JP2002241979A - Solid polymer type water electrolytic cell - Google Patents

Solid polymer type water electrolytic cell

Info

Publication number
JP2002241979A
JP2002241979A JP2001041162A JP2001041162A JP2002241979A JP 2002241979 A JP2002241979 A JP 2002241979A JP 2001041162 A JP2001041162 A JP 2001041162A JP 2001041162 A JP2001041162 A JP 2001041162A JP 2002241979 A JP2002241979 A JP 2002241979A
Authority
JP
Japan
Prior art keywords
cathode
feeder
anode
electrode assembly
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001041162A
Other languages
Japanese (ja)
Other versions
JP3991147B2 (en
Inventor
Masayoshi Kondo
雅芳 近藤
Chikashi Inasumi
近 稲住
Hiroshi Tatsumi
浩史 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2001041162A priority Critical patent/JP3991147B2/en
Publication of JP2002241979A publication Critical patent/JP2002241979A/en
Application granted granted Critical
Publication of JP3991147B2 publication Critical patent/JP3991147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To elongate the service life of an electrode joint body membrane. SOLUTION: The left and right edge parts 31a of an anode feeding body 31 is contacted with the inner circumferential edge part 221a of the fitting groove 21 of an O ring. A grove 50a is disposed along the inner circumference of an O ring 50. The left and right edge parts 54a of a cathode feeding body 52 are fitted into the groove 50a. The cathode feeding body 52 has a two layer structure of a feeding layer 53 and a reinforcing layer 54. The width of the groove 50a is allowed to correspond to the thickness of the reinforcing layer 54, and only the left and right edge parts 54a of the reinforcing layer 54 are fitted into the groove 50a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高分子電解質膜を用い
る水電解槽に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water electrolyzer using a polymer electrolyte membrane.

【0002】[0002]

【従来の技術】従来、高分子電解質膜を用いて水電解に
よって水素および酸素を製造する場合の水電解槽の構造
は、図6に示すように、陽極主電極(1)および陰極主電
極(2)と、これら主電極(1)(2)の間に直列に配された複
数の単位セルと、主電極(1)(2)の外側に配置された締め
付け用フランジ(6)とから主として構成されている。1
つのセルは、複極板(9)、多孔質の陽極給電体(7)、電極
接合体膜(3)、多孔質の陰極給電体(8)および隣の複極板
(9)の陰極側からなり、電極接合体膜(3)は、上下方向に
長いイオン交換膜(4)とその両面の中央部分に設けられ
た触媒電極層(5)とを有している。
2. Description of the Related Art Conventionally, when hydrogen and oxygen are produced by water electrolysis using a polymer electrolyte membrane, the structure of a water electrolysis tank is, as shown in FIG. 6, an anode main electrode (1) and a cathode main electrode (1). 2) and a plurality of unit cells arranged in series between the main electrodes (1) and (2), and a fastening flange (6) arranged outside the main electrodes (1) and (2). It is configured. 1
One cell consists of a bipolar plate (9), a porous anode feeder (7), an electrode assembly membrane (3), a porous cathode feeder (8) and an adjacent bipolar plate.
The electrode assembly membrane (3), comprising the cathode side of (9), has an ion exchange membrane (4) that is long in the vertical direction and a catalyst electrode layer (5) provided at the center of both surfaces thereof. .

【0003】この高分子型水電解槽において、電解槽下
部の給水ヘッダー(10)から供給された水は、陽極給電体
(7)を通って電極接合体膜(3)に達し、ここで付加された
電力により水の電気分解反応が起こり、各単位セル内で
は、触媒電極層(5)の表面で、陽極側では酸素、陰極側
では水素がそれぞれ発生する。発生した酸素は、陽極給
電体(7)を通り、複極板(9)の陽極側に設けられた垂直流
路内を未反応の水とともに上昇し、酸素ヘッダー(11)に
排出される。また、発生した水素は、陰極給電体(8)を
通り、複極板(9)の陰極側に設けられた垂直流路内を通
って電解槽上部に達し、水素ヘッダー(12)に排出され
る。
In this polymer type water electrolyzer, water supplied from a water supply header (10) below the electrolyzer is supplied to an anode power feeder.
(7) and reaches the electrode assembly membrane (3), where the added electric power causes an electrolysis reaction of water.In each unit cell, on the surface of the catalyst electrode layer (5), on the anode side, Oxygen and hydrogen are generated on the cathode side, respectively. The generated oxygen passes through the anode power supply (7), rises in the vertical channel provided on the anode side of the bipolar plate (9) together with unreacted water, and is discharged to the oxygen header (11). The generated hydrogen passes through the cathode feeder (8), passes through the vertical channel provided on the cathode side of the bipolar plate (9), reaches the upper part of the electrolytic cell, and is discharged to the hydrogen header (12). You.

【0004】陽極給電体(7)および陰極給電体(8)は、複
極板(9)に設けられた水、酸素および水素流路を兼ねた
電気通電部(9a)と同サイズであり、また、電極接合体膜
(3)のイオン交換膜(4)は複極板(9)と同サイズで、電極
接合体膜(3)の触媒電極層(5)は複極板(9)の電気通電部
(9a)と同サイズである。複極板(9)および電極接合体膜
(3)の下端部には、水通過孔(13)(16)がそれぞれ設けら
れ、同上端部には、酸素通過孔(14)(17)および水素通過
孔(15)(18)がそれぞれ設けられている。複極板(9)およ
び電極接合体膜(3)の互いに対応する各通過孔(13)(16)
(14)(17)(15)(18)同士は、セル内部の水素発生領域−酸
素発生領域をシールする短円筒状のシールゴム(19A)ま
たは領域内にて水、水素もしくは酸素を通す多孔質ガス
ケット(19B)によって連通されている。
The anode power feeder (7) and the cathode power feeder (8) are the same size as the electric power supply section (9a) provided on the bipolar plate (9) and serving also as water, oxygen and hydrogen flow paths, Also, the electrode assembly membrane
The ion exchange membrane (4) of (3) is the same size as the bipolar plate (9), and the catalytic electrode layer (5) of the electrode assembly membrane (3) is the electrically conducting part of the bipolar plate (9).
It is the same size as (9a). Multipolar plate (9) and electrode assembly membrane
At the lower end of (3), water passage holes (13) and (16) are provided, respectively, and at the upper end thereof, oxygen passage holes (14) (17) and hydrogen passage holes (15) (18) are provided, respectively. Is provided. Each corresponding through-hole (13) (16) of the bipolar plate (9) and the electrode assembly membrane (3)
(14) (17) (15) (18) is a short cylindrical sealing rubber (19A) that seals the hydrogen generation area-oxygen generation area inside the cell or a porous material that allows water, hydrogen or oxygen to pass in the area. It is communicated by a gasket (19B).

【0005】図7および図8に示すように、複極板(9)
の周縁部には、正面から見て略方形でかつ底面が電極接
合体膜(3)の陽極側の面に接するようになされたOリン
グ嵌込み溝(21)が設けられており、この溝(21)に嵌めら
れたOリング(20)によって複極板(9)の周縁部と電極接
合体膜(3)の周縁部との間すなわち電解槽内部と外部と
の間がシールされている。
As shown in FIGS. 7 and 8, a double pole plate (9)
An O-ring fitting groove (21), which is substantially rectangular when viewed from the front and whose bottom surface is in contact with the anode-side surface of the electrode assembly membrane (3), is provided at the peripheral edge of the groove. An O-ring (20) fitted to (21) seals between the periphery of the bipolar plate (9) and the periphery of the electrode assembly membrane (3), that is, between the inside and outside of the electrolytic cell. .

【0006】また、図9に示すように、通過孔(13)(14)
(15)(16)(17)(18)(図示は水通過孔(13)(16))のある複
極板(9)の上下縁部と電極接合体膜(3)の上下縁部との間
には、シールゴム(19A)または多孔質ガスケット(19B)が
介在されているだけで、陽極給電体(7)および陰極給電
体(8)の上下縁部は、この部分には位置していない。
Further, as shown in FIG. 9, the passage holes (13) (14)
(15) (16) (17) (18) (The upper and lower edges of the bipolar plate (9) having the water passage holes (13,16) in the illustration and the upper and lower edges of the electrode assembly film (3)) Only the sealing rubber (19A) or porous gasket (19B) is interposed between them, and the upper and lower edges of the anode power feeder (7) and the cathode power feeder (8) are located in this part. Absent.

【0007】[0007]

【発明が解決しようとする課題】上記従来の高分子型水
電解槽では、陽極給電体(7)および陰極給電体(8)との境
界付近(図8にAで示す部分の近傍)で電極接合体膜
(3)が破損するという問題があり、また、シールゴム(19
A)の近傍(図9にBで示す部分の近傍)や多孔質ガスケ
ット(19B)でも電極接合体膜(3)が破損するという問題が
あり、それらの改良が課題となっている。
In the above-mentioned conventional polymer-type water electrolysis tank, the electrode is located near the boundary between the anode power supply (7) and the cathode power supply (8) (near the portion indicated by A in FIG. 8). Joint membrane
There is a problem that (3) is damaged.
There is also a problem that the electrode assembly film (3) is damaged in the vicinity of (A) (near the portion indicated by B in FIG. 9) and the porous gasket (19B), and improvement of them is a problem.

【0008】本発明は、上記のような問題点を解決すべ
く工夫されたもので、酸素が発生する空間側では、水が
循環しているため水素が発生する空間に比べて、ガス圧
が高くなっており、このため、電極接合体膜が酸素側か
ら水素側に押される状況になっており、電極接合体膜の
陰極給電体のエッジに当たる部分が損傷する傾向にある
ことに着目し、電極接合体膜の長寿命化を達成すること
をその目的とする。
The present invention has been devised in order to solve the above-mentioned problems. In the space where oxygen is generated, the gas pressure is lower than the space where hydrogen is generated due to the circulation of water. Focusing on the fact that the electrode assembly film is pushed from the oxygen side to the hydrogen side for this reason, and the portion of the electrode assembly film that hits the edge of the cathode feeder tends to be damaged, It is an object of the present invention to extend the life of an electrode assembly film.

【0009】[0009]

【課題を解決するための手段】第1の発明による高分子
型水電解槽は、陽極主電極および陰極主電極と、これら
主電極の間に直列に配された複数の単位セルとを具備
し、1つのセルが、複極板と、陽極給電体と、固体高分
子電解質膜からなる電極接合体膜と、陰極給電体と、複
極板の周縁に設けられたOリング嵌込み溝に嵌められて
複極板の周縁部と電極接合体膜の周縁部との間をシール
するOリングとを有している固体高分子型水電解槽にお
いて、陽極給電体および陰極給電体のうちの少なくとも
一方の左右縁部がOリング嵌込み溝の内周縁部に接する
ようになされているものである。
The polymer water electrolysis tank according to the first invention comprises an anode main electrode and a cathode main electrode, and a plurality of unit cells arranged in series between the main electrodes. One cell is fitted into a bipolar plate, an anode feeder, an electrode assembly film made of a solid polymer electrolyte membrane, a cathode feeder, and an O-ring fitting groove provided on the periphery of the bipolar plate. A solid polymer water electrolysis tank having an O-ring sealing between the periphery of the bipolar plate and the periphery of the electrode assembly film, wherein at least one of the anode feeder and the cathode feeder is provided. One of the left and right edges is in contact with the inner peripheral edge of the O-ring fitting groove.

【0010】第1の発明の高分子型水電解槽によると、
Oリング嵌込み溝の内周縁部において酸素側から水素側
にかかる圧力を陽極給電体および陰極給電体の左右縁部
が受けることになるので、電極接合体膜の部分的な伸び
が抑えられる。
According to the polymer type water electrolysis tank of the first invention,
Since the left and right edges of the anode power supply and the cathode power supply receive the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring fitting groove, partial elongation of the electrode assembly film is suppressed.

【0011】Oリング嵌込み溝の底面が電極接合体膜の
陽極側の面に接するようになされており、陽極給電体の
左右縁部がOリング嵌込み溝の内周縁部に接し、陰極給
電体の左右縁部がOリングに接するようになされている
ことが好ましい。このようにすると、給電体の寸法の変
更だけで対応でき、製作の手間が増加しない。
The bottom surface of the O-ring fitting groove is in contact with the anode-side surface of the electrode assembly film. The left and right edges of the anode power supply contact the inner peripheral edge of the O-ring fitting groove, and the cathode power is supplied. Preferably, the left and right edges of the body are in contact with the O-ring. In this case, it can be dealt with only by changing the size of the power supply body, and the labor for manufacturing does not increase.

【0012】上記において、Oリングの内周に沿って溝
部が設けられ、この溝部に陰極給電体の左右縁部が嵌め
入れられていることがある。このようにすると、陰極給
電体のエッジがOリングでカバーされることになり、電
極接合体膜に陰極給電体のエッジが当たることが確実に
防止される。
In the above, a groove may be provided along the inner periphery of the O-ring, and the left and right edges of the cathode power supply may be fitted into the groove. In this case, the edge of the cathode power supply is covered with the O-ring, and the edge of the cathode power supply is reliably prevented from hitting the electrode assembly film.

【0013】また、陰極給電体が、給電層と補強層との
二層構造とされていることが好ましい。この場合には、
Oリングの内周に沿って設けられた溝部の幅が補強層の
厚みに対応させられて、補強層の左右縁部だけがこの溝
部に嵌め入れられていることが好ましい。
It is preferable that the cathode power supply has a two-layer structure including a power supply layer and a reinforcing layer. In this case,
Preferably, the width of the groove provided along the inner periphery of the O-ring corresponds to the thickness of the reinforcing layer, and only the left and right edges of the reinforcing layer are fitted into the groove.

【0014】第2の発明による高分子型水電解槽は、陽
極主電極および陰極主電極と、これら主電極の間に直列
に配された複数の単位セルとを具備し、1つのセルが、
複極板と、陽極給電体と、固体高分子電解質膜からなる
電極接合体膜と、陰極給電体とを有し、複極板および電
極接合体膜の下縁部に水通過孔が、同上縁部に水素およ
び酸素の通過用孔がそれぞれ設けられて、対応する通過
孔同士が短円筒状連通部材によって連通されている固体
高分子型水電解槽において、陰極給電体が、電極接合体
膜の上下縁部に当接する上下縁部を有し、この上下縁部
に、連通部材の内径より大きくかつ外径より小さい径の
連通部材挿通孔が設けられており、連通部材に、連通部
材挿通孔の周縁部を収める切欠きが設けられていること
を特徴とするものである。
A polymer water electrolyzer according to a second invention comprises an anode main electrode and a cathode main electrode, and a plurality of unit cells arranged in series between the main electrodes.
It has a bipolar plate, an anode feeder, an electrode assembly film composed of a solid polymer electrolyte membrane, and a cathode feeder, and a water passage hole is provided at the lower edge of the bipolar plate and the electrode assembly film. In the polymer electrolyte water electrolysis tank in which holes for passing hydrogen and oxygen are provided at the edges, and the corresponding passing holes are communicated with each other by a short cylindrical communication member, the cathode feeder is an electrode assembly membrane. The upper and lower edges are provided with a communication member insertion hole having a diameter larger than the inner diameter and smaller than the outer diameter of the communication member, and the communication member is inserted through the communication member. A notch for accommodating a peripheral portion of the hole is provided.

【0015】連通部材とは、セル内部の水素発生領域−
酸素発生領域をシールした状態で対応する通過孔同士を
連通するシールゴムおよび領域内にて水、水素もしくは
酸素を通す状態で対応する通過孔同士を連通する多孔質
ガスケットの両方を含むものとする。
The communication member is a hydrogen generation region in the cell.
Both the seal rubber that connects the corresponding passage holes with the oxygen generation region sealed and the porous gasket that connects the corresponding passage holes with the passage of water, hydrogen, or oxygen in the region are included.

【0016】第2の発明の高分子型水電解槽によると、
水、水素および酸素の通過用孔近傍において酸素側から
水素側にかかる圧力を陰極給電体の連通部材挿通孔縁部
が受けることになるので、電極接合体膜の破損に至る伸
びが抑えられる。
According to the polymer water electrolyzer of the second invention,
Since the pressure applied from the oxygen side to the hydrogen side is received in the vicinity of the water, hydrogen and oxygen passage holes at the edge of the communication member insertion hole of the cathode power supply body, elongation leading to breakage of the electrode assembly film is suppressed.

【0017】第1の発明と第2の発明とは、それぞれ単
独で用いられてもよく、両者を組み合わせて用いられて
もよい。
The first invention and the second invention may be used alone or in combination.

【0018】なお、陽極給電体および陰極給電体が、チ
タン繊維の焼結体に白金メッキされたものからなること
が好ましい。このようにすると、電極接合体膜に接する
のはチタン繊維層となり、その結果、電流が均一に流
れ、電極接合体膜の損傷を防止することができ、しか
も、白金メッキによって水素脆化を避けることができ
る。また、陽極給電体が、チタン繊維の焼結体に白金メ
ッキされたものからなり、陰極給電体が、カーボン繊維
の焼結体からなるものであってもよい。
It is preferable that the anode power supply and the cathode power supply are made of a titanium fiber sintered body plated with platinum. In this way, the titanium fiber layer comes into contact with the electrode assembly film, and as a result, the current flows evenly, and the electrode assembly film can be prevented from being damaged, and furthermore, the platinum plating prevents hydrogen embrittlement. be able to. Further, the anode power supply may be made of a titanium fiber sintered body plated with platinum, and the cathode power supply may be made of a carbon fiber sintered body.

【0019】[0019]

【実施例】以下、本発明の実施例を説明する。この明細
書において、上下は、図1の上下をいい、左右も図1の
左右をいうものとする。
Embodiments of the present invention will be described below. In this specification, the upper and lower sides refer to the upper and lower sides in FIG. 1, and the right and left sides also refer to the left and right sides in FIG.

【0020】実施例1 図1から図3までに実施例1の要部を示す。図1は、従
来の高分子型水電解槽の図7に対応し、図2および図3
は、同じく図8および図9にそれぞれ対応している。本
実施例において、従来技術で示した図6〜図9までと異
なる構成のものは、陽極給電体(31)、陰極給電体(32)お
よびシールゴム(36)であり、他の構成は、図6〜図9に
示された従来のものと同じものが使用されている。
Embodiment 1 FIGS. 1 to 3 show the main parts of Embodiment 1. FIG. FIG. 1 corresponds to FIG. 7 of a conventional polymer water electrolysis tank, and FIGS.
Correspond to FIGS. 8 and 9 respectively. In the present embodiment, components different from those shown in FIGS. 6 to 9 shown in the prior art are an anode power supply (31), a cathode power supply (32) and a seal rubber (36). The same conventional ones as shown in FIGS. 6 to 9 are used.

【0021】図1および図2に示すように、陽極給電体
(31)は、従来の陽極給電体(7)よりも左右幅が若干大き
くなされており、それ以外は、従来のものと同じであ
る。これにより、陽極給電体(31)の左右縁部(31a)がO
リング嵌込み溝(21)の内周縁部(21a)に接するようにな
されている。
As shown in FIG. 1 and FIG.
(31) has a slightly wider left and right width than the conventional anode power supply (7), and is otherwise the same as the conventional one. As a result, the left and right edges (31a) of the anode power supply (31) are
The ring fitting groove (21) is in contact with the inner peripheral edge (21a).

【0022】また、陰極給電体(32)は、従来の陰極給電
体(8)よりも左右幅および上下高さがともに大きくなさ
れており、それ以外は、従来のものと同じである。陰極
給電体(32)の左右幅は、陽極給電体(31)の左右幅よりも
さらに大きくなされており、これにより、陰極給電体(3
2)の左右縁部(32a)がOリング嵌込み溝(21)の内周縁部
(21a)およびOリング(20)の内周に接するようになされ
ている。
The cathode power feeder (32) has the same horizontal width and vertical height as the conventional cathode power feeder (8), and is otherwise the same as the conventional one. The left and right widths of the cathode power supply (32) are made larger than the left and right widths of the anode power supply (31).
The left and right edges (32a) of 2) are the inner peripheral edge of the O-ring fitting groove (21).
(21a) and the inner periphery of the O-ring (20).

【0023】図2から分かるように、Oリング嵌込み溝
(21)の内周縁部において酸素側から水素側にかかる圧力
は、陽極給電体(31)および陰極給電体(32)の左右縁部(3
1a)(32a)で受けられることになるので、電極接合体膜
(3)の部分的な伸びが抑えられる。したがって、図8に
Aで示した部分の近傍で起きていた電極接合体膜(3)の
早期破損を防止し、電極接合体膜(3)の寿命を長くする
ことができる。
As can be seen from FIG. 2, the O-ring fitting groove
The pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of (21) is caused by the left and right edges (3
1a) (32a)
(3) Partial elongation can be suppressed. Accordingly, it is possible to prevent the electrode assembly film (3) from being damaged early in the vicinity of the portion indicated by A in FIG. 8 and to prolong the life of the electrode assembly film (3).

【0024】図1および図3に示すように、陰極給電体
(32)の上下高さは、その上下縁部(32b)がOリング嵌込
み溝(21)の内周縁部(21a)近傍に位置するまで大きくな
されている。このため、陰極給電体(32)の上下縁部(32
b)は、水通過孔(13)(16)、酸素通過孔(14)(17)および水
素通過孔(15)(18)がそれぞれ設けられた複極板(9)およ
び電極接合体膜(3)の上下縁部に対向させられて、電極
接合体膜(3)の上下縁部に当接させられている。陰極給
電体(32)の上下縁部(32b)には、各通過孔(13)(16)(14)
(17)(15)(18)に対応する位置に、シールゴム挿通孔(33)
が設けられている。
As shown in FIG. 1 and FIG.
The vertical height of (32) is increased until its upper and lower edges (32b) are located near the inner peripheral edge (21a) of the O-ring fitting groove (21). Therefore, the upper and lower edges (32
b) is a bipolar plate (9) and an electrode assembly membrane (9) provided with water passage holes (13) (16), oxygen passage holes (14) (17), and hydrogen passage holes (15) (18), respectively. The upper and lower edges of 3) are opposed to each other, and are in contact with the upper and lower edges of the electrode assembly film (3). In the upper and lower edges (32b) of the cathode feeder (32), each through-hole (13) (16) (14)
(17) At the positions corresponding to (15) and (18), seal rubber insertion holes (33)
Is provided.

【0025】図3は、水が通過する下部ヘッダ部分を示
すものであるが、同図に示すように、陰極給電体(32)の
下縁部(32b)のシールゴム挿通孔(33)の径は、対応する
複極板(9)および電極接合体膜(3)の水通過孔(13)(16)の
径よりも大きく形成されている。そして、セル内部の水
素発生領域−酸素発生領域をシールする短円筒状のシー
ルゴム(36)は、内径が複極板(9)および電極接合体膜(3)
の各通過孔(13)(16)にほぼ等しく、外径が陰極給電体(3
2)の水通過孔(33)よりも大きいものとされ、かつ、その
外周部の電極接合体膜(3)側に、陰極給電体(32)のシー
ルゴム挿通孔(33)の周縁部を収める切欠き(36a)が設け
られている。図示省略したが、酸素および水素が通過す
る上ヘッダ部分も同様の構成とされている。図3の構成
によると、水通過孔(13)(16)、酸素通過孔(14)(17)およ
び水素通過孔(15)(18)近傍において酸素側から水素側に
かかる圧力は、陰極給電体(32)の上下縁部(32b)に設け
られたシールゴム挿通孔(33)の周縁部によって受けら
れ、電極接合体膜(3)の破損に至る伸びが抑えられる。
したがって、図9にBで示した部分の近傍で起きていた
電極接合体膜(3)の早期破損を防止し、電極接合体膜(3)
の寿命を長くすることができる。
FIG. 3 shows the lower header portion through which water passes. As shown in FIG. 3, the diameter of the seal rubber insertion hole (33) in the lower edge (32b) of the cathode power supply (32) is shown. Are formed larger than the diameters of the water passage holes (13) and (16) of the corresponding bipolar plate (9) and the electrode assembly membrane (3). A short cylindrical seal rubber (36) for sealing the hydrogen generation region-oxygen generation region inside the cell has an inner diameter of a bipolar plate (9) and an electrode assembly film (3).
Of the cathode feeder (3)
The peripheral edge of the sealing rubber insertion hole (33) of the cathode power feeder (32) is accommodated in the outer periphery of the electrode assembly membrane (3), which is larger than the water passage hole (33) of (2). A notch (36a) is provided. Although not shown, the upper header portion through which oxygen and hydrogen pass has the same configuration. According to the configuration of FIG. 3, the pressure applied from the oxygen side to the hydrogen side near the water passage holes (13) (16), the oxygen passage holes (14) (17), and the hydrogen passage holes (15) (18) depends on the cathode power supply. It is received by the peripheral edge of the seal rubber insertion hole (33) provided in the upper and lower edges (32b) of the body (32), and the elongation of the electrode assembly membrane (3) to damage is suppressed.
Therefore, it is possible to prevent the electrode assembly film (3) from being damaged early in the vicinity of the portion indicated by B in FIG.
Life can be extended.

【0026】実施例2 図4に実施例2の要部を示す。同図は、実施例1の図2
に対応している。本実施例において、実施例1と同じも
のには、同じ符号を付して説明を省略する。
Second Embodiment FIG. 4 shows a main part of a second embodiment. FIG.
It corresponds to. In this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description is omitted.

【0027】同図に示すように、陰極給電体(42)は、実
施例1の陰極給電体(32)よりもさらに左右幅が大きくな
されており、これに対応して、Oリング(40)には、その
内周に沿って陰極給電体(42)の左右縁部(42a)が嵌め入
れられるL字状溝部(40a)が設けられている。
As shown in the figure, the cathode power supply (42) has a greater left and right width than the cathode power supply (32) of the first embodiment. Is provided with an L-shaped groove (40a) along its inner periphery into which the left and right edges (42a) of the cathode power supply (42) are fitted.

【0028】実施例2の構成によると、Oリング嵌込み
溝(21)の内周縁部において酸素側から水素側にかかる圧
力を陽極給電体(31)および陰極給電体(42)の左右縁部(3
1a)(42a)が受けることになるので、電極接合体膜(3)の
部分的な伸びが抑えられる。なお、陰極給電体(42)の左
右縁部(42a)は、溝部(40a)で受けられているので、電極
接合体膜(3)に陰極給電体(42)のエッジが当たることが
確実に防止されている。したがって、図8にAで示した
部分の近傍で起きていた電極接合体膜(3)の早期破損を
防止し、電極接合体膜(3)の寿命を長くすることができ
る。
According to the structure of the second embodiment, the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring fitting groove (21) is applied to the left and right edge portions of the anode power supply (31) and the cathode power supply (42). (3
Since 1a) and (42a) are received, partial elongation of the electrode assembly film (3) is suppressed. Since the left and right edges (42a) of the cathode power supply (42) are received by the grooves (40a), it is ensured that the edge of the cathode power supply (42) hits the electrode assembly film (3). Has been prevented. Accordingly, it is possible to prevent the electrode assembly film (3) from being damaged early in the vicinity of the portion indicated by A in FIG. 8 and to prolong the life of the electrode assembly film (3).

【0029】実施例3 実施例1および実施例2の高分子型水電解槽では、陰極
給電体(32)(42)は、一層とされているが、陰極給電体(5
2)を二層とすることもできる。
Example 3 In the polymer-type water electrolyzers of Examples 1 and 2, the number of the cathode power feeders (32) and (42) is one,
2) can be a two-layer structure.

【0030】図5にその実施例3の要部を示す。同図
は、実施例1の図2および実施例の図4に対応してお
り、本実施例において、実施例1または2と同じものに
は、同じ符号を付して説明を省略する。
FIG. 5 shows a main part of the third embodiment. This figure corresponds to FIG. 2 of the first embodiment and FIG. 4 of the first embodiment. In this embodiment, the same components as those in the first or second embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0031】同図に示すように、陰極給電体(52)は、給
電層(53)と補強層(54)との二層構造とされている。補強
層(54)は、その左右幅が給電層(53)の左右幅より若干大
きくなるように形成されている。そして、Oリング(50)
の内周に沿って設けられた溝部(50a)は、U字状でかつ
その幅が補強層(54)の厚みに対応させられており、補強
層(54)の左右縁部(54a)だけがこの溝部(50a)に嵌め入れ
られている。
As shown in the figure, the cathode power supply (52) has a two-layer structure of a power supply layer (53) and a reinforcing layer (54). The reinforcing layer (54) is formed such that the left and right width thereof is slightly larger than the left and right width of the power supply layer (53). And O-ring (50)
The groove (50a) provided along the inner periphery of the U-shape is U-shaped and has a width corresponding to the thickness of the reinforcing layer (54), and only the left and right edges (54a) of the reinforcing layer (54) Is fitted into the groove (50a).

【0032】実施例3の構成によると、Oリング嵌込み
溝(21)の内周縁部において酸素側から水素側にかかる圧
力を陽極給電体(31)および陰極給電体(52)の左右縁部(3
1a)(54a)が受けることになるので、電極接合体膜の部分
的な伸びが抑えられる。なお、陰極給電体(52)が補強層
(バックメタル)(54)を有する二層構造となっているこ
とから、陰極給電体(52)自体の耐久性も向上し、しか
も、補強層(54)の左右縁部(54a)が溝部(50a)で受けられ
ているので、電極接合体膜(3)に陰極給電体(52)のエッ
ジが当たることが確実に防止されるとともに、給電層(5
3)の左右縁部(53a)は、補強層(54)の左右縁部(54a)で受
けられているので、その動きがさらに抑えられるてい
る。したがって、図8にAで示した部分の近傍で起きて
いた電極接合体膜(3)の早期破損を防止し、電極接合体
膜(3)の寿命を長くすることができる。
According to the configuration of the third embodiment, the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring fitting groove (21) is applied to the left and right edge portions of the anode power supply (31) and the cathode power supply (52). (3
Since 1a) and (54a) are subjected, partial elongation of the electrode assembly film is suppressed. Since the cathode feeder (52) has a two-layer structure having a reinforcing layer (back metal) (54), the durability of the cathode feeder (52) itself is improved, and the reinforcing layer (54) ) Are received by the groove (50a), the edge of the cathode power supply (52) is reliably prevented from hitting the electrode assembly membrane (3), and the power supply layer ( Five
The left and right edges (53a) of (3) are received by the left and right edges (54a) of the reinforcing layer (54), so that the movement is further suppressed. Accordingly, it is possible to prevent the electrode assembly film (3) from being damaged early in the vicinity of the portion indicated by A in FIG. 8 and to prolong the life of the electrode assembly film (3).

【0033】上記各実施例について、従来の高分子型水
電解槽と同様の使用によりその耐久性を調査したとこ
ろ、従来のものは4000時間でその90%が損傷した
のに対し、上記各実施例のものは8000時間でも損傷
せず、耐久性が大幅に向上した。
The durability of each of the above examples was examined by using the same type of conventional polymer-type water electrolysis tank. As a result, 90% of the conventional example was damaged in 4000 hours. The example was not damaged even after 8000 hours, and the durability was greatly improved.

【0034】なお、上記において、複極板(9)のOリン
グ嵌込み溝(21)は、水電解槽は、水平に設置する以外
に、垂直に設置することも可能である。また、この水電
解槽によると、上記と逆の反応、すなわち、水素および
酸素から水およびエネルギーを生成する反応を起こさせ
ることも可能である。また、上記では図6に(19A)で示
すシールゴム(第1の連通部材)について述べている
が、同図に(19B)で示す多孔質ガスケット(第2の連通
部材)に適用してももちろんよい。
In the above description, the O-ring fitting groove (21) of the bipolar plate (9) can be installed vertically as well as horizontally in the water electrolysis tank. Further, according to the water electrolysis tank, it is also possible to cause a reaction opposite to the above, that is, a reaction of generating water and energy from hydrogen and oxygen. Although the seal rubber (first communication member) shown by (19A) in FIG. 6 is described above, it is needless to say that the present invention can be applied to a porous gasket (second communication member) shown by (19B) in FIG. Good.

【0035】[0035]

【発明の効果】第1の発明の高分子型水電解槽による
と、陽極給電体および陰極給電体のうちの少なくとも一
方の左右縁部がOリング嵌込み溝の内周縁部に接するよ
うになされているので、Oリング嵌込み溝の内周縁部に
おいて酸素側から水素側にかかる圧力を陽極給電体およ
び陰極給電体の左右縁部が受けることになるので、電極
接合体膜の部分的な伸びが抑えられ、これにより、Oリ
ング嵌込み溝の内周縁部付近で起こっていた電極接合体
膜の早期破損を防止することができ、水電解槽の耐久性
を大幅に向上させることができる。
According to the polymer water electrolyzer of the first invention, at least one of the left and right edges of the anode power supply and the cathode power supply is in contact with the inner peripheral edge of the O-ring fitting groove. Since the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring fitting groove is applied to the left and right edges of the anode feeder and the cathode feeder, the partial extension of the electrode assembly film As a result, it is possible to prevent the electrode assembly membrane from being damaged early in the vicinity of the inner peripheral edge of the O-ring fitting groove, and to greatly improve the durability of the water electrolysis tank.

【0036】第2の発明の高分子型水電解槽によると、
水通過孔、酸素通過孔および水素通過孔近傍において酸
素側から水素側にかかる圧力は、陰極給電体の連通部材
挿通孔縁部によって受けられることになるので、電極接
合体膜の破損に至る伸びが抑えられ、これにより、水、
水素および酸素の通過用孔近傍での電極接合体膜の早期
破損を防止することができ、水電解槽の耐久性を大幅に
向上させることができる。
According to the polymer type water electrolysis tank of the second invention,
The pressure applied from the oxygen side to the hydrogen side in the vicinity of the water passage hole, oxygen passage hole and hydrogen passage hole is received by the edge of the communication member insertion hole of the cathode power feeder, and the elongation leading to the damage of the electrode assembly film. Which reduces water,
Premature breakage of the electrode assembly membrane near the holes for passing hydrogen and oxygen can be prevented, and the durability of the water electrolysis tank can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の高分子型水電解槽の1つのセルの構
成要素を個々に示す正面図である。
FIG. 1 is a front view showing components of one cell of a polymer water electrolysis tank of the present invention.

【図2】 第1発明の水電解槽の実施例1を示す部分断
面図であり、従来の高分子型水電解槽の図8に対応して
いる。
FIG. 2 is a partial cross-sectional view showing Example 1 of the water electrolysis tank of the first invention, and corresponds to FIG. 8 of a conventional polymer water electrolysis tank.

【図3】 第2発明の水電解槽の実施例1を示す部分断
面図であり、従来の高分子型水電解槽の図9に対応して
いる。
FIG. 3 is a partial cross-sectional view showing Example 1 of the water electrolysis tank of the second invention, and corresponds to FIG. 9 of a conventional polymer water electrolysis tank.

【図4】 第1発明の高分子型水電解槽の実施例2の図
2に対応する部分断面図である。
FIG. 4 is a partial sectional view corresponding to FIG. 2 of Example 2 of the polymer water electrolysis tank of the first invention.

【図5】 第1発明の高分子型水電解槽の実施例3の図
2に対応する部分断面図である。
FIG. 5 is a partial sectional view corresponding to FIG. 2 of Example 3 of the polymer water electrolysis tank of the first invention.

【図6】 従来の高分子型水電解槽の分解状態を示す分
解斜視図である。
FIG. 6 is an exploded perspective view showing an exploded state of a conventional polymer water electrolysis tank.

【図7】 1つのセルの構成要素を個々に示す正面図で
ある。
FIG. 7 is a front view showing components of one cell individually.

【図8】 従来の水電解槽で破損しやすい部位を示す部
分断面図である。
FIG. 8 is a partial cross-sectional view showing a portion easily damaged in a conventional water electrolysis tank.

【図9】 従来の水電解槽で破損しやすい別の部位を示
す部分断面図である。
FIG. 9 is a partial cross-sectional view showing another portion easily damaged in a conventional water electrolysis tank.

【符号の説明】[Explanation of symbols]

(1) 陽極主電極 (2) 陰極主電極 (3) 電極接合体膜 (9) 複極板 (20)(40)(50) Oリング (40a)(50a) 溝部 (21) Oリング嵌込み溝 (21a) 内周縁部 (31) 陽極給電体 (31a) 左右縁部 (32)(42)(52) 陰極給電体 (32a)(42a)(53a)(54a) 左右縁部 (32b) 上下縁部 (36) シールゴム(連通部材) (36a) 切欠き (53) 給電層 (54) 補強層 (13)(16) 水通過孔 (14)(17) 酸素通過孔 (15)(18) 水素通過孔 (1) Anode main electrode (2) Cathode main electrode (3) Electrode assembly membrane (9) Multipolar plate (20) (40) (50) O-ring (40a) (50a) Groove (21) O-ring fitting Groove (21a) Inner peripheral edge (31) Anode power supply (31a) Left and right edge (32) (42) (52) Cathode power supply (32a) (42a) (53a) (54a) Left and right edge (32b) Up and down Edge (36) Seal rubber (communication member) (36a) Notch (53) Power supply layer (54) Reinforcement layer (13) (16) Water passage hole (14) (17) Oxygen passage hole (15) (18) Hydrogen Passing hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辰己 浩史 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 Fターム(参考) 4K021 AA01 BA02 CA01 CA05 CA09 DB31 DB43 DB46 DC01 DC03 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiroshi Tatsumi 1-7-89 Minami Kohoku, Suminoe-ku, Osaka F-term in Tachibai Shipbuilding Co., Ltd. 4K021 AA01 BA02 CA01 CA05 CA09 DB31 DB43 DB46 DC01 DC03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 陽極主電極(1)および陰極主電極(2)と、
これら主電極(1)(2)の間に直列に配された複数の単位セ
ルとを具備し、1つのセルが、複極板(9)と、陽極給電
体(31)と、固体高分子電解質膜からなる電極接合体膜
(3)と、陰極給電体(32)と、複極板(9)の周縁に設けられ
たOリング嵌込み溝(21)に嵌められて複極板(9)の周縁
部と電極接合体膜(3)の周縁部との間をシールするOリ
ング(20)(40)(50)とを有している固体高分子型水電解槽
において、 陽極給電体(31)および陰極給電体(32)(42)(52)のうちの
少なくとも一方の左右縁部(31a)(32a)(42a)(53a)(54a)
がOリング嵌込み溝(21)の内周縁部(21a)に接するよう
になされていることを特徴とする固体高分子型水電解
槽。
An anode main electrode (1) and a cathode main electrode (2),
It comprises a plurality of unit cells arranged in series between these main electrodes (1) and (2), and one cell is composed of a bipolar plate (9), an anode feeder (31), and a solid polymer. Electrode assembly membrane consisting of electrolyte membrane
(3), the cathode feeder (32), the peripheral portion of the bipolar plate (9) fitted in the O-ring fitting groove (21) provided on the periphery of the bipolar plate (9) and the electrode assembly In a polymer electrolyte water electrolysis tank having an O-ring (20) (40) (50) for sealing between the membrane (3) and the peripheral portion thereof, an anode current feeder (31) and a cathode current feeder ( 32) (42) (52) at least one of the left and right edges (31a) (32a) (42a) (53a) (54a)
Is in contact with the inner peripheral edge (21a) of the O-ring fitting groove (21).
【請求項2】 Oリング嵌込み溝(21)の底面が電極接合
体膜(3)の陽極側の面に接するようになされており、陽
極給電体(31)の左右縁部(31a)がOリング嵌込み溝(21)
の内周縁部(21a)に接し、陰極給電体(32)(42)(52)の左
右縁部(32a)(42a)(53a)(54a)がOリング(20)に接するよ
うになされている請求項1記載の高分子型水電解槽。
2. The bottom surface of the O-ring fitting groove (21) is in contact with the anode-side surface of the electrode assembly film (3), and the left and right edges (31a) of the anode power feeder (31) are O-ring fitting groove (21)
And the left and right edges (32a), (42a), (53a), and (54a) of the cathode feeders (32), (42), and (52) are in contact with the O-ring (20). The polymer-type water electrolysis tank according to claim 1.
【請求項3】 Oリング(40)(50)の内周に沿って溝部(4
0a)(50a)が設けられ、この溝部(40a)(50a)に陰極給電体
(42)(52)の左右縁部(42a)(54a)が嵌め入れられているこ
とを特徴とする請求項2記載の高分子型水電解槽。
3. A groove (4) extending along the inner circumference of the O-rings (40) and (50).
0a) and (50a) are provided, and the cathode power feeder is provided in the grooves (40a) (50a).
3. The polymer type water electrolysis tank according to claim 2, wherein the left and right edges (42a) and (54a) of (42) and (52) are fitted.
【請求項4】 陰極給電体(52)が、給電層(53)と補強層
(54)との二層構造とされていることを特徴とする請求項
1または2記載の高分子型水電解槽。
4. A cathode power supply (52) comprising a power supply layer (53) and a reinforcing layer.
3. The polymer-type water electrolysis tank according to claim 1, which has a two-layer structure of (54).
【請求項5】 陰極給電体(52)が、給電層(53)と補強層
(54)との二層構造とされており、Oリング(50)の内周に
沿って設けられた溝部(50a)の幅が補強層(54)の厚みに
対応させられて、補強層(54)の左右縁部(54a)だけがこ
の溝部(50a)に嵌め入れられていることを特徴とする請
求項3記載の高分子型水電解槽。
5. The cathode power supply (52) includes a power supply layer (53) and a reinforcing layer.
(54), and the width of the groove (50a) provided along the inner periphery of the O-ring (50) is made to correspond to the thickness of the reinforcing layer (54). 4. The polymer type water electrolysis tank according to claim 3, wherein only the left and right edges (54a) of said (54) are fitted into said grooves (50a).
【請求項6】 複極板(9)および電極接合体膜(3)の下縁
部に水通過孔(13)(16)が、同上縁部に水素および酸素の
通過用孔(14)(15)(17)(18)がそれぞれ設けられて、対応
する通過孔(13)(14)(15)(16)(17)(18)同士が短円筒状連
通部材(36)によって連通されており、陰極給電体(32)
が、電極接合体膜(3)の上下縁部に当接する上下縁部(32
b)を有し、その上下縁部(32b)に、連通部材(36)の内径
より大きくかつ外径より小さい径の連通部材挿通孔(33)
が設けられており、連通部材(36)の外周部に、連通部材
挿通孔(33)の周縁部を収める環状の切欠き(36a)が設け
られていることを特徴とする請求項1〜5のうち1項記
載の高分子型水電解槽。
6. Water passing holes (13) and (16) at the lower edge of the bipolar plate (9) and the electrode assembly membrane (3), and hydrogen and oxygen passing holes (14) and (14) at the upper edge thereof. 15), (17) and (18) are provided respectively, and the corresponding through holes (13) (14) (15) (16) (17) (18) are communicated with each other by a short cylindrical communication member (36). And cathode feeder (32)
Are in contact with the upper and lower edges of the electrode assembly film (3) (32
b), the upper and lower edges (32b) of the communication member insertion hole (33) having a diameter larger than the inner diameter and smaller than the outer diameter of the communication member (36).
Wherein an annular notch (36a) for accommodating a peripheral portion of the communication member insertion hole (33) is provided in an outer peripheral portion of the communication member (36). 2. The polymer water electrolysis tank according to claim 1.
【請求項7】 陽極主電極(1)および陰極主電極(2)と、
これら主電極(1)(2)の間に直列に配された複数の単位セ
ルとを具備し、1つのセルが、複極板(9)と、陽極給電
体(31)と、固体高分子電解質膜からなる電極接合体膜
(3)と、陰極給電体(32)とを有し、複極板(9)および電極
接合体膜(3)の下縁部に水通過孔(13)(16)が、同上縁部
に酸素通過孔(14)(15)および水素通過孔(17)(18)がそれ
ぞれ設けられて、対応する通過孔(13)(14)(15)(16)(17)
(18)同士が短円筒状連通部材(36)によって連通されてい
る固体高分子型水電解槽において、 陰極給電体(32)が、電極接合体膜(3)の上下縁部に当接
する上下縁部(32b)を有し、この上下縁部(32b)に、連通
部材(36)の内径より大きくかつ外径より小さい径の連通
部材挿通孔(33)が設けられており、連通部材(36)の外周
部に、連通部材挿通孔(33)の周縁部を収める環状の切欠
き(36a)が設けられていることを特徴とする高分子型水
電解槽。
7. An anode main electrode (1) and a cathode main electrode (2),
It comprises a plurality of unit cells arranged in series between these main electrodes (1) and (2), and one cell is composed of a bipolar plate (9), an anode feeder (31), and a solid polymer. Electrode assembly membrane consisting of electrolyte membrane
(3), and a cathode feeder (32), water passing holes (13) and (16) are provided at the lower edge of the bipolar plate (9) and the electrode assembly membrane (3), and at the upper edge thereof. Oxygen passage holes (14) (15) and hydrogen passage holes (17) (18) are provided respectively, and the corresponding passage holes (13) (14) (15) (16) (17)
(18) In a solid polymer type water electrolysis tank in which the two are communicated by a short cylindrical communication member (36), the cathode power feeder (32) is vertically A communication member insertion hole (33) having a diameter larger than the inner diameter of the communication member (36) and smaller than the outer diameter is provided in the upper and lower edges (32b). A polymer-type water electrolysis tank characterized in that an annular notch (36a) for accommodating a peripheral portion of the communication member insertion hole (33) is provided in an outer peripheral portion of the (36).
【請求項8】 陽極給電体(31)および陰極給電体(32)(4
2)(52)が、それぞれチタン繊維の焼結体に白金メッキさ
れたものからなることを特徴とする請求項1〜7のうち
1項記載の高分子型水電解槽。
8. An anode feeder (31) and a cathode feeder (32) (4)
2) The polymer-type water electrolysis tank according to any one of claims 1 to 7, wherein each of (52) is formed by plating a sintered body of titanium fiber with platinum.
【請求項9】 陽極給電体(31)が、チタン繊維の焼結体
に白金メッキされたものからなり、陰極給電体(32)(42)
(52)が、カーボン繊維の焼結体からなることを特徴とす
る請求項1〜7のうち1項記載の高分子型水電解槽。
9. An anode power feeder (31) made of a titanium fiber sintered body plated with platinum, and a cathode power feeder (32) (42).
The polymer water electrolyzer according to any one of claims 1 to 7, wherein (52) comprises a sintered body of carbon fiber.
JP2001041162A 2001-02-19 2001-02-19 Solid polymer water electrolyzer Expired - Fee Related JP3991147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041162A JP3991147B2 (en) 2001-02-19 2001-02-19 Solid polymer water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041162A JP3991147B2 (en) 2001-02-19 2001-02-19 Solid polymer water electrolyzer

Publications (2)

Publication Number Publication Date
JP2002241979A true JP2002241979A (en) 2002-08-28
JP3991147B2 JP3991147B2 (en) 2007-10-17

Family

ID=18903642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041162A Expired - Fee Related JP3991147B2 (en) 2001-02-19 2001-02-19 Solid polymer water electrolyzer

Country Status (1)

Country Link
JP (1) JP3991147B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131954A (en) * 2003-03-13 2007-05-31 Kobelco Eco-Solutions Co Ltd Electrolytic cell and hydrogen-oxygen generator
JP2019099845A (en) * 2017-11-29 2019-06-24 株式会社トクヤマ Electrolysis cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252682A (en) * 1994-03-14 1995-10-03 Agency Of Ind Science & Technol Water electrolyzing cell using high-polymer electrolyte membrane
JPH10245688A (en) * 1997-03-04 1998-09-14 Shinko Pantec Co Ltd Electrolytic cell for hydrogen oxygen generator
JPH11256378A (en) * 1998-03-10 1999-09-21 Research Institute Of Innovative Technology For The Earth Electrolytic cell of water using solid polymer electrolyte membrane
JP2000073194A (en) * 1998-08-27 2000-03-07 Mitsubishi Heavy Ind Ltd Electrolytic cell and concentrated ozone generator using the same
JP2000273681A (en) * 1999-03-24 2000-10-03 Research Institute Of Innovative Technology For The Earth Bipolar plate for water electrolysis cell and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252682A (en) * 1994-03-14 1995-10-03 Agency Of Ind Science & Technol Water electrolyzing cell using high-polymer electrolyte membrane
JPH10245688A (en) * 1997-03-04 1998-09-14 Shinko Pantec Co Ltd Electrolytic cell for hydrogen oxygen generator
JPH11256378A (en) * 1998-03-10 1999-09-21 Research Institute Of Innovative Technology For The Earth Electrolytic cell of water using solid polymer electrolyte membrane
JP2000073194A (en) * 1998-08-27 2000-03-07 Mitsubishi Heavy Ind Ltd Electrolytic cell and concentrated ozone generator using the same
JP2000273681A (en) * 1999-03-24 2000-10-03 Research Institute Of Innovative Technology For The Earth Bipolar plate for water electrolysis cell and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131954A (en) * 2003-03-13 2007-05-31 Kobelco Eco-Solutions Co Ltd Electrolytic cell and hydrogen-oxygen generator
JP4510035B2 (en) * 2003-03-13 2010-07-21 株式会社神鋼環境ソリューション Electrolysis cell and hydrogen oxygen generator
JP2019099845A (en) * 2017-11-29 2019-06-24 株式会社トクヤマ Electrolysis cell

Also Published As

Publication number Publication date
JP3991147B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
TWI770320B (en) Membrane-electrode-gasket assembly for electrolysis of alkaline water
CN110129818A (en) Proton exchange membrane water electrolyzer slot
JP6013448B2 (en) Electrochemical cell and use of electrochemical cell
US7432008B2 (en) Gas diffusion layer for an electrochemical cell
TW201942415A (en) Electrolysis vessel for alkaline water electrolysis
JP6963978B2 (en) Electrolytic cell
JP2005203159A (en) Fuel cell
JP6001646B2 (en) Electrochemical cell with gasket frame as an alternative to sealing material to prevent electrolyte from leaching to the edge
US20200075969A1 (en) Redox-flow electrochemical cell with decreased shunt
US7691242B2 (en) Electrochemical half-cell
JP2002241979A (en) Solid polymer type water electrolytic cell
JP4283381B2 (en) Electrolysis cell of hydrogen oxygen generator and electrode plate thereof
WO2021200374A1 (en) Electrolysis vessel
CN1427900A (en) Bipolar multi-purpose electrolytic cell for high current loads
CN114657583A (en) Bipolar plate and water electrolytic tank
KR100704437B1 (en) Electrochemical unit cell and electrochemical cell assembly with non-conductive separator
CN219239785U (en) Electrolysis cell structure of PEM (PEM) electrolytic tank
JP7330422B1 (en) Electrolyzer for alkaline water electrolysis
JP3276627B2 (en) Solid electrolyte membrane unit and electrolytic cell
CN218842353U (en) Electrolytic cell
US20210344021A1 (en) Fuel cell assembly, fuel cell device and motor vehicle
KR101871308B1 (en) Electrode structure unit for sterilizing·reduced water electrolytic bath and electrode module including thereof
CN115341230A (en) Electrolysis chamber structure of PEM (proton exchange membrane) electrolyzer
CN117468025A (en) Ultra-short polar distance basic electrolytic tank formed by combining bipolar frame structures
JP2001073176A (en) Electrolytic cell of hydrogen and oxygen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

R150 Certificate of patent or registration of utility model

Ref document number: 3991147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees