JP2002242988A - Axial force type vibration control device usable for earthquake and wind in common - Google Patents

Axial force type vibration control device usable for earthquake and wind in common

Info

Publication number
JP2002242988A
JP2002242988A JP2001037213A JP2001037213A JP2002242988A JP 2002242988 A JP2002242988 A JP 2002242988A JP 2001037213 A JP2001037213 A JP 2001037213A JP 2001037213 A JP2001037213 A JP 2001037213A JP 2002242988 A JP2002242988 A JP 2002242988A
Authority
JP
Japan
Prior art keywords
energy absorbing
vibration damping
axial force
frame
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001037213A
Other languages
Japanese (ja)
Other versions
JP4427197B2 (en
Inventor
Atsumichi Kushibe
淳道 櫛部
Kotaro Toyama
幸太郎 遠山
Satoru Aizawa
相沢  覚
Koichi Makii
浩一 槙井
Yasuaki Sugizaki
康昭 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Takenaka Komuten Co Ltd
Original Assignee
Kobe Steel Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Takenaka Komuten Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2001037213A priority Critical patent/JP4427197B2/en
Publication of JP2002242988A publication Critical patent/JP2002242988A/en
Application granted granted Critical
Publication of JP4427197B2 publication Critical patent/JP4427197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an axial force type vibration control device usable for earthquake and wind in common capable of reducing vibration of a structure by deforming metal vibration absorbing material which shows little work hardening from plasticization by an axial force. SOLUTION: An energy absorbing member has both end parts of a long and narrow axial force loading part in a center rounded for preventing stress concentration, and has rectangular attachment parts large enough to transmit load formed at both outside parts. Both surfaces of the attachment part and both end surfaces of the upper and lower axial force loading parts are restricted by a load transmitting frame and a spacer to prevent in-plane buckling and out-plane buckling. The load-transmitting frame is comprised of a male type frame, a female type frame and recessed plate attached to the female frame.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、エネルギ吸収部
材として、材料強度が高ひずみ速度感受性を有し、エネ
ルギを吸収過程における温度上昇に対して強度が安定し
ており、塑性化による加工硬化を殆ど起さず、十分大き
い変形性能を有する金属系振動吸収材料を用い、これを
軸力で変形させることにより構造物の振動を軽減する軸
力型制振装置の技術分野に属し、更に云えば、実質的に
地震及び風に兼用でき、必要十分な制振(又は制震、以
下同じ。)効果を発揮する軸力型制振装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an energy absorbing member having a material strength having a high strain rate sensitivity, a stable strength against a temperature rise in an energy absorbing process, and a work hardening by plasticization. It belongs to the technical field of an axial force type vibration damping device that uses a metal-based vibration absorbing material that hardly occurs and has a sufficiently large deformation performance and reduces the vibration of a structure by deforming the material by an axial force. The present invention relates to an axial force type vibration damping device that can be used substantially for both earthquakes and winds, and exhibits a necessary and sufficient vibration damping (or vibration damping, the same applies hereinafter) effect.

【0002】[0002]

【従来の技術】従来、建築建造物の振動を吸収する制振
装置は、大きく分けて、(a)地震時に生じる揺れを低
減することを目的とした制振装置、(b)風等により生
じる振動を吸収し、居住性を向上させる制振装置、の2
種類が用いられている。
2. Description of the Related Art Conventionally, vibration damping devices for absorbing vibrations of building structures can be roughly divided into (a) a vibration damping device for reducing the shaking caused by an earthquake, and (b) a wind damping device. Vibration damping device that absorbs vibration and improves comfort
Types are used.

【0003】上記(a)の地震力を対象とした履歴系の
制振装置の分野では、従来、エネルギ吸収部材に極低降
伏点鋼を用いた制振装置が多数用いられている。
[0003] In the field of the hysteretic vibration damping device for the above-mentioned (a) seismic force, conventionally, a large number of vibration damping devices using an extremely low yield point steel as an energy absorbing member have been used.

【0004】また、鉛を用いた鉛封入型の制振装置も、
例えば特許第2647609号公報、特許第26501
53号公報などに記載されて公知である。
[0004] A lead-filled type vibration damping device using lead is also provided.
For example, Japanese Patent No. 2647609, Japanese Patent No. 26501
No. 53 is known.

【0005】更に、最近では制振装置のエネルギ吸収部
材に好適な超塑性材料として、たとえば特開平11−2
22643号公報に開示された制振用の亜鉛・アルミニ
ューム合金(Zn-Al合金)を使用することも知られてい
る。この超塑性材料は、加工硬化、ひずみ劣化を起こさ
ない為、安定した耐振性能が長期にわたり持続する性質
のものであることが知られている。
Further, recently, as a superplastic material suitable for an energy absorbing member of a vibration damper, for example, Japanese Unexamined Patent Publication No. 11-2
It is also known to use a zinc-aluminum alloy (Zn-Al alloy) for damping disclosed in Japanese Patent No. 22463. It is known that this superplastic material does not cause work hardening and strain deterioration, and thus has a property of maintaining stable vibration resistance for a long period of time.

【0006】次に、上記(b)のように主に風による高
層建物の振動を軽減する目的で設置される制振装置に
は、エネルギ吸収部材として粘性体や粘性系材料等(以
下、まとめて粘性系材料と云う)を用いた制振装置が多
く公知であり使用されている。これら粘性系材料を用い
た制振装置は、一般的に変形性能には優れている。
Next, as shown in (b) above, a vibration damping device installed for the purpose of reducing the vibration of a high-rise building mainly due to wind is used as an energy absorbing member such as a viscous body or a viscous material (hereinafter referred to as a summary). Vibration damping devices using viscous materials) are well known and used. Vibration damping devices using these viscous materials generally have excellent deformation performance.

【0007】[0007]

【本発明が解決しようとする課題】(I)上記の極低降
伏点鋼を用いた履歴系の制振装置は、地震等により一度
塑性ひずみ履歴を受けると、極低降伏点鋼自体の加工硬
化により降伏荷重が上昇する。このため2回目以降は、
極低降伏点鋼の弾性領域が長くなり、エネルギ吸収性能
が低下するなど、エネルギ吸収性能が不安定となる。極
低降伏点鋼はまた、塑性ひずみを受けると、機械的性質
の劣化を起こすため、継続使用する際の性能把握が困難
であり、初期の制振性能を維持できなくなるため、往々
にしてエネルギ吸収部材(極低降伏点鋼)を交換する必
要がある、等々の問題がある。
(I) The hysteresis system of the hysteresis system using the above-mentioned extremely low yield point steel, once subjected to a plastic strain history due to an earthquake or the like, processes the extremely low yield point steel itself. Hardening increases the yield load. Therefore, after the second time,
The energy absorption performance becomes unstable, for example, the elastic region of the extremely low yield point steel becomes longer, and the energy absorption performance decreases. Extremely low yield point steel also suffers from deterioration of its mechanical properties when subjected to plastic strain, making it difficult to grasp its performance during continuous use and failing to maintain the initial vibration damping performance. There are problems such as the need to replace the absorbing member (extremely low yield point steel).

【0008】(II)鉛を用いた鉛封入型制振装置の場合
は、鉛自体の室温強度が低く、したがって、極低降伏点
鋼を用いた制振装置と同程度の制振性能を実現するため
には大量の鉛を必要とする。ところが、鉛は比重が大き
いため、結局は制振装置全体の重量が増大し、ハンドリ
ングが悪くなるし、構造物への負荷も大きい。更に、鉛
は毒性のある金属であるため、その使用は環境保全のた
めには好ましくない。その他、鉛を用いた鉛封入型制振
装置に関しては、鉛を封入し等体積変形を生じさせる機
構が提案されているが、実際には補剛部材の弾性変形が
存在するため、完全な等体積変形の実現は難しい。その
上、鉛はエネルギ吸収による発熱に関して、熱を伝導、
逸散する性能が悪く、繰り返し変形時における強度低下
が著しい。そのためダレを発生し易く、封入初期には存
在しなかった加力部材との間の隙間が発生し、スリップ
型の塑性ひずみ履歴となって耐振性能が不安定になる問
題点などが指摘されている。
(II) In the case of a lead-filled type vibration damping device using lead, the room temperature strength of lead itself is low, and therefore, the same level of vibration damping performance as a vibration damping device using extremely low yield point steel is realized. Requires a large amount of lead. However, since lead has a large specific gravity, the weight of the entire vibration damping device eventually increases, handling becomes poor, and the load on the structure is large. Furthermore, since lead is a toxic metal, its use is not preferred for environmental protection. In addition, for lead-filled vibration damping devices using lead, a mechanism has been proposed in which lead is sealed to cause equal volume deformation. However, since there is elastic deformation of the stiffening member, complete It is difficult to achieve volume deformation. In addition, lead conducts heat with respect to heat generation due to energy absorption,
The ability to dissipate is poor, and the strength is significantly reduced during repeated deformation. For this reason, it is easy to cause sagging, a gap occurs between the loading member that did not exist in the initial stage of encapsulation, and a problem such as a slip type plastic strain history and unstable vibration resistance performance was pointed out. I have.

【0009】(III) 次に、制振装置のエネルギ吸収部
材として、上記特開平11−222643号公報に開示
されたような超塑性材料「亜鉛・アルミニューム合金
(Zn-Al合金)」を使用する場合には、次の検討事項が
克服されねばならない。即ち、この種の超塑性材料は、
加工硬化、ひずみ劣化を起こさないため、安定した耐振
性能が長期にわたり持続する。しかしその一方、微細結
晶粒組織を有する超塑性材料「室温高速超塑性合金」は
金属組織の安定性が失われるため、加力部材(又は加力
冶具)との接合手段に「溶接」のように大きな入熱を伴
う加工方法を実施できない。また、超塑性材料「室温高
速超塑性合金」は、低降伏点鋼に比べて、局部座屈が発
生すると「ひずみ集中」を生じ易く、従来の座屈補剛方
法を使用できないという問題がある。更に、鉛ほどでは
ないが、超塑性材料はエネルギ吸収の際の発熱によって
材料強度が低下するため、放熱対策が重要な課題であ
る。
(III) Next, a superplastic material "zinc-aluminum alloy (Zn-Al alloy)" disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-222643 is used as an energy absorbing member of the vibration damping device. If so, the following considerations must be overcome. That is, this kind of superplastic material is
Since it does not cause work hardening or strain deterioration, stable vibration resistance performance is maintained for a long time. However, on the other hand, a superplastic material having a fine grain structure, “room-temperature high-speed superplastic alloy,” loses the stability of the metallographic structure. Processing method involving large heat input cannot be performed. In addition, the superplastic material "room-temperature high-speed superplastic alloy" has a problem that, when local buckling occurs, "strain concentration" is more likely to occur than the low yield point steel, and the conventional buckling stiffening method cannot be used. . Further, although not so much as lead, superplastic materials have a reduced material strength due to heat generation during energy absorption, and thus heat dissipation measures are an important issue.

【0010】(IV)次に、上記「粘性系材料」を用いた
制振装置は、諸特性の温度依存性が非常に大きく、エネ
ルギ吸収過程での発熱により、数10℃の温度上昇で剛
性、減衰特性等が著しく低下するため、ダンピング特性
が急激に低下する。例えば夏と冬では「粘性系材料」が
さらされる温度が大きく異なるため、制振性能も大きく
異なる。そのため粘性系制振装置を構造物へ設置する場
所としては、温度変化の激しい外壁周りは適さず、居住
スペースに近く温度変化の少ない場所に制限される。
「粘性系材料」は一般的に材料強度が小さいため、装置
自体が大型化する。必然、構造物の有効な設置スペース
が更に制限されるという問題がある。
(IV) Next, the vibration damping device using the above "viscous material" has a very large temperature dependency of various characteristics, and the heat generation in the energy absorption process causes the rigidity at a temperature rise of several tens of degrees Celsius. In addition, since the damping characteristics and the like are significantly reduced, the damping characteristics are rapidly reduced. For example, in summer and winter, the temperature at which the "viscous material" is exposed varies greatly, so that the damping performance also varies greatly. Therefore, the place where the viscous vibration damping device is installed on the structure is not suitable around the outer wall where the temperature changes drastically, and is limited to a place near the living space where the temperature changes little.
The “viscous material” generally has a small material strength, so that the device itself becomes large. Inevitably, there is a problem that the effective installation space of the structure is further limited.

【0011】(V) なお、現状の制振技術は、地震を対
象とした履歴系の制振装置と、風を対象にした粘性系の
制振装置とを目的別に使い分けるほかない。一種類の制
振装置で実質的に地震にも風にも兼用でき、十分大きな
制振効果を発揮できるものは存在しない。それは以下の
理由による。例えば極低降伏点鋼を用いた制振装置を、
地震外力に対して塑性化するように設計した場合には、
履歴型エネルギ吸収材料の変形性能を安定に確保する目
的を優先する結果として、居住性の向上を目的とした風
荷重のような極小振幅領域では、極低降伏点鋼を弾性領
域のまま使うこととなり、エネルギ吸収能力を殆ど発揮
できない。逆に、例えば極低降伏点鋼を用いた制振装置
を、居住性を対象とし風に対して塑性化するように設計
した場合には、より大きな振幅の地震を経験して塑性化
すると、先に述べたように履歴型のエネルギ吸収材料の
変形性能の限界がある問題に加え、機能面では、以後、
加工硬化により強度が上昇するため、もはや風外力に対
しては弾性挙動しか示さなくなり、有効なエネルギ吸収
能力を発揮できない、等々の問題が生じてくる。そのた
め、必ずエネルギ吸収部材の交換を余儀なくされる問題
がある。つまり、極低降伏点鋼等を用いた履歴系の制振
装置は、建物の居住性の向上を目的とした風外力、或い
は建物の地震応答を低減することを目的とした地震外力
の両方の機能を兼備させることは不可能である。
(V) It should be noted that, in the current vibration suppression technology, a history-based vibration suppression device for an earthquake and a viscous vibration suppression device for a wind must be selectively used for different purposes. There is no single type of vibration control device that can be used substantially for both earthquake and wind, and can exhibit a sufficiently large vibration control effect. It is for the following reasons. For example, a vibration suppression device using extremely low yield point steel,
When designed to plasticize against an external earthquake force,
As a result of giving priority to the purpose of ensuring the deformation performance of the hysteretic energy absorbing material, in extremely small amplitude regions such as wind load for the purpose of improving comfort, use ultra low yield point steel as it is in the elastic region. Therefore, the energy absorbing ability can hardly be exhibited. Conversely, for example, when a vibration damping device using extremely low yield point steel is designed to plasticize against wind for the purpose of habitability, when plasticizing after experiencing an earthquake with a larger amplitude, As described above, in addition to the problem that the deformation performance of the hysteretic energy absorbing material is limited, in terms of function,
Since the strength is increased by the work hardening, only the elastic behavior is exhibited against the external wind force, and problems such as an inability to exhibit an effective energy absorbing ability are caused. Therefore, there is a problem that the energy absorbing member must be replaced. In other words, hysteretic vibration damping devices using ultra-low yield point steel etc. provide both wind external force for the purpose of improving the livability of the building and seismic external force for the purpose of reducing the seismic response of the building. It is impossible to combine functions.

【0012】一方、「粘性系材料」を用いた制振装置の
場合は、材料強度がひずみ速度依存性を有しており、変
形性能も履歴系材料に比べて良好であることから、居住
性の向上を目的とした風外力に対しても、大地震時の外
力に対しても、エネルギ吸収性能を発揮できるが、次の
ような欠点を有している。大地震の際の大振幅領域で
は、エネルギ吸収の際の発熱により耐力が急激に低下す
るため、制振性能が不安定である。また、極低降伏点鋼
に比べ応力レベルが低いことに加え、上記のように耐力
低下の問題から、地震を対象にすると制振装置の必要個
数が非常に多くなり、制振装置の設置スペースの確保が
非常に難しくなる。つまり、粘性系の制振装置でも、建
物の居住性の向上を目的とした風外力、及び建物の地震
応答を低減することを目的とした地震外力の両方の制振
機能を兼備させることは至難である。その他、従来の軸
力型制振装置は、所謂摩擦型であり、勿論、地震・風に
兼用することは至難であった。
On the other hand, in the case of a vibration damping device using a “viscous material”, since the material strength has a strain rate dependency and the deformation performance is better than that of the hysteresis material, the livability is low. Although it can exhibit energy absorption performance against both wind external force for the purpose of improvement and external force during a large earthquake, it has the following disadvantages. In a large-amplitude region at the time of a large earthquake, heat resistance at the time of energy absorption causes a sudden decrease in proof strength, and vibration control performance is unstable. In addition to the low stress level compared with the extremely low yield point steel, the required number of vibration damping devices becomes extremely large when targeting earthquakes due to the problem of reduced proof stress as described above. Is very difficult to secure. In other words, it is extremely difficult for a viscous vibration control device to have both a wind external force for improving the livability of the building and an earthquake external force for reducing the seismic response of the building. It is. In addition, the conventional axial force type vibration damping device is a so-called friction type, and it is, of course, very difficult to use the same for both earthquake and wind.

【0013】(VI)したがって、本発明の目的は、上述
した「超塑性材料」を制振装置のエネルギ吸収部材に使
用する際の課題を全て克服した軸力型制振装置を提供す
ることである。本発明の次の目的は、変形性能に優れ、
塑性化による加工硬化を殆ど起こさず、しかも高ひずみ
速度感受性を有する金属系振動吸収材料をエネルギ吸収
部材として用い、その材料特性を最大限に生かすべく工
夫した軸力型の制振装置であって、建築構造物における
風外力および地震力による2種類の振動に対して制振性
能が効果的かつ安定に働き、ひずみ履歴を受けてもエネ
ルギ吸収部材の交換が不要である、多目的又は多機能の
制振装置を提供することである。
(VI) Therefore, an object of the present invention is to provide an axial force type vibration damping device which overcomes all the problems when using the above-mentioned "superplastic material" for an energy absorbing member of the vibration damping device. is there. The next object of the present invention is excellent in deformability,
An axial force type vibration damping device that hardly causes work hardening due to plasticization and uses a metal-based vibration absorbing material that has high strain rate sensitivity as an energy absorbing member, and is devised to maximize the material characteristics. A multi-purpose or multi-functional, vibration-damping performance that works effectively and stably against two types of vibrations caused by wind force and seismic force in building structures, and does not require replacement of energy absorbing members even when subjected to strain history. It is to provide a vibration damping device.

【0014】本発明の更なる目的は、従来不可能であっ
た、風による微小な変形、および地震による大変形の両
面において制振機能が常に安定な、制振装置を提供する
ことである。
A further object of the present invention is to provide a vibration damping device which has a stable vibration damping function on both sides of minute deformation due to wind and large deformation due to earthquake, which was impossible in the past.

【0015】[0015]

【課題を解決するための手段】上述した従来技術の課題
を解決するための手段として、請求項1記載の発明に係
る地震・風に兼用できる軸力型制振装置は、エネルギ吸
収部材として、材料強度が高ひずみ速度感受性を有し、
エネルギを吸収過程における温度上昇に対して強度が安
定しており、塑性化による加工硬化を殆ど起さず、十分
大きい変形性能を有する金属系振動吸収材料を用い、こ
れを変形させることにより構造物の振動を軽減する軸力
型制振装置であって、平板状のエネルギ吸収部材は、中
央の細長い軸力負荷部の両端の角部に応力集中を防ぐR
加工を施し、前記角部より両外側の部分は荷重伝達用と
して幅と長さが十分大きい定着部に形成されており、前
記定着部の両面及び軸力負荷部の上下の端面が荷重伝達
フレーム及びスペーサーによって面外座屈及び面内座屈
を拘束されていること、前記可動伝達フレームは、軸変
形時に相互に変形を許容する凹型の隙間を仲介として二
分された雄型フレームと雌型フレーム及び前記雌型フレ
ームに付属する凹型プレートで構成されており、軸力に
よる変形に対応できることを特徴とする。
Means for Solving the Problems As means for solving the above-mentioned problems of the prior art, an axial force type vibration damping device which can be used for both earthquakes and winds according to the first aspect of the present invention comprises: Material strength has high strain rate sensitivity,
A metal-based vibration-absorbing material that has stable strength against temperature rise in the energy absorption process, hardly causes work hardening due to plasticization, and has a sufficiently large deformation performance. Axial vibration type vibration damping device for reducing vibration of a flat plate, wherein a flat energy absorbing member prevents stress concentration at corners at both ends of a central elongated axial load portion.
Processing is performed, and both outer portions of the corner portion are formed in a fixing portion having a sufficiently large width and length for load transmission, and both surfaces of the fixing portion and upper and lower end surfaces of the axial load portion are load transmitting frames. The movable transmission frame is divided into a male frame and a female frame divided by a concave gap allowing mutual deformation during axial deformation. And a concave plate attached to the female frame, which is capable of coping with deformation due to axial force.

【0016】請求項2記載の発明は、請求項1に記載し
た地震・風に兼用できる軸力型制振装置において、エネ
ルギ吸収部材は全体として平板状であり、中央の細長い
軸力負荷部と、その両外側の定着部とから成り、軸力負
荷部の両端の角部に応力集中を防ぐR加工が施されてい
ることを特徴とする。
According to a second aspect of the present invention, there is provided the axial force type vibration damping device according to the first aspect, wherein the energy absorbing member has a flat plate shape as a whole, and a central elongated axial force load portion. And a fixing portion on both outer sides thereof, and the corner portions at both ends of the axial force load portion are subjected to R processing to prevent stress concentration.

【0017】請求項3記載の発明は、請求項1に記載し
た地震・風に兼用できる軸力型制振装置において、荷重
伝達フレームを構成する雄型フレームは、エネルギ吸収
部材の一方の定着部および軸力負荷部と類似する形状の
平板部を有し、前記平板部の外面中央部にリブを有し、
外端部に継手用フランジを設けていること、凹型プレー
トは、エネルギ吸収部材の他方の定着部と略同形、同大
の平板状であり、一端の中央部に前記雄型フレームの先
端に形成された凸部が進入できる凹部を有しているこ
と、雌型フレームは、エネルギ吸収部材の他方の定着部
および前記凹型プレートと略同形、同大の平板部を有
し、前記雄型フレームのリブが進入する切欠部、および
同リブの上に重なるように形成されたリブを有し、前記
平板部の外端部に継手用フランジが設けられていること
を特徴とする。
According to a third aspect of the present invention, in the axial force type vibration damping device according to the first aspect, the male frame constituting the load transmitting frame is one of the fixing portions of the energy absorbing member. And having a flat plate portion having a shape similar to the axial load portion, having a rib at the center of the outer surface of the flat plate portion,
The joint flange is provided at the outer end, and the concave plate is a flat plate having substantially the same shape and size as the other fixing portion of the energy absorbing member, and is formed at the center of one end at the end of the male frame. The female frame has a flat portion having substantially the same shape and the same size as the other fixing portion of the energy absorbing member and the concave plate, and the female frame has a concave portion in which the projected portion can enter. It has a notch into which the rib enters, and a rib formed so as to overlap with the rib, and a joint flange is provided at an outer end of the flat plate.

【0018】請求項4記載の発明は、請求項1に記載し
た地震・風に兼用できる軸力型制振装置において、エネ
ルギ吸収部材は、亜鉛・アルミニューム合金であること
を特徴とする。
According to a fourth aspect of the present invention, in the axial force type vibration damping device according to the first aspect, the energy absorbing member is made of a zinc-aluminum alloy.

【0019】[0019]

【発明の実施形態及び実施例】請求項1及び2記載の発
明に係る地震・風に兼用できる軸力型制振装置の実施形
態を図面に基いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an axial force type vibration damping device which can be used for both earthquakes and winds according to the first and second aspects of the present invention will be described with reference to the drawings.

【0020】図1は、梁1と柱2とに囲まれたラーメン
架構の面内に設置されたブレース3へ本発明の軸力型制
振装置4を組み込んだ適用例を示している。
FIG. 1 shows an application example in which the axial force type vibration damping device 4 of the present invention is incorporated in a brace 3 installed in the plane of a ramen frame surrounded by beams 1 and columns 2.

【0021】地震や風荷重によりブレース3に作用する
軸力(圧縮力・引張力)を利用して軸力型制振装置4に
よるエネルギ吸収が行われ、もって振動が減衰(吸収)
されることは従前の軸力型制振装置と変わりない。
Energy is absorbed by the axial force type vibration damping device 4 utilizing the axial force (compression force / tensile force) acting on the brace 3 due to the earthquake or wind load, and the vibration is attenuated (absorbed).
What is done is no different from the conventional axial force type vibration damping device.

【0022】図2と図3に、前記軸力型制振装置4の具
体的構成を示し、図4に分解図を示している。この制振
装置4は、エネルギ吸収部材6として、材料強度が高ひ
ずみ速度感受性を有し、エネルギを吸収過程における温
度上昇に対して強度が安定しており、塑性化による加工
硬化を殆ど起さず、十分大きい変形性能を有する金属系
振動吸収材料(以下、単にエネルギ吸収材料と云う。)
を用い、該エネルギ吸収材料6を軸力により変形させて
エネルギ吸収を行わせ構造物の振動を減衰させる構成で
ある。
FIGS. 2 and 3 show a specific structure of the axial force type vibration damping device 4, and FIG. 4 is an exploded view. The vibration damping device 4 has, as the energy absorbing member 6, a material strength having a high strain rate sensitivity, a stable strength against a temperature rise in an energy absorbing process, and almost no work hardening due to plasticization. Metal vibration absorbing material having sufficiently large deformation performance (hereinafter simply referred to as energy absorbing material).
In this configuration, the energy absorbing material 6 is deformed by an axial force to absorb energy and attenuate the vibration of the structure.

【0023】図4に分解図を示すように、平板状のエネ
ルギ吸収部材6は、上記のエネルギ吸収部材で製作した
もので、中央の細長い軸力負荷部bの両端の角部aに応
力集中を防ぐR加工を施し、前記角部aより両外側の部
分は荷重伝達用として幅および長さが十分大きい矩形状
の定着部c、dに形成されている。このエネルギ吸収部
材6は、前記定着部c、dの両面、及び前記軸力負荷部
bの上下の端面が、荷重伝達フレーム7及びスペーサー
14によって面外座屈及び面内座屈を拘束された構成で
軸力の作用を受ける。
As shown in an exploded view in FIG. 4, the energy absorbing member 6 in the form of a flat plate is made of the above-described energy absorbing member, and stress is concentrated on the corners a at both ends of the central elongated load portion b. The outer sides of the corners a are formed in rectangular fixing portions c and d having a sufficiently large width and length for transmitting a load. In this energy absorbing member 6, the outer surface buckling and the in-plane buckling of both surfaces of the fixing portions c and d and the upper and lower end surfaces of the axial load portion b are restrained by the load transmitting frame 7 and the spacer 14. The structure receives the action of the axial force.

【0024】前記荷重伝達フレーム7は、左右(軸方向
の前後)への軸変形時に相互に変形(軸方向変形)を許
容する構成に二分された雄型フレーム8と雌型フレーム
16、及び前記雌型フレーム16に付属する凹型プレー
ト15の組み合わせで構成されている。
The load transmitting frame 7 is divided into a male frame 8 and a female frame 16 which are bipartitely configured to allow mutual deformation (axial deformation) when the shaft is deformed left and right (back and forth in the axial direction). It is composed of a combination of a concave plate 15 attached to the female frame 16.

【0025】雄型フレーム8は、図4から明らかなよう
に、前記エネルギ吸収部材6の左方の定着部c及び軸力
負荷部bと類似する形状に形成された平板部9、10
と、前記平板部9、10の外面中央部に外向きに立てて
配置したリブ12、並びに前記平板部9の外端部に直角
に設けた継手用フランジ11とで構成されている。
As is apparent from FIG. 4, the male frame 8 has flat plate portions 9, 10 formed in a shape similar to the fixing portion c and the axial load portion b on the left side of the energy absorbing member 6.
And a rib 12 arranged outwardly at the center of the outer surface of the flat plate portions 9 and 10, and a joint flange 11 provided at a right angle to the outer end of the flat plate portion 9.

【0026】前記平板部9には、エネルギ吸収部材6の
定着部cに用意したボルト孔6aと対応する位置にボル
ト孔9aが同数(図示例では上側に2個,下側に2個の
合計4個、但しこの限りではない。)設けられている。
前記平板部10は、前記エネルギ吸収部材6の軸力負荷
部bの幅寸に,前記スペーサー14の幅寸だけ幅広に形
成され,スペーサ−14と接触する部分に、同スペーサ
ー14、14のボルト孔14aと対応する配置で同数の
ボルト孔10aが設けられている。
The flat plate portion 9 has the same number of bolt holes 9a at positions corresponding to the bolt holes 6a prepared in the fixing portion c of the energy absorbing member 6 (in the illustrated example, two bolt holes 9a at the upper side and two bolt holes at the lower side). Four, but not limited to this).
The flat plate portion 10 is formed to be wider by the width of the spacer 14 than the width of the axial load portion b of the energy absorbing member 6, and the bolts of the spacers 14 The same number of bolt holes 10a are provided in an arrangement corresponding to the holes 14a.

【0027】スペーサー14は、前記エネルギ吸収部材
6の軸力負荷部bの上下に形成された凹形部6cと略同
一形状で、板厚も略等しく形成されている。
The spacer 14 has substantially the same shape as the concave portions 6c formed above and below the axial load portion b of the energy absorbing member 6, and has substantially the same plate thickness.

【0028】凹型プレート15は、前記エネルギ吸収部
材6の右方の定着部dと略同形、同大の平板状をなし、
左端の中央部に、前記雄型フレーム8の平板部10の先
端に形成した凸部13が進入する、同凸部13と略同
形、同大の凹部15bが形成されている。
The concave plate 15 has a flat shape of substantially the same shape and size as the fixing portion d on the right side of the energy absorbing member 6.
A concave portion 15b having substantially the same shape and size as the convex portion 13 is formed in the center of the left end, into which the convex portion 13 formed at the tip of the flat plate portion 10 of the male frame 8 enters.

【0029】雌型フレーム16は、前記エネルギ吸収部
材6の右方の定着部d、したがって、前記凹型プレート
15と略同形、同大の平板部17と、前記雄型フレーム
8のリブ12が進入するように左端中央部に形成した切
欠部17b、及び雄型フレーム8のリブ12の上に乗っ
て重なるように鉤形に形成されたリブ19、並びに前記
平板部17の外端部に直角に設けた継手用フランジ18
とで構成されている。
The female frame 16 has a fixing portion d on the right side of the energy absorbing member 6 and therefore a flat plate portion 17 having substantially the same shape and size as the concave plate 15 and the rib 12 of the male frame 8 enter. A notch 17b formed at the center of the left end, a rib 19 formed in a hook shape so as to ride on the rib 12 of the male frame 8, and a right angle to the outer end of the flat plate portion 17. Fitting flange 18 provided
It is composed of

【0030】雌型フレーム16の平板部17及び前記凹
型プレート15には、前記エネルギ吸収部材6の右方の
定着部dに用意したボルト孔6bと対応する位置に、ボ
ルト孔15a及びボルト孔17aがそれぞれ同数設けら
れている。
The flat plate portion 17 and the concave plate 15 of the female frame 16 are provided with bolt holes 15a and bolt holes 17a at positions corresponding to the bolt holes 6b prepared in the right fixing portion d of the energy absorbing member 6. Are provided in the same number.

【0031】以上に説明した各構成要素は、いずれも必
要十分な強度と剛性を有する鋼構造品であり、図4のエ
ネルギ吸収部材6を間に挟むように、向う側にも同様に
用意して制振装置を構成する。但し、図4では便宜上そ
の図示を省略した。
Each of the components described above is a steel structure having necessary and sufficient strength and rigidity, and is similarly prepared on the opposite side so as to sandwich the energy absorbing member 6 of FIG. Construct a damping device. However, the illustration is omitted in FIG. 4 for convenience.

【0032】図2と図3に示した制振装置は、上記エネ
ルギ吸収部材6の軸力負荷部bの上下の端縁とぴったり
当接するように凹形部6cへスペーサー14を配置し、
雄型フレーム8の平板部9、10を前記エネルギ吸収部
材6の定着部c及び前記軸力負荷部bの平面へ当てがう
ように配置する。
In the vibration damping device shown in FIGS. 2 and 3, the spacer 14 is disposed on the concave portion 6c so as to be in contact with the upper and lower edges of the axial force load portion b of the energy absorbing member 6;
The flat portions 9 and 10 of the male frame 8 are arranged so as to be applied to the planes of the fixing portion c and the axial load portion b of the energy absorbing member 6.

【0033】また、前記凹型プレート15は、その凹部
15bへ、前記雄型フレーム8の平板部10の先端の凸
部13が進入し得る配置として前記エネルギ吸収部材6
の定着部dへ当てがう。さらに、前記凹型プレート15
の外側面へ、前記雌型フレーム16の平板部17が重な
るように当てがい、そのリブ19は前記雄型フレーム8
のリブ12の上に重なる位置に配置する。
The concave plate 15 is arranged so that the convex portion 13 at the tip of the flat plate portion 10 of the male frame 8 can enter the concave portion 15b.
To the fixing section d. Further, the concave plate 15
The flat portion 17 of the female frame 16 is applied so as to overlap the outer surface of the
Is arranged at a position overlapping with the rib 12.

【0034】こうして、エネルギ吸収部材6の両側に上
記の各構成要素を配置すると共に、各々のボルト孔9a
と6a、10aと14a、及び17aと15a及び6b
がそれぞれ同心となるように調整し、それぞれへボルト
9b、10b、17cを通し、反対側からナット9c、
10c、17dをねじ込み強く締め付けて軸力型制振装
置4が構成されている。
In this manner, the above-described components are arranged on both sides of the energy absorbing member 6 and the respective bolt holes 9a are formed.
And 6a, 10a and 14a, and 17a and 15a and 6b
Are adjusted to be concentric with each other, and bolts 9b, 10b, and 17c are passed through them, and nuts 9c,
The axial force type vibration damping device 4 is configured by screwing and strongly tightening 10c and 17d.

【0035】上記構成の軸力型制振装置4は、その両端
の継手用フランジ11及び18を、図1のブレース3の
継手用フランジ5、5とボルト接合して、図1に示すよ
うにブレース3へ組み込まれる。
The axial force type vibration damping device 4 having the above-described structure is joined to the joint flanges 11 and 18 at both ends by bolts with the joint flanges 5 and 5 of the brace 3 shown in FIG. Incorporated into brace 3.

【0036】上記したように軸力型制振装置4を設置す
ると、地震や風荷重はブレース3を通じてエネルギ吸収
部材6へ軸力(圧縮力・引張力)として作用するので、
エネルギ吸収能力を十分働かせることが可能となり、地
震・風に兼用できる制振機能を発揮する(請求項1記載
の発明)。
When the axial force type vibration damping device 4 is installed as described above, an earthquake or wind load acts as an axial force (compression force / tensile force) on the energy absorbing member 6 through the brace 3.
It is possible to make full use of the energy absorbing ability and exhibit a vibration damping function that can be used for both earthquake and wind (the invention according to claim 1).

【0037】この軸力型制振装置4に使用するエネルギ
吸収部材6は、上記したように材料強度が高ひずみ速度
感受性を有し、エネルギを吸収過程における温度上昇に
対して強度が安定しており、塑性化による加工硬化を殆
ど起さず、十分大きい変形性能を有する金属系振動吸収
材料(以下、これを材料Mと略す。)であり、具体的に
は既述した亜鉛・アルミニューム合金を適用することが
できる(請求項4記載の発明)。
As described above, the energy absorbing member 6 used in the axial force type vibration damping device 4 has a material strength having a high strain rate sensitivity, and the strength is stable with respect to a temperature rise in the energy absorbing process. It is a metal-based vibration-absorbing material that hardly causes work hardening due to plasticization and has sufficiently large deformation performance (hereinafter, abbreviated as material M). Specifically, the zinc-aluminum alloy described above is used. Can be applied (the invention according to claim 4).

【0038】ところで、上記の軸力型制振装置4のエネ
ルギ吸収部材6に使用した上記「材料M」は、強度の高
ひずみ速度依存性を有する金属材料であり、ひずみ劣化
せず、変形性能に優れ、しかもエネルギ吸収過程におけ
る発熱によって強度の低下が少ないエネルギ吸収材料で
あるから、従来は実質的に不可能であった「風による微
少な変形」、および「地震による大変形」の両方に優れ
たエネルギ吸収能力を発揮する。しかも履歴後にエネル
ギ吸収部材6の交換が不要な制振装置を提供することが
できる。
The "material M" used for the energy absorbing member 6 of the axial force type vibration damping device 4 is a metal material having a high strain rate dependency of strength, and does not deteriorate in strain and has a high deformation performance. Because it is an energy-absorbing material that excels in heat and has a small decrease in strength due to heat generation during the energy absorption process, it is practically impossible to achieve both “small deformation due to wind” and “large deformation due to earthquake”. Demonstrate excellent energy absorption ability. Moreover, it is possible to provide a vibration damping device that does not require replacement of the energy absorbing member 6 after the history.

【0039】何故なら、上記の「材料M」によるエネル
ギ吸収部材6を組み込んだ制振装置は、風等の低ひずみ
速度・小変形領域では、エネルギ吸収部材6が早期に降
伏して塑性化し、エネルギ吸収効果を発揮する。一方、
地震等の高ひずみ速度・大変形領域では、エネルギ吸収
部材6が持つ強度ひずみ速度感受性により強度が上昇す
るため、降伏および塑性化を遅らせることができ、極め
て大きなエネルギ吸収能力を発揮する。しかも従来の履
歴型制振装置のように、一度塑性化すると加工硬化を起
こすという問題も殆ど無い。従って、この制振装置は、
建築構造物へ入力する外力レベルに応じたエネルギ吸収
能力を発揮する。この概念を図5に示す。前記の「材料
M」であれば、エネルギ吸収部材6へ塑性ひずみを与え
る機構は、例えば圧縮−引張、剪断、ねじり或いは曲げ
変形など、どのような機構でもかまわない。また、制振
装置の構成も、軸力型、剪断パネル型、間柱タイプなど
のいずれでも良く特に制限されないことがわかる。
The reason is that the vibration damping device incorporating the energy absorbing member 6 made of the above-mentioned "material M" has an advantage that the energy absorbing member 6 yields early and becomes plastic in a low strain rate and small deformation region such as wind. Exhibits an energy absorbing effect. on the other hand,
In a high strain rate / large deformation region such as an earthquake, the strength increases due to the strength strain rate sensitivity of the energy absorbing member 6, so that yielding and plasticization can be delayed, and an extremely large energy absorbing ability is exhibited. In addition, unlike the conventional hysteresis type vibration damping device, there is almost no problem that, once plasticized, work hardening occurs. Therefore, this damping device
Demonstrates energy absorption capacity according to the external force level input to the building structure. This concept is illustrated in FIG. In the case of the “material M”, any mechanism such as compression-tension, shear, torsion, or bending deformation may be used as a mechanism for applying a plastic strain to the energy absorbing member 6. Further, it can be seen that the configuration of the vibration damping device may be any of an axial force type, a shear panel type, a stud type and the like, and is not particularly limited.

【0040】上記の「材料強度が高ひずみ速度感受性を
有する」とは、具体的にはひずみ速度感受性指数mが
0.3以上の材料が望ましい。ここで、m=(Lnσ
Lnσ)/(Lnv /Lnv)の形で与えられる。σ
は、ひずみ速度vのときの材料Mの流動応力であり、
σは、ひずみ速度vのときの「材料M」の流動応力
であり、v>vの関係である。その様子を図6に示
す。
The above-mentioned "material strength has high strain rate sensitivity" is specifically desirably a material having a strain rate sensitivity index m of 0.3 or more. Here, m = (Lnσ 2 /
Lnσ 1 ) / (Lnv 1 / Lnv 2 ). σ 1
Is a flow stress of the material M at the time of the strain rate v 1,
σ 2 is the flow stress of “Material M” when the strain rate is v 2 , and has a relationship of v 2 > v 1 . FIG. 6 shows this state.

【0041】上記した「エネルギ吸収過程における温度
上昇に対して強度が安定している材料」とは、同一の変
形速度において比較した場合に、100℃付近における
材料強度の低下の割合が、室温付近(20℃程度)にお
ける材料強度に比べ、30%以内にあることを云う。
The above-mentioned “material whose strength is stable against a temperature rise in the energy absorption process” means that, when compared at the same deformation rate, the rate of decrease in the material strength at around 100 ° C. is near room temperature. (Approximately 20 ° C.) means that the strength is within 30% of the material strength.

【0042】「塑性化による加工硬化をほとんど起こさ
ない材料」とは、塑性ひずみ履歴による材料強度の上昇
が殆ど無いという意味である。
"Material that hardly causes work hardening due to plasticization" means that there is almost no increase in material strength due to plastic strain history.

【0043】さらに、「十分な変形性能を有する材料」
とは、室温での静的引張試験における延性が100%以
上の材料である。このように巨大な延性を示す材料であ
れば、エネルギ吸収部材6として大変形を許容できる。
Further, "material having sufficient deformation performance"
Is a material having a ductility of 100% or more in a static tensile test at room temperature. If the material has such a large ductility, large deformation can be allowed as the energy absorbing member 6.

【0044】以上の条件をすべて満たすエネルギ吸収部
材6としては、具体的には室温高速超塑性材料であるZn
−Al合金(特開平11−222643号)などを例示的
に挙げることができる。
The energy absorbing member 6 that satisfies all of the above conditions is specifically Zn, which is a room-temperature high-speed superplastic material.
-Al alloy (JP-A-11-222643) can be exemplified.

【0045】上記のエネルギ吸収特性を有する「材料
M」の欠点としては、第1に、溶接ができないため、溶
接による力の伝達機構が使えないことである。Zn−Al合
金などの室温高速超塑性合金は、微細結晶粒組織をして
いることが特長で、溶接入熱により金属組織の安定性が
失われ、ひいてはエネルギ吸収能力が発揮できなくなる
からである。また、第2に、加工硬化しない材料である
ため、逆に座屈、応力集中には弱く、このため特別な配
慮が必要なことである。加工硬化しない材料であるた
め、安定した耐振性能が長期にわたり持続する一方、逆
にそのことで、座屈変形、応力集中が極端に生じると局
部的に変形が集中してしまい、さすがの超塑性材料とい
えども破壊してしまうからである。
The first drawback of the "material M" having the above energy absorption characteristic is that, since welding cannot be performed, a force transmission mechanism by welding cannot be used. Room-temperature high-speed superplastic alloys such as Zn-Al alloys are characterized by having a fine crystal grain structure, and the stability of the metal structure is lost due to welding heat input, and as a result, energy absorption capacity cannot be exhibited. . Second, since the material is not work-hardened, it is weak against buckling and stress concentration, and special consideration is required. Because it is a material that does not work harden, stable vibration resistance performance lasts for a long time, but on the contrary, if buckling deformation or stress concentration occurs extremely, local deformation concentrates, which is truly superplasticity This is because even materials are destroyed.

【0046】本発明は、上記第1、第2の欠点を克服し
てなされたものである。特には、次の改善点が重要であ
る。 1)荷重伝達フレーム7からエネルギ吸収部材6への力
の伝達には、溶接以外の荷重伝達機構を用いた。 2)応力集中を回避する形状に加工されたエネルギ吸収
部材6に軸変形を生じさせる。 3)軸変形中に生じるエネルギ吸収部材6の座屈を最大
限度に拘束し補剛できる機構・機能を備えた多目的でか
つ高性能の軸力型制振装置である。
The present invention has been achieved by overcoming the first and second drawbacks. In particular, the following improvements are important. 1) A force transmission mechanism other than welding was used to transmit the force from the load transmission frame 7 to the energy absorbing member 6. 2) The energy absorbing member 6 processed into a shape that avoids stress concentration causes axial deformation. 3) A versatile and high-performance axial force type vibration damping device having a mechanism and function capable of maximally restraining and stiffening the buckling of the energy absorbing member 6 generated during axial deformation.

【0047】その他、エネルギ吸収部材6として使用し
た上記の金属系振動吸収材料、即ち、「材料M」は無害
な金属であり、鉛に比べて比重が約半分であるから、軽
量で安全な、環境に優しい制振装置を提供できる。
In addition, the above-mentioned metal-based vibration absorbing material used as the energy absorbing member 6, ie, “Material M” is a harmless metal and has a specific gravity that is about half that of lead, so that it is lightweight and safe. An environmentally friendly vibration damping device can be provided.

【0048】また、鉛に比較して熱伝導性が良いので、
歪みによる材料の温度上昇が少ない利点が有る。とりわ
け上述したZn-Al合金の場合は、鉛に比して格段に室温
強度、塑性変形能力に優れているので、その性質が制振
装置に最適に活用される。
Also, since the thermal conductivity is better than that of lead,
There is an advantage that the temperature rise of the material due to the strain is small. In particular, the above-mentioned Zn-Al alloy is much more excellent in room temperature strength and plastic deformation ability than lead, so that its properties are optimally used for a vibration damping device.

【0049】[0049]

【実施例の説明】次に、上記構成の制振装置を使用して
行った制振性能試験の実施例を説明する。使用したエネ
ルギ吸収部材6は上記のZn-Al合金であり、その大きさ
は、幅寸×厚さ×長さ45×15×200mmである。
試験の条件は、建物固有周期4s(一定)、制振装置は
階高4.0mの架構に角度45°で設けられたブレース
(L=5650mm)の間に組み込む。前記合金の使用
区間は、600mmである。
Next, an embodiment of a vibration damping performance test performed using the vibration damping device having the above-described configuration will be described. The energy absorbing member 6 used is the above-mentioned Zn-Al alloy, and its size is width × thickness × length 45 × 15 × 200 mm.
The test conditions are as follows: The building has a natural period of 4 s (constant), and the vibration damping device is installed between braces (L = 5650 mm) provided at an angle of 45 ° on a frame with a height of 4.0 m. The working section of the alloy is 600 mm.

【0050】また、レベル2地震時の層間変形角が1/
100、その時ブレースに生じる最大歪みが±3.0%
とする。
The interlayer deformation angle during a level 2 earthquake is 1 /
100, then ± 3.0% of maximum distortion in brace
And

【0051】正弦波加振により得られた荷重−変形履歴
特性を図7に示す。図8は試験結果を表にしたものであ
る。
FIG. 7 shows load-deformation history characteristics obtained by sine wave excitation. FIG. 8 is a table showing the test results.

【0052】加振周波数は0.25Hzとし、振幅を変
化させた。これにより、本制振装置は、小振幅から大振
幅まで、振幅に応じてエネルギ吸収能力が変化し、風荷
重を想定した小振幅域では、低応力で早期に塑性してエ
ネルギ吸収能力を発揮し、地震を想定した大振幅域で
は、高応力となり、外力に応じた高いエネルギ吸収能力
を示し得る理想的な性状を示している。また、ブレース
に作用する軸歪速度が低下するため早期に塑性化し、層
間変形角1/3000時でもエネルギ吸収能力があるこ
とを確認できた。大振幅経験後の小振幅領域でも、履歴
の再現性は良好であることから、加工硬化が殆どなく多
目的に使用でき、しかも交換不要で長期間の使用が可能
な制振装置であることがわかる。
The excitation frequency was set to 0.25 Hz, and the amplitude was changed. As a result, the energy absorption capacity of the vibration damping device changes from small amplitude to large amplitude according to the amplitude, and in the small amplitude range assuming wind load, plasticity is early with low stress and the energy absorption ability is exhibited. However, in a large-amplitude region assuming an earthquake, the stress becomes high, indicating an ideal property capable of exhibiting a high energy absorption capacity according to an external force. In addition, the axial strain rate acting on the braces was reduced, so that the plasticity was quickly formed, and it was confirmed that there was an energy absorbing ability even when the interlayer deformation angle was 1/3000. Even in the small-amplitude region after the large-amplitude experience, the reproducibility of the history is good, indicating that it is a vibration damping device that can be used for multiple purposes with almost no work hardening and that can be used for a long time without replacement. .

【0053】更に図9は、極低降伏点鋼による制振装置
(白抜き丸)と、本発明の上記材料Mをエネルギ吸収部
材6に使用した制振装置(黒丸)それぞれの制振効果の
比較を示している。本発明の制振装置は、地震・風の双
方に良い制振効果を発揮することが明らかである。
FIG. 9 is a graph showing the vibration damping effect of a very low yield point steel (open circles) and the vibration damping device using the material M of the present invention for the energy absorbing member 6 (black circles). A comparison is shown. It is clear that the vibration damping device of the present invention exerts a good vibration damping effect on both earthquake and wind.

【0054】以上に実施形態を図面に基づいて説明した
が、本発明は、図示例の限りではなく、その技術的思想
を逸脱しない範囲において、当業者が通常に行う設計変
更、応用のバリエーションの範囲を含むことを念のため
に言及する。
Although the embodiments have been described with reference to the drawings, the present invention is not limited to the illustrated examples, but may be applied to design changes and application variations that are normally performed by those skilled in the art without departing from the technical idea thereof. Mention is made to include ranges.

【0055】[0055]

【本発明が奏する効果】請求項1〜4に記載した発明に
係る地震・風に兼用できる軸力型制振装置は、小振幅か
ら大振幅まで、振幅に応じてエネルギ吸収能力が変化
し、風荷重を想定した小振幅領域では、低応力で早期に
塑性化してエネルギ吸収能力を発揮する。また、地震を
想定した大振幅では高応力となり、外力に応じて高いエ
ネルギ吸収能力を発揮するなど理想的な性能を示す。大
振幅経験後の小振幅領域でも履歴の再現性は良好である
から、多目的で、しかもエネルギ吸収部材の交換が不要
であり、長期間の安定した使用が可能な軸力型制振装置
を提供できる。
[Effects of the present invention] The axial force type vibration damping device which can be used for both earthquakes and winds according to the inventions according to the first to fourth aspects has an energy absorbing capability varying from small amplitude to large amplitude according to the amplitude, In a small-amplitude region where a wind load is assumed, plasticization is early performed with low stress and energy-absorbing ability is exhibited. In addition, a large amplitude assuming an earthquake results in a high stress, exhibiting an ideal performance such as exhibiting a high energy absorbing ability according to an external force. The reproducibility of the history is good even in the small-amplitude area after the large-amplitude experience. it can.

【0056】要するに、地震時においても優れた変形性
能を発揮し、履歴型の制振装置とほぼ同等な応答軽減効
果を有する。また、風力時には、速度感受性のない制振
装置に比べて、応答が小さくなっている。これはひずみ
速度の減少によって示す制振装置の耐力が小さくなり、
早期に塑性化しているため、エネルギ吸収効果が有効に
発揮されるのである。
In short, it exhibits excellent deformation performance even during an earthquake, and has a response reduction effect almost equivalent to that of the hysteresis type vibration damping device. Also, in the case of wind power, the response is smaller than that of a vibration damping device having no speed sensitivity. This means that the resistance of the damping device, which is indicated by the decrease in strain rate, decreases.
Because it is plasticized at an early stage, the energy absorbing effect is effectively exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る制振装置の適用例を示した立面図
である。
FIG. 1 is an elevation view showing an application example of a vibration damping device according to the present invention.

【図2】本発明に係る制振装置の実施形態を示した正面
図である。
FIG. 2 is a front view showing an embodiment of the vibration damping device according to the present invention.

【図3】図2の平面図である。FIG. 3 is a plan view of FIG. 2;

【図4】図2の分解斜視図である。FIG. 4 is an exploded perspective view of FIG. 2;

【図5】材料Mが入力される外力レベルに応じたエネル
ギ吸収能力を発揮する様子を示した説明図である。
FIG. 5 is an explanatory diagram showing a state in which a material M exhibits an energy absorbing ability according to an input external force level.

【図6】材料Mの流動応力の状態を示した説明図であ
る。
FIG. 6 is an explanatory diagram showing a state of a flow stress of a material M.

【図7】地震レベルの層間変形角と、そのときに生じる
最大軸歪(%)を表したグラフである。
FIG. 7 is a graph showing the story deformation angle at the earthquake level and the maximum axial strain (%) generated at that time.

【図8】地震レベルの層間変形角と、そのときに生じる
最大軸歪(%)を示す表である。
FIG. 8 is a table showing an interlayer deformation angle at an earthquake level and a maximum axial strain (%) generated at that time.

【図9】(a)〜(h)は本発明の制振装置の制振効果
を示す性能図である。
9 (a) to 9 (h) are performance diagrams showing a vibration damping effect of the vibration damping device of the present invention.

【符号の説明】[Explanation of symbols]

6 エネルギ吸収部材(超塑性材料) 4 軸力型制振装置 b 軸力負荷部 a R加工 c、d 定着部 7 荷重伝達フレーム 14 スペーサー 8 雄型フレーム 9 雌型フレーム 15 凹型プレート Reference Signs List 6 Energy absorbing member (superplastic material) 4 Axial force type vibration damping device b Axial force load part a R processing c, d Fixing part 7 Load transfer frame 14 Spacer 8 Male frame 9 Female frame 15 Concave plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠山 幸太郎 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 相沢 覚 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 槙井 浩一 兵庫県神戸市西区高塚台一丁目5番5号 株式会社神戸製鋼所材料研究所内 (72)発明者 杉崎 康昭 兵庫県神戸市西区高塚台一丁目5番5号 株式会社神戸製鋼所材料研究所内 Fターム(参考) 2E002 FA02 MA12 MA13 3J048 AA04 AB01 BC09 DA06 EA38 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kotaro Toyama 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside the Technical Research Institute, Takenaka Corporation (72) Inventor Satoru Aizawa 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside Takenaka Corporation Technical Research Institute Co., Ltd. (72) Inventor Koichi Makii 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Steel, Ltd.Material Research Laboratory Co., Ltd. 1-5-5 Takatsukadai F-term in Kobe Steel, Ltd. Materials Research Laboratory Co., Ltd. (Reference) 2E002 FA02 MA12 MA13 3J048 AA04 AB01 BC09 DA06 EA38

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】エネルギ吸収部材として、材料強度が高ひ
ずみ速度感受性を有し、エネルギを吸収過程における温
度上昇に対して強度が安定しており、塑性化による加工
硬化を殆ど起さず、十分大きい変形性能を有する金属系
振動吸収材料を用い、これを変形させることにより構造
物の振動を軽減する軸力型制振装置であって、 平板状のエネルギ吸収部材は、中央の細長い軸力負荷部
の両端の角部に応力集中を防ぐR加工を施し、前記角部
より両外側の部分は荷重伝達用として幅と長さが十分大
きい定着部に形成されており、前記定着部の両面及び軸
力負荷部の上下の端面が荷重伝達フレーム及びスペーサ
ーによって面外座屈及び面内座屈を拘束されているこ
と、 前記可動伝達フレームは、軸変形時に相互に変形を許容
する凹型の隙間を仲介として二分された雄型フレームと
雌型フレーム及び前記雌型フレームに付属する凹型プレ
ートで構成されており、軸力による変形に対応できるこ
とを特徴とする、地震・風に兼用できる軸力型制振装
置。
As an energy absorbing member, the material strength has a high strain rate sensitivity, the strength is stable against a temperature rise in an energy absorbing process, and hardly causes work hardening due to plasticization. An axial-force-type vibration damping device that uses a metal-based vibration-absorbing material having large deformation performance and reduces the vibration of a structure by deforming the metal-based vibration-absorbing material. The corners at both ends of the portion are subjected to R processing to prevent stress concentration, and portions outside both sides of the corners are formed in a fixing portion having a width and length sufficiently large for load transmission, and both sides of the fixing portion and The upper and lower end faces of the axial force load portion are restrained from buckling out of the plane and buckling in the plane by the load transmission frame and the spacer, and the movable transmission frame has a concave gap that allows mutual deformation during axial deformation. Mediation It is composed of a male frame, a female frame, and a concave plate attached to the female frame, and is capable of coping with deformation due to axial force. Shaking device.
【請求項2】エネルギ吸収部材は全体として平板状であ
り、中央の細長い軸力負荷部と、その両外側の定着部と
から成り、軸力負荷部の両端の角部に応力集中を防ぐR
加工が施されていることを特徴とする、請求項1に記載
した地震・風に兼用できる軸力型制振装置。
2. The energy absorbing member has a flat plate shape as a whole and includes an elongated axial load portion in the center and fixing portions on both outer sides of the central load portion, and prevents energy concentration at corners at both ends of the axial load portion.
The axial force type vibration damping device which can be used for both earthquakes and winds according to claim 1, characterized in that the vibration damping device is processed.
【請求項3】荷重伝達フレームを構成する雄型フレーム
は、エネルギ吸収部材の一方の定着部および軸力負荷部
と類似する形状の平板部を有し、前記平板部の外面中央
部にリブを有し、外端部に継手用フランジを設けている
こと、 凹型プレートは、エネルギ吸収部材の他方の定着部と略
同形、同大の平板状であり、一端の中央部に前記雄型フ
レームの先端に形成された凸部が進入できる凹部を有し
ていること、 雌型フレームは、エネルギ吸収部材の他方の定着部およ
び前記凹型プレートと略同形、同大の平板部を有し、前
記雄型フレームのリブが進入する切欠部、および同リブ
の上に重なるように形成されたリブを有し、前記平板部
の外端部に継手用フランジが設けられていることを特徴
とする、請求項1に記載した地震・風に兼用できる軸力
型制振装置。
3. A male frame constituting a load transmitting frame has a flat plate portion having a shape similar to one of the fixing portion and the axial load portion of the energy absorbing member, and a rib is provided at a central portion of an outer surface of the flat plate portion. The joint plate is provided at the outer end, and the concave plate is a flat plate having substantially the same shape and the same size as the other fixing portion of the energy absorbing member. The female frame has a concave portion into which the convex portion formed at the tip can enter, and the female frame has a flat portion having substantially the same shape and size as the other fixing portion of the energy absorbing member and the concave plate, and A notch portion into which the rib of the mold frame enters, and a rib formed so as to overlap with the rib, wherein a flange for joint is provided at an outer end of the flat plate portion. Can be used for the earthquake and wind described in Item 1 Power-type vibration control device.
【請求項4】エネルギ吸収部材は、亜鉛・アルミニュー
ム合金であることを特徴とする、請求項1に記載した地
震・風に兼用できる軸力型制振装置。
4. The axial force type vibration damping device according to claim 1, wherein the energy absorbing member is a zinc-aluminum alloy.
JP2001037213A 2001-02-14 2001-02-14 Axial-type vibration control device that can be used for both earthquake and wind Expired - Fee Related JP4427197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037213A JP4427197B2 (en) 2001-02-14 2001-02-14 Axial-type vibration control device that can be used for both earthquake and wind

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037213A JP4427197B2 (en) 2001-02-14 2001-02-14 Axial-type vibration control device that can be used for both earthquake and wind

Publications (2)

Publication Number Publication Date
JP2002242988A true JP2002242988A (en) 2002-08-28
JP4427197B2 JP4427197B2 (en) 2010-03-03

Family

ID=18900377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037213A Expired - Fee Related JP4427197B2 (en) 2001-02-14 2001-02-14 Axial-type vibration control device that can be used for both earthquake and wind

Country Status (1)

Country Link
JP (1) JP4427197B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007999A1 (en) * 2003-07-22 2005-01-27 Takenaka Corporation Aseismic damper for wooden house formed of superplastic alloy
JP2006249790A (en) * 2005-03-11 2006-09-21 Sus Corp Shear block damper
JP2016186193A (en) * 2015-03-27 2016-10-27 旭化成ホームズ株式会社 Construction method for exterior wall structure and exterior wall structure
CN106481135A (en) * 2016-11-15 2017-03-08 东南大学 A kind of end has medial recess type and induces the flexing induction of unit to support
CN112343197A (en) * 2020-10-20 2021-02-09 汕头大学 Staged energy-consumption buckling-restrained brace system and process based on paper folding structure
CN112554363A (en) * 2021-01-07 2021-03-26 西安建筑科技大学 Steel pipe buckling-restrained energy dissipation brace
JP2022120562A (en) * 2021-02-05 2022-08-18 国立大学法人広島大学 Structure and architectural structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007999A1 (en) * 2003-07-22 2005-01-27 Takenaka Corporation Aseismic damper for wooden house formed of superplastic alloy
CN100422490C (en) * 2003-07-22 2008-10-01 株式会社竹中工务店 Aseismic damper for wooden house formed of superplastic alloy
JP2006249790A (en) * 2005-03-11 2006-09-21 Sus Corp Shear block damper
JP2016186193A (en) * 2015-03-27 2016-10-27 旭化成ホームズ株式会社 Construction method for exterior wall structure and exterior wall structure
CN106481135A (en) * 2016-11-15 2017-03-08 东南大学 A kind of end has medial recess type and induces the flexing induction of unit to support
CN106481135B (en) * 2016-11-15 2019-04-12 东南大学 A kind of end has the buckling induction support of depression in centre type induction unit
CN112343197A (en) * 2020-10-20 2021-02-09 汕头大学 Staged energy-consumption buckling-restrained brace system and process based on paper folding structure
CN112554363A (en) * 2021-01-07 2021-03-26 西安建筑科技大学 Steel pipe buckling-restrained energy dissipation brace
CN112554363B (en) * 2021-01-07 2022-04-22 西安建筑科技大学 Steel pipe buckling-restrained energy dissipation brace
JP2022120562A (en) * 2021-02-05 2022-08-18 国立大学法人広島大学 Structure and architectural structure
JP7164129B2 (en) 2021-02-05 2022-11-01 国立大学法人広島大学 Design methods for structures and buildings

Also Published As

Publication number Publication date
JP4427197B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
TWI684696B (en) Connection device for energy dissipation component and shake reducing structure thereof
JP3844424B2 (en) Vibration suppression brace
JP2008088641A (en) Reinforcing member of building or structure
TWI328067B (en)
JP2002242988A (en) Axial force type vibration control device usable for earthquake and wind in common
CN109025451B (en) Double-torsion anti-destabilization method
JP2013007236A (en) Vibration control damper for wooden building
JP2002357013A (en) Composite vibration-control brace
JP2008008342A (en) Vibration control device
JP5203275B2 (en) Damping structure
JP4087026B2 (en) Superplastic metal damper
JP5714391B2 (en) Damping load-bearing wall panel
JP2002309670A (en) Composite damping brace
JP2003028235A (en) Axial force type vibration control device usable in both earthquake and wind
JP2002250149A (en) Vibration control device usable for earthquake and wind in common
JP2004285599A (en) Vibration control structure of structure
JP4208459B2 (en) Damping wall
JPH11117569A (en) Steel-made vibration control damper
JP4956340B2 (en) Building or building reinforcement
JP2000120778A (en) Damper device
JP2005314917A (en) Vibration control stud
JP3100130B2 (en) Damping brace
JP2010203152A (en) Vibration control panel
JP2001115599A (en) Steel structural member and frame member
JP6915601B2 (en) Viscoelastic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4427197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees