子測定装置を用い
て水中に含まれる透明度の高いクリプトスポリジウムオ
ーシストを計数しているため、従来の測定方法に比較す
ると、計数精度の大幅な向上、及び、装置の大幅な簡易
化並びにローコスト化を達成することができる。
The method for counting fine particles having the same refractive index as that of water floating in water according to the present invention is configured as described above, and therefore the following effects can be obtained. That is, highly transparent Cryptosporidium oocysts contained in water are counted using a fine particle measuring device in which the size of fine particles is calibrated using silica standard particles having a refractive index of 1.4 to 1.46. Compared with the conventional measurement method, it is possible to achieve a great improvement in counting accuracy, a great simplification of the apparatus, and a low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水中に浮遊する水の屈折率と同等な微
粒子の計数方法に適用した微粒子測定装置を示す構成図
である。
FIG. 1 is a configuration diagram showing a particle measuring apparatus applied to a method for counting particles equivalent to the refractive index of water floating in water according to the present invention.

【図2】図1の微粒子測定装置のクリプトスポリジウム
オーシストとシリカ製の標準粒子に対する感度を示す特
性図である。
FIG. 2 is a characteristic diagram showing the sensitivity of the fine particle measuring apparatus of FIG. 1 to Cryptosporidium oocysts and silica standard particles.

【符号の説明】[Explanation of symbols]

1 被検水 2 フローセル 4 光ビーム 5 受光検出器 10 微粒子 20 微粒子測定装置 DESCRIPTION OF SYMBOLS 1 Test water 2 Flow cell 4 Light beam 5 Reception detector 10 Fine particles 20 Fine particle measuring device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フローセル(2)中に被検水(1)を通過さ
せ、この被検水(1)に光ビーム(4)を照射し、この被検水
(1)中に含まれる微粒子(10)による散乱光又は前記微粒
子(10)による遮光量を受光検出器(5)で検出し、前記受
光検出器(5)からの検出信号により前記被検水(1)中の前
記微粒子(10)の大きさと濃度を測定するようにした微粒
子測定装置(20)を用いる水中に浮遊する水の屈折率と同
等な微粒子の計数方法において、屈折率が1.4〜1.
46の標準粒子を用いて前記微粒子(10)の大きさを校正
した前記微粒子測定装置(20)を用いて被検水(1)中に含
まれる透明度の高い前記微粒子(10)を計数することを特
徴とする水中に浮遊する水の屈折率と同等な微粒子の計
数方法。
1. A test water (1) is passed through a flow cell (2), and the test water (1) is irradiated with a light beam (4).
(1) scattered light by the fine particles (10) contained therein or the amount of light shielding by the fine particles (10) is detected by the light receiving detector (5), and the test water is detected by a detection signal from the light receiving detector (5) In a method for counting fine particles equivalent to the refractive index of water floating in water using a fine particle measuring device (20) adapted to measure the size and concentration of the fine particles (10) in (1), the refractive index is 1. 4-1.
Counting the fine particles (10) having high transparency contained in the test water (1) using the fine particle measuring device (20) in which the size of the fine particles (10) is calibrated using 46 standard particles. A method for counting fine particles having a refractive index equal to the refractive index of water floating in water.
【請求項2】 前記標準粒子は、シリカ製の標準粒子を
用いることを特徴とする請求項1記載の水中に浮遊する
水の屈折率と同等な微粒子の計数方法。
2. The method for counting fine particles having a refractive index equivalent to the refractive index of water floating in water according to claim 1, wherein the standard particles are silica standard particles.
JP2001045190A 2001-02-21 2001-02-21 Method of counting particulate floating in water equivalent to refractive index of water Withdrawn JP2002243620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045190A JP2002243620A (en) 2001-02-21 2001-02-21 Method of counting particulate floating in water equivalent to refractive index of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045190A JP2002243620A (en) 2001-02-21 2001-02-21 Method of counting particulate floating in water equivalent to refractive index of water

Publications (1)

Publication Number Publication Date
JP2002243620A true JP2002243620A (en) 2002-08-28

Family

ID=18907035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045190A Withdrawn JP2002243620A (en) 2001-02-21 2001-02-21 Method of counting particulate floating in water equivalent to refractive index of water

Country Status (1)

Country Link
JP (1) JP2002243620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162524A (en) * 2004-12-09 2006-06-22 Sysmex Corp Standard solution for particle image analyzer
JP2007033354A (en) * 2005-07-29 2007-02-08 Fuji Electric Systems Co Ltd Fine particle measuring method and fine particle measuring instrument
CN100365408C (en) * 2005-05-08 2008-01-30 哈尔滨工业大学 On-line detection evaluating method for cryptosporozoam in drinking water treatment process
JP2016526689A (en) * 2013-07-10 2016-09-05 ケーエルエー−テンカー コーポレイション Particle suspension used as a low-contrast standard for liquid testing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162524A (en) * 2004-12-09 2006-06-22 Sysmex Corp Standard solution for particle image analyzer
JP4744132B2 (en) * 2004-12-09 2011-08-10 シスメックス株式会社 Display value creation method for standard solution for particle image analyzer
CN100365408C (en) * 2005-05-08 2008-01-30 哈尔滨工业大学 On-line detection evaluating method for cryptosporozoam in drinking water treatment process
JP2007033354A (en) * 2005-07-29 2007-02-08 Fuji Electric Systems Co Ltd Fine particle measuring method and fine particle measuring instrument
JP2016526689A (en) * 2013-07-10 2016-09-05 ケーエルエー−テンカー コーポレイション Particle suspension used as a low-contrast standard for liquid testing

Similar Documents

Publication Publication Date Title
FI70481B (en) FOER FARING PROCESSING OF CELLVOLYMEN
CN104101586B (en) A kind of valued methods of microsphere fluorescence strength criterion material
CN103471982A (en) Blood cell analysis chip, analysis meter and analysis method
CN105861299A (en) Micro-drop digital PCR (polymerase chain reaction) fluorescent detection system and fluorescent detection device
CN106092985B (en) A kind of fluorescent test paper and its preparation method and application of low " coffee ring effect "
CN107831099A (en) The detection means and detection method of air particle
CN107607449A (en) A kind of device and method for detecting particulate matter quality concentration
WO2017072360A1 (en) Flow cytometry method for determination of size and refractive index of substantially spherical single particles
CN108387504A (en) Particle collector is closed in cohesion
Perfetto et al. Novel impactor and microsphere‐based assay used to measure containment of aerosols generated in a flow cytometer cell sorter
JP2002243620A (en) Method of counting particulate floating in water equivalent to refractive index of water
Van Gelder et al. Conscientious particle counting
ITUD20100003A1 (en) PROCEDURE AND EQUIPMENT FOR DIAGNOSTIC ANALYSIS
Cram et al. Fluorescence and light-scattering measurements on hog cholera-infected PK-15 cells
JP3263729B2 (en) Apparatus and method for measuring particles in liquid
Friehmelt et al. Calibration of a white-light/90° optical particle counter for “aerodynamic” size measurements—experiments and calculations for spherical particles and quartz dust
CN106018401A (en) Method for determining content of chlorine ions in water
Gerhard et al. Microdetermination of sulfuric acid aerosol
CN106092989B (en) A method of heparin is quantified by counting quantum dot reunion ratio
US6699680B1 (en) Method of determining a number of platelets
CN106546562A (en) A kind of microbiological sensor and turbidity detection method based on Turbidity measurement
US9874508B2 (en) Spectrophotometer based on optical caustics
CN207379885U (en) The detection device of air particle
CN111549093A (en) Rapid counting method of amoeba spores in water and application thereof
JP3265361B2 (en) Apparatus and method for measuring particles in liquid

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060714

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513