JP3991147B2 - Solid polymer water electrolyzer - Google Patents

Solid polymer water electrolyzer Download PDF

Info

Publication number
JP3991147B2
JP3991147B2 JP2001041162A JP2001041162A JP3991147B2 JP 3991147 B2 JP3991147 B2 JP 3991147B2 JP 2001041162 A JP2001041162 A JP 2001041162A JP 2001041162 A JP2001041162 A JP 2001041162A JP 3991147 B2 JP3991147 B2 JP 3991147B2
Authority
JP
Japan
Prior art keywords
electrode assembly
cathode
anode
communication member
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001041162A
Other languages
Japanese (ja)
Other versions
JP2002241979A (en
Inventor
雅芳 近藤
近 稲住
浩史 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2001041162A priority Critical patent/JP3991147B2/en
Publication of JP2002241979A publication Critical patent/JP2002241979A/en
Application granted granted Critical
Publication of JP3991147B2 publication Critical patent/JP3991147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高分子電解質膜を用いる水電解槽に関するものである。
【0002】
【従来の技術】
従来、高分子電解質膜を用いて水電解によって水素および酸素を製造する場合の水電解槽の構造は、図6に示すように、陽極主電極(1)および陰極主電極(2)と、これら主電極(1)(2)の間に直列に配された複数の単位セルと、主電極(1)(2)の外側に配置された締め付け用フランジ(6)とから主として構成されている。1つのセルは、複極板(9)、多孔質の陽極給電体(7)、電極接合体膜(3)、多孔質の陰極給電体(8)および隣の複極板(9)の陰極側からなり、電極接合体膜(3)は、上下方向に長いイオン交換膜(4)とその両面の中央部分に設けられた触媒電極層(5)とを有している。
【0003】
この高分子型水電解槽において、電解槽下部の給水ヘッダー(10)から供給された水は、陽極給電体(7)を通って電極接合体膜(3)に達し、ここで付加された電力により水の電気分解反応が起こり、各単位セル内では、触媒電極層(5)の表面で、陽極側では酸素、陰極側では水素がそれぞれ発生する。発生した酸素は、陽極給電体(7)を通り、複極板(9)の陽極側に設けられた垂直流路内を未反応の水とともに上昇し、酸素ヘッダー(11)に排出される。また、発生した水素は、陰極給電体(8)を通り、複極板(9)の陰極側に設けられた垂直流路内を通って電解槽上部に達し、水素ヘッダー(12)に排出される。
【0004】
陽極給電体(7)および陰極給電体(8)は、複極板(9)に設けられた水、酸素および水素流路を兼ねた電気通電部(9a)と同サイズであり、また、電極接合体膜(3)のイオン交換膜(4)は複極板(9)と同サイズで、電極接合体膜(3)の触媒電極層(5)は複極板(9)の電気通電部(9a)と同サイズである。
複極板(9)および電極接合体膜(3)の下端部には、水通過孔(13)(16)がそれぞれ設けられ、同上端部には、酸素通過孔(14)(17)および水素通過孔(15)(18)がそれぞれ設けられている。複極板(9)および電極接合体膜(3)の互いに対応する各通過孔(13)(16)(14)(17)(15)(18)同士は、セル内部の水素発生領域−酸素発生領域をシールする短円筒状のシールゴム(19A)または領域内にて水、水素もしくは酸素を通す多孔質ガスケット(19B)によって連通されている。
【0005】
図7および図8に示すように、複極板(9)の周縁部には、正面から見て略方形でかつ底面が電極接合体膜(3)の陽極側の面に接するようになされたOリング嵌込み溝(21)が設けられており、この溝(21)に嵌められたOリング(20)によって複極板(9)の周縁部と電極接合体膜(3)の周縁部との間すなわち電解槽内部と外部との間がシールされている。
【0006】
また、図9に示すように、通過孔(13)(14)(15)(16)(17)(18)(図示は水通過孔(13)(16))のある複極板(9)の上下縁部と電極接合体膜(3)の上下縁部との間には、シールゴム(19A)または多孔質ガスケット(19B)が介在されているだけで、陽極給電体(7)および陰極給電体(8)の上下縁部は、この部分には位置していない。
【0007】
【発明が解決しようとする課題】
上記従来の高分子型水電解槽では、陽極給電体(7)および陰極給電体(8)との境界付近(図8にAで示す部分の近傍)で電極接合体膜(3)が破損するという問題があり、また、シールゴム(19A)の近傍(図9にBで示す部分の近傍)や多孔質ガスケット(19B)でも電極接合体膜(3)が破損するという問題があり、それらの改良が課題となっている。
【0008】
本発明は、上記のような問題点を解決すべく工夫されたもので、酸素が発生する空間側では、水が循環しているため水素が発生する空間に比べて、ガス圧が高くなっており、このため、電極接合体膜が酸素側から水素側に押される状況になっており、電極接合体膜の陰極給電体のエッジに当たる部分が損傷する傾向にあることに着目し、電極接合体膜の長寿命化を達成することをその目的とする。
【0009】
【課題を解決するための手段】
第1の発明による高分子型水電解槽は、陽極主電極および陰極主電極と、これら主電極の間に直列に配された複数の単位セルとを具備し、1つのセルが、複極板と、陽極給電体と、固体高分子電解質膜からなる電極接合体膜と、陰極給電体と、複極板の周縁に設けられたOリング嵌込み溝に嵌められて複極板の周縁部と電極接合体膜の周縁部との間をシールするOリングとを有している高分子型水電解槽において、Oリング嵌込み溝の底面が電極接合体膜の陽極側の面に接するようになされており、陽極給電体の左右縁部がOリング嵌込み溝の内周縁部に接し、陰極給電体の左右縁部がOリングに接するようになされていることを特徴とするものである。
【0010】
第1の発明の高分子型水電解槽によると、Oリング嵌込み溝の内周縁部において酸素側から水素側にかかる圧力を陽極給電体および陰極給電体の左右縁部が受けることになるので、電極接合体膜の部分的な伸びが抑えられる。
【0011】
そして、Oリング嵌込み溝の底面が電極接合体膜の陽極側の面に接するようになされており、陽極給電体の左右縁部がOリング嵌込み溝の内周縁部に接し、陰極給電体の左右縁部がOリングに接するようになされていることにより、給電体の寸法の変更だけで対応でき、製作の手間が増加しない。
【0012】
上記において、Oリングの内周に沿って溝部が設けられ、この溝部に陰極給電体の左右縁部が嵌め入れられていることがある。このようにすると、陰極給電体のエッジがOリングでカバーされることになり、電極接合体膜に陰極給電体のエッジが当たることが確実に防止される。
【0013】
また、陰極給電体が、給電層と補強層との二層構造とされていることが好ましい。この場合には、Oリングの内周に沿って設けられた溝部の幅が補強層の厚みに対応させられて、補強層の左右縁部だけがこの溝部に嵌め入れられていることが好ましい。
【0014】
第2の発明による高分子型水電解槽は、陽極主電極および陰極主電極と、これら主電極の間に直列に配された複数の単位セルとを具備し、1つのセルが、複極板と、陽極給電体と、固体高分子電解質膜からなる電極接合体膜と、陰極給電体とを有し、複極板および電極接合体膜の下縁部に水通過孔が、同上縁部に水素および酸素の通過用孔がそれぞれ設けられて、対応する通過孔同士が短円筒状連通部材によって連通されている固体高分子型水電解槽において、陰極給電体が、電極接合体膜の上下縁部に当接する上下縁部を有し、この上下縁部に、連通部材の内径より大きくかつ外径より小さい径の連通部材挿通孔が設けられており、連通部材に、連通部材挿通孔の周縁部を収める切欠きが設けられていることを特徴とするものである。
【0015】
連通部材とは、セル内部の水素発生領域−酸素発生領域をシールした状態で対応する通過孔同士を連通するシールゴムおよび領域内にて水、水素もしくは酸素を通す状態で対応する通過孔同士を連通する多孔質ガスケットの両方を含むものとする。
【0016】
第2の発明の高分子型水電解槽によると、水、水素および酸素の通過用孔近傍において酸素側から水素側にかかる圧力を陰極給電体の連通部材挿通孔縁部が受けることになるので、電極接合体膜の破損に至る伸びが抑えられる。
【0017】
第1の発明と第2の発明とは、それぞれ単独で用いられてもよく、両者を組み合わせて用いられてもよい。
【0018】
なお、陽極給電体および陰極給電体が、チタン繊維の焼結体に白金メッキされたものからなることが好ましい。このようにすると、電極接合体膜に接するのはチタン繊維層となり、その結果、電流が均一に流れ、電極接合体膜の損傷を防止することができ、しかも、白金メッキによって水素脆化を避けることができる。また、陽極給電体が、チタン繊維の焼結体に白金メッキされたものからなり、陰極給電体が、カーボン繊維の焼結体からなるものであってもよい。
【0019】
【実施例】
以下、本発明の実施例を説明する。この明細書において、上下は、図1の上下をいい、左右も図1の左右をいうものとする。
【0020】
実施例1
図1から図3までに実施例1の要部を示す。図1は、従来の高分子型水電解槽の図7に対応し、図2および図3は、同じく図8および図9にそれぞれ対応している。本実施例において、従来技術で示した図6〜図9までと異なる構成のものは、陽極給電体(31)、陰極給電体(32)およびシールゴム(36)であり、他の構成は、図6〜図9に示された従来のものと同じものが使用されている。
【0021】
図1および図2に示すように、陽極給電体(31)は、従来の陽極給電体(7)よりも左右幅が若干大きくなされており、それ以外は、従来のものと同じである。これにより、陽極給電体(31)の左右縁部(31a)がOリング嵌込み溝(21)の内周縁部(21a)に接するようになされている。
【0022】
また、陰極給電体(32)は、従来の陰極給電体(8)よりも左右幅および上下高さがともに大きくなされており、それ以外は、従来のものと同じである。陰極給電体(32)の左右幅は、陽極給電体(31)の左右幅よりもさらに大きくなされており、これにより、陰極給電体(32)の左右縁部(32a)がOリング嵌込み溝(21)の内周縁部(21a)およびOリング(20)の内周に接するようになされている。
【0023】
図2から分かるように、Oリング嵌込み溝(21)の内周縁部において酸素側から水素側にかかる圧力は、陽極給電体(31)および陰極給電体(32)の左右縁部(31a)(32a)で受けられることになるので、電極接合体膜(3)の部分的な伸びが抑えられる。したがって、図8にAで示した部分の近傍で起きていた電極接合体膜(3)の早期破損を防止し、電極接合体膜(3)の寿命を長くすることができる。
【0024】
図1および図3に示すように、陰極給電体(32)の上下高さは、その上下縁部(32b)がOリング嵌込み溝(21)の内周縁部(21a)近傍に位置するまで大きくなされている。このため、陰極給電体(32)の上下縁部(32b)は、水通過孔(13)(16)、酸素通過孔(14)(17)および水素通過孔(15)(18)がそれぞれ設けられた複極板(9)および電極接合体膜(3)の上下縁部に対向させられて、電極接合体膜(3)の上下縁部に当接させられている。陰極給電体(32)の上下縁部(32b)には、各通過孔(13)(16)(14)(17)(15)(18)に対応する位置に、シールゴム挿通孔(33)が設けられている。
【0025】
図3は、水が通過する下部ヘッダ部分を示すものであるが、同図に示すように、陰極給電体(32)の下縁部(32b)のシールゴム挿通孔(33)の径は、対応する複極板(9)および電極接合体膜(3)の水通過孔(13)(16)の径よりも大きく形成されている。そして、セル内部の水素発生領域−酸素発生領域をシールする短円筒状のシールゴム(36)は、内径が複極板(9)および電極接合体膜(3)の各通過孔(13)(16)にほぼ等しく、外径が陰極給電体(32)の水通過孔(33)よりも大きいものとされ、かつ、その外周部の電極接合体膜(3)側に、陰極給電体(32)のシールゴム挿通孔(33)の周縁部を収める切欠き(36a)が設けられている。図示省略したが、酸素および水素が通過する上ヘッダ部分も同様の構成とされている。図3の構成によると、水通過孔(13)(16)、酸素通過孔(14)(17)および水素通過孔(15)(18)近傍において酸素側から水素側にかかる圧力は、陰極給電体(32)の上下縁部(32b)に設けられたシールゴム挿通孔(33)の周縁部によって受けられ、電極接合体膜(3)の破損に至る伸びが抑えられる。したがって、図9にBで示した部分の近傍で起きていた電極接合体膜(3)の早期破損を防止し、電極接合体膜(3)の寿命を長くすることができる。
【0026】
実施例2
図4に実施例2の要部を示す。同図は、実施例1の図2に対応している。本実施例において、実施例1と同じものには、同じ符号を付して説明を省略する。
【0027】
同図に示すように、陰極給電体(42)は、実施例1の陰極給電体(32)よりもさらに左右幅が大きくなされており、これに対応して、Oリング(40)には、その内周に沿って陰極給電体(42)の左右縁部(42a)が嵌め入れられるL字状溝部(40a)が設けられている。
【0028】
実施例2の構成によると、Oリング嵌込み溝(21)の内周縁部において酸素側から水素側にかかる圧力を陽極給電体(31)および陰極給電体(42)の左右縁部(31a)(42a)が受けることになるので、電極接合体膜(3)の部分的な伸びが抑えられる。なお、陰極給電体(42)の左右縁部(42a)は、溝部(40a)で受けられているので、電極接合体膜(3)に陰極給電体(42)のエッジが当たることが確実に防止されている。したがって、図8にAで示した部分の近傍で起きていた電極接合体膜(3)の早期破損を防止し、電極接合体膜(3)の寿命を長くすることができる。
【0029】
実施例3
実施例1および実施例2の高分子型水電解槽では、陰極給電体(32)(42)は、一層とされているが、陰極給電体(52)を二層とすることもできる。
【0030】
図5にその実施例3の要部を示す。同図は、実施例1の図2および実施例の図4に対応しており、本実施例において、実施例1または2と同じものには、同じ符号を付して説明を省略する。
【0031】
同図に示すように、陰極給電体(52)は、給電層(53)と補強層(54)との二層構造とされている。補強層(54)は、その左右幅が給電層(53)の左右幅より若干大きくなるように形成されている。そして、Oリング(50)の内周に沿って設けられた溝部(50a)は、U字状でかつその幅が補強層(54)の厚みに対応させられており、補強層(54)の左右縁部(54a)だけがこの溝部(50a)に嵌め入れられている。
【0032】
実施例3の構成によると、Oリング嵌込み溝(21)の内周縁部において酸素側から水素側にかかる圧力を陽極給電体(31)および陰極給電体(52)の左右縁部(31a)(54a)が受けることになるので、電極接合体膜の部分的な伸びが抑えられる。なお、陰極給電体(52)が補強層(バックメタル)(54)を有する二層構造となっていることから、陰極給電体(52)自体の耐久性も向上し、しかも、補強層(54)の左右縁部(54a)が溝部(50a)で受けられているので、電極接合体膜(3)に陰極給電体(52)のエッジが当たることが確実に防止されるとともに、給電層(53)の左右縁部(53a)は、補強層(54)の左右縁部(54a)で受けられているので、その動きがさらに抑えられるている。したがって、図8にAで示した部分の近傍で起きていた電極接合体膜(3)の早期破損を防止し、電極接合体膜(3)の寿命を長くすることができる。
【0033】
上記各実施例について、従来の高分子型水電解槽と同様の使用によりその耐久性を調査したところ、従来のものは4000時間でその90%が損傷したのに対し、上記各実施例のものは8000時間でも損傷せず、耐久性が大幅に向上した。
【0034】
なお、上記において、複極板(9)のOリング嵌込み溝(21)は、水電解槽は、水平に設置する以外に、垂直に設置することも可能である。また、この水電解槽によると、上記と逆の反応、すなわち、水素および酸素から水およびエネルギーを生成する反応を起こさせることも可能である。また、上記では図6に(19A)で示すシールゴム(第1の連通部材)について述べているが、同図に(19B)で示す多孔質ガスケット(第2の連通部材)に適用してももちろんよい。
【0035】
【発明の効果】
第1の発明の高分子型水電解槽によると、Oリング嵌込み溝の底面が電極接合体膜の陽極側の面に接するようになされており、陽極給電体の左右縁部がOリング嵌込み溝の内周縁部に接し、陰極給電体の左右縁部がOリングに接するようになされているので、Oリング嵌込み溝の内周縁部において酸素側から水素側にかかる圧力を陽極給電体および陰極給電体の左右縁部が受けることになるので、電極接合体膜の部分的な伸びが抑えられ、これにより、Oリング嵌込み溝の内周縁部付近で起こっていた電極接合体膜の早期破損を防止することができ、水電解槽の耐久性を大幅に向上させることができる。
【0036】
第2の発明の高分子型水電解槽によると、水通過孔、酸素通過孔および水素通過孔近傍において酸素側から水素側にかかる圧力は、陰極給電体の連通部材挿通孔縁部によって受けられることになるので、電極接合体膜の破損に至る伸びが抑えられ、これにより、水、水素および酸素の通過用孔近傍での電極接合体膜の早期破損を防止することができ、水電解槽の耐久性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 本発明の高分子型水電解槽の1つのセルの構成要素を個々に示す正面図である。
【図2】 第1発明の水電解槽の実施例1を示す部分断面図であり、従来の高分子型水電解槽の図8に対応している。
【図3】 第2発明の水電解槽の実施例1を示す部分断面図であり、従来の高分子型水電解槽の図9に対応している。
【図4】 第1発明の高分子型水電解槽の実施例2の図2に対応する部分断面図である。
【図5】 第1発明の高分子型水電解槽の実施例3の図2に対応する部分断面図である。
【図6】 従来の高分子型水電解槽の分解状態を示す分解斜視図である。
【図7】 1つのセルの構成要素を個々に示す正面図である。
【図8】 従来の水電解槽で破損しやすい部位を示す部分断面図である。
【図9】 従来の水電解槽で破損しやすい別の部位を示す部分断面図である。
【符号の説明】
(1) 陽極主電極
(2) 陰極主電極
(3) 電極接合体膜
(9) 複極板
(20)(40)(50) Oリング
(40a)(50a) 溝部
(21) Oリング嵌込み溝
(21a) 内周縁部
(31) 陽極給電体
(31a) 左右縁部
(32)(42)(52) 陰極給電体
(32a)(42a)(53a)(54a) 左右縁部
(32b) 上下縁部
(36) シールゴム(連通部材)
(36a) 切欠き
(53) 給電層
(54) 補強層
(13)(16) 水通過孔
(14)(17) 酸素通過孔
(15)(18) 水素通過孔
[0001]
[Industrial application fields]
The present invention relates to a water electrolytic cell using a polymer electrolyte membrane.
[0002]
[Prior art]
Conventionally, the structure of a water electrolysis cell in the case of producing hydrogen and oxygen by water electrolysis using a polymer electrolyte membrane is as follows. As shown in FIG. 6, the anode main electrode (1) and the cathode main electrode (2) It is mainly composed of a plurality of unit cells arranged in series between the main electrodes (1) and (2) and a fastening flange (6) arranged outside the main electrodes (1) and (2). One cell consists of a bipolar plate (9), a porous anode feeder (7), an electrode assembly membrane (3), a porous cathode feeder (8) and the cathode of the adjacent bipolar plate (9). The electrode assembly membrane (3) is composed of an ion exchange membrane (4) that is long in the vertical direction and a catalyst electrode layer (5) provided at the center of both surfaces thereof.
[0003]
In this polymer-type water electrolyzer, the water supplied from the water supply header (10) at the bottom of the electrolyzer reaches the electrode assembly film (3) through the anode power feeder (7), and the electric power applied here As a result, water undergoes an electrolysis reaction, and in each unit cell, oxygen is generated on the surface of the catalyst electrode layer (5) on the anode side and hydrogen is generated on the cathode side. The generated oxygen passes through the anode power feeder (7), rises with the unreacted water in the vertical flow path provided on the anode side of the bipolar plate (9), and is discharged to the oxygen header (11). In addition, the generated hydrogen passes through the cathode feeder (8), passes through the vertical flow path provided on the cathode side of the bipolar plate (9), reaches the upper part of the electrolytic cell, and is discharged to the hydrogen header (12). The
[0004]
The anode feeder (7) and the cathode feeder (8) are the same size as the electrical current-carrying part (9a) that also serves as the water, oxygen, and hydrogen flow paths provided on the bipolar plate (9), and the electrodes The ion exchange membrane (4) of the assembly membrane (3) is the same size as the bipolar plate (9), and the catalyst electrode layer (5) of the electrode assembly membrane (3) is the electrical conducting part of the bipolar plate (9). Same size as (9a).
Water passage holes (13) and (16) are respectively provided at the lower ends of the bipolar plate (9) and the electrode assembly membrane (3), and oxygen passage holes (14), (17) and Hydrogen passage holes (15) and (18) are respectively provided. The corresponding through-holes (13), (16), (14), (17), (15), and (18) of the bipolar plate (9) and the electrode assembly film (3) are the hydrogen generation region-oxygen inside the cell. A short cylindrical seal rubber (19A) that seals the generation region or a porous gasket (19B) that allows water, hydrogen, or oxygen to pass through the region.
[0005]
As shown in FIGS. 7 and 8, the periphery of the bipolar plate (9) is substantially square when viewed from the front, and the bottom surface is in contact with the anode side surface of the electrode assembly film (3). An O-ring fitting groove (21) is provided, and an O-ring (20) fitted in the groove (21) causes a peripheral portion of the bipolar plate (9) and a peripheral portion of the electrode assembly film (3) to That is, between the inside and outside of the electrolytic cell is sealed.
[0006]
In addition, as shown in FIG. 9, a bipolar plate (9) having passage holes (13), (14), (15), (16), (17), (18) (shown as water passage holes (13), (16)). Between the upper and lower edges of the electrode assembly film and the upper and lower edges of the electrode assembly film (3), only the sealing rubber (19A) or the porous gasket (19B) is interposed, and the anode feeder (7) and the cathode feeder The upper and lower edges of the body (8) are not located in this part.
[0007]
[Problems to be solved by the invention]
In the conventional polymer-type water electrolyzer, the electrode assembly film (3) is damaged near the boundary between the anode feeder (7) and the cathode feeder (8) (near the portion indicated by A in FIG. 8). In addition, there is a problem that the electrode assembly membrane (3) is damaged even in the vicinity of the seal rubber (19A) (in the vicinity of the portion indicated by B in FIG. 9) or the porous gasket (19B), and the improvement Has become an issue.
[0008]
The present invention has been devised to solve the above-described problems. On the space side where oxygen is generated, the gas pressure is higher than the space where hydrogen is generated because water circulates. Therefore, paying attention to the fact that the electrode assembly film is pushed from the oxygen side to the hydrogen side, and the portion of the electrode assembly film that contacts the edge of the cathode power feeder tends to be damaged, the electrode assembly The object is to achieve a long lifetime of the film.
[0009]
[Means for Solving the Problems]
A polymer-type water electrolyzer according to a first invention includes an anode main electrode and a cathode main electrode, and a plurality of unit cells arranged in series between the main electrodes, each cell being a bipolar plate An anode feeder, an electrode assembly film made of a solid polymer electrolyte membrane, a cathode feeder, and a peripheral portion of the bipolar plate fitted in an O-ring insertion groove provided on the peripheral edge of the bipolar plate; in the high-molecular water electrolyzer that has a O-ring to seal between the periphery of the electrode assembly film, as the bottom surface of the O-ring fitting groove is in contact with the anode side of the electrode assembly film made which have left and right edges of the anode current collector is in contact with the inner peripheral edge portion of the O-ring fitting groove, and is characterized in that the lateral edges of the cathode current collector are arranged so that contact with the O-ring .
[0010]
According to the polymer-type water electrolyzer of the first invention, the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring insertion groove is received by the left and right edges of the anode feeder and the cathode feeder. , Partial elongation of the electrode assembly film is suppressed.
[0011]
Then, the bottom surface of the O-ring fitting groove has been in contact with the anode side of the electrode assembly film, left and right edges of the anode current collector is in contact with the inner peripheral edge portion of the O-ring fitting groove, the cathode current collector Since the right and left edge portions of the power supply are in contact with the O-ring, it can be dealt with only by changing the dimensions of the power feeder, and the manufacturing effort does not increase.
[0012]
In the above, a groove part may be provided along the inner periphery of the O-ring, and the right and left edge parts of the cathode power supply body may be fitted into the groove part. If it does in this way, the edge of a cathode electric power feeder will be covered with an O-ring, and it will be reliably prevented that the edge of a cathode electric power feeder hits an electrode assembly film.
[0013]
The cathode power supply body preferably has a two-layer structure of a power supply layer and a reinforcing layer. In this case, it is preferable that the width of the groove provided along the inner periphery of the O-ring is made to correspond to the thickness of the reinforcing layer, and only the left and right edge portions of the reinforcing layer are fitted into the groove.
[0014]
A polymer-type water electrolyzer according to a second invention comprises an anode main electrode and a cathode main electrode, and a plurality of unit cells arranged in series between the main electrodes, each cell being a bipolar plate An anode feeder, an electrode assembly film made of a solid polymer electrolyte membrane, and a cathode feeder, with water passage holes at the lower edge of the bipolar plate and electrode assembly membrane, In a polymer electrolyte water electrolysis cell in which holes for passing hydrogen and oxygen are provided, and the corresponding through holes are communicated with each other by a short cylindrical communicating member, the cathode feeder is connected to the upper and lower edges of the electrode assembly film. The upper and lower edge portions are provided with a communication member insertion hole having a diameter larger than the inner diameter of the communication member and smaller than the outer diameter, and the communication member has a peripheral edge of the communication member insertion hole. It is characterized in that a notch for receiving the part is provided.
[0015]
The communicating member refers to a seal rubber that communicates between the corresponding passage holes in a state where the hydrogen generation region-oxygen generation region inside the cell is sealed, and communication between the corresponding passage holes in a state where water, hydrogen, or oxygen is passed in the region. Both porous gaskets to be included.
[0016]
According to the polymer-type water electrolyzer of the second invention, the pressure applied from the oxygen side to the hydrogen side in the vicinity of the water, hydrogen and oxygen passage holes is received by the connecting member insertion hole edge of the cathode power supply. The elongation leading to the damage of the electrode assembly film is suppressed.
[0017]
The first invention and the second invention may be used alone or in combination.
[0018]
It is preferable that the anode power supply body and the cathode power supply body are made of a titanium fiber sintered body plated with platinum. In this way, the titanium fiber layer is in contact with the electrode assembly film. As a result, the current flows uniformly, and the electrode assembly film can be prevented from being damaged, and further, hydrogen embrittlement is avoided by platinum plating. be able to. Further, the anode power feeding body may be made of a titanium fiber sintered body that is platinum-plated, and the cathode power feeding body may be made of a carbon fiber sintered body.
[0019]
【Example】
Examples of the present invention will be described below. In this specification, the top and bottom refer to the top and bottom of FIG. 1, and the left and right also refer to the left and right of FIG.
[0020]
Example 1
The principal part of Example 1 is shown in FIGS. FIG. 1 corresponds to FIG. 7 of a conventional polymer-type water electrolyzer, and FIGS. 2 and 3 correspond to FIGS. 8 and 9 respectively. In this embodiment, the configurations different from those shown in FIGS. 6 to 9 shown in the prior art are the anode power supply (31), the cathode power supply (32), and the seal rubber (36). The same thing as the conventional one shown in FIGS. 6 to 9 is used.
[0021]
As shown in FIGS. 1 and 2, the anode feeder (31) has a slightly larger left-right width than the conventional anode feeder (7), and is otherwise the same as the conventional one. Accordingly, the left and right edge portions (31a) of the anode power feeding body (31) are in contact with the inner peripheral edge portion (21a) of the O-ring fitting groove (21).
[0022]
Further, the cathode power supply (32) is larger in both lateral width and vertical height than the conventional cathode power supply (8), and is otherwise the same as the conventional one. The left and right width of the cathode power supply (32) is made larger than the left and right width of the anode power supply (31), so that the left and right edge portions (32a) of the cathode power supply (32) are O-ring fitting grooves. The inner periphery (21a) of (21) and the inner periphery of the O-ring (20) are in contact with each other.
[0023]
As can be seen from FIG. 2, the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring insertion groove (21) is determined by the left and right edges (31a) of the anode power supply (31) and the cathode power supply (32). (32a), the partial elongation of the electrode assembly film (3) can be suppressed. Therefore, it is possible to prevent early breakage of the electrode assembly film (3) that has occurred in the vicinity of the portion indicated by A in FIG. 8, and to prolong the life of the electrode assembly film (3).
[0024]
As shown in FIG. 1 and FIG. 3, the vertical height of the cathode power supply (32) is such that the vertical edge (32b) is positioned in the vicinity of the inner peripheral edge (21a) of the O-ring fitting groove (21). It has been made bigger. Therefore, the upper and lower edges (32b) of the cathode power feeder (32) are provided with water passage holes (13), (16), oxygen passage holes (14), (17), and hydrogen passage holes (15), (18), respectively. The upper and lower edges of the bipolar plate (9) and the electrode assembly film (3) are opposed to the upper and lower edges of the electrode assembly film (3). Seal rubber insertion holes (33) are provided at positions corresponding to the respective through holes (13), (16), (14), (17), (15), and (18) at the upper and lower edges (32b) of the cathode power feeder (32). Is provided.
[0025]
FIG. 3 shows the lower header portion through which water passes. As shown in FIG. 3, the diameter of the seal rubber insertion hole (33) in the lower edge portion (32b) of the cathode power supply body (32) is The bipolar plate (9) and the electrode assembly membrane (3) are formed larger in diameter than the water passage holes (13) and (16). The short cylindrical seal rubber (36) that seals the hydrogen generation region-oxygen generation region inside the cell has an inner diameter of each through hole (13) (16) of the bipolar plate (9) and the electrode assembly membrane (3). ), The outer diameter is larger than the water passage hole (33) of the cathode power feeder (32), and on the electrode assembly film (3) side of the outer periphery thereof, the cathode power feeder (32) A notch (36a) for receiving the peripheral edge of the seal rubber insertion hole (33) is provided. Although not shown, the upper header portion through which oxygen and hydrogen pass has the same configuration. According to the configuration of FIG. 3, the pressure applied from the oxygen side to the hydrogen side in the vicinity of the water passage holes (13) and (16), the oxygen passage holes (14) and (17), and the hydrogen passage holes (15 and 18) It is received by the peripheral edge portion of the seal rubber insertion hole (33) provided in the upper and lower edge portions (32b) of the body (32), and the elongation leading to the damage of the electrode assembly film (3) is suppressed. Accordingly, it is possible to prevent early breakage of the electrode assembly film (3) that has occurred in the vicinity of the portion indicated by B in FIG. 9, and to prolong the life of the electrode assembly film (3).
[0026]
Example 2
The principal part of Example 2 is shown in FIG. This figure corresponds to FIG. 2 of the first embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0027]
As shown in the figure, the cathode power supply (42) has a larger left-right width than the cathode power supply (32) of Example 1, and correspondingly, the O-ring (40) An L-shaped groove (40a) into which the left and right edge portions (42a) of the cathode power supply body (42) are fitted is provided along the inner periphery.
[0028]
According to the configuration of the second embodiment, the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring fitting groove (21) is changed to the left and right edges (31a) of the anode feeder (31) and the cathode feeder (42). Since (42a) is received, partial elongation of the electrode assembly film (3) is suppressed. Since the left and right edge portions (42a) of the cathode power supply (42) are received by the groove portion (40a), it is ensured that the edge of the cathode power supply (42) hits the electrode assembly film (3). It is prevented. Therefore, it is possible to prevent early breakage of the electrode assembly film (3) that has occurred in the vicinity of the portion indicated by A in FIG. 8, and to prolong the life of the electrode assembly film (3).
[0029]
Example 3
In the polymer-type water electrolyzers of Example 1 and Example 2, the cathode power supply (32) (42) is a single layer, but the cathode power supply (52) may be a double layer.
[0030]
FIG. 5 shows a main part of the third embodiment. This figure corresponds to FIG. 2 of the first embodiment and FIG. 4 of the first embodiment. In this embodiment, the same components as those of the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0031]
As shown in the figure, the cathode power feeder (52) has a two-layer structure of a power feeding layer (53) and a reinforcing layer (54). The reinforcing layer (54) is formed such that its left-right width is slightly larger than the left-right width of the power feeding layer (53). The groove (50a) provided along the inner periphery of the O-ring (50) is U-shaped and its width corresponds to the thickness of the reinforcing layer (54). Only the left and right edge portions (54a) are fitted into the groove portions (50a).
[0032]
According to the configuration of Example 3, the pressure applied from the oxygen side to the hydrogen side at the inner peripheral edge of the O-ring fitting groove (21) is changed to the left and right edges (31a) of the anode power supply (31) and the cathode power supply (52). Since (54a) is received, partial elongation of the electrode assembly film is suppressed. Since the cathode power supply (52) has a two-layer structure having a reinforcing layer (back metal) (54), the durability of the cathode power supply (52) itself is improved, and the reinforcing layer (54 ), The right and left edge portions (54a) are received by the groove portion (50a), so that the electrode assembly film (3) is reliably prevented from hitting the edge of the cathode power supply body (52) and the power supply layer ( Since the left and right edge portions (53a) of 53) are received by the left and right edge portions (54a) of the reinforcing layer (54), the movement thereof is further suppressed. Therefore, it is possible to prevent early breakage of the electrode assembly film (3) that has occurred in the vicinity of the portion indicated by A in FIG. 8, and to prolong the life of the electrode assembly film (3).
[0033]
About each said Example, when the durability was investigated by the use similar to the conventional polymer-type water electrolyzer, 90% of the conventional thing was damaged in 4000 hours, The thing of each said Example Was not damaged even after 8000 hours, and the durability was greatly improved.
[0034]
In the above, the O-ring fitting groove (21) of the bipolar plate (9) can be installed vertically in addition to installing the water electrolysis tank horizontally. Further, according to this water electrolyzer, it is possible to cause a reaction reverse to the above, that is, a reaction for generating water and energy from hydrogen and oxygen. In the above description, the seal rubber (first communication member) indicated by (19A) in FIG. 6 is described. Of course, the present invention can be applied to the porous gasket (second communication member) indicated by (19B) in FIG. Good.
[0035]
【The invention's effect】
According to the polymer-type water electrolyzer of the first invention, the bottom surface of the O-ring insertion groove is in contact with the surface on the anode side of the electrode assembly film, and the left and right edges of the anode feeder are O-ring fitting. against the inner periphery of the write groove, since the left and right edges of the cathode current collector are arranged so that contact with the O-ring, the anode feeding pressure on the hydrogen side of the oxygen side in the inner peripheral portion of the O-ring fitting groove Since the left and right edge portions of the body and the cathode power supply body are received, partial elongation of the electrode assembly film is suppressed, whereby the electrode assembly film that has occurred near the inner peripheral edge of the O-ring insertion groove Early damage can be prevented, and the durability of the water electrolyzer can be greatly improved.
[0036]
According to the polymer water electrolyzer of the second invention, the pressure applied from the oxygen side to the hydrogen side in the vicinity of the water passage hole, the oxygen passage hole and the hydrogen passage hole is received by the edge of the communicating member insertion hole of the cathode power feeder. Therefore, the elongation leading to breakage of the electrode assembly membrane can be suppressed, thereby preventing early failure of the electrode assembly membrane in the vicinity of water, hydrogen and oxygen passage holes. The durability of can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a front view showing individual components of one cell of a polymer-type water electrolyzer according to the present invention.
FIG. 2 is a partial sectional view showing Example 1 of the water electrolyzer according to the first invention, and corresponds to FIG. 8 showing a conventional polymer-type water electrolyzer.
FIG. 3 is a partial cross-sectional view showing Example 1 of the water electrolyzer according to the second invention and corresponds to FIG. 9 of a conventional polymer-type water electrolyzer.
FIG. 4 is a partial cross-sectional view corresponding to FIG. 2 of Example 2 of the polymer-type water electrolyzer of the first invention.
FIG. 5 is a partial cross-sectional view corresponding to FIG. 2 of Example 3 of the polymer type water electrolyzer according to the first invention.
FIG. 6 is an exploded perspective view showing a disassembled state of a conventional polymer type water electrolyzer.
FIG. 7 is a front view showing components of one cell individually.
FIG. 8 is a partial cross-sectional view showing a portion that is easily damaged in a conventional water electrolyzer.
FIG. 9 is a partial cross-sectional view showing another part that is easily damaged in a conventional water electrolyzer.
[Explanation of symbols]
(1) Anode main electrode
(2) Cathode main electrode
(3) Electrode assembly membrane
(9) Bipolar plate
(20) (40) (50) O-ring
(40a) (50a) Groove
(21) O-ring insertion groove
(21a) Inner peripheral edge
(31) Anode feeder
(31a) Left and right edges
(32) (42) (52) Cathode feeder
(32a) (42a) (53a) (54a) Left and right edges
(32b) Upper and lower edges
(36) Seal rubber (communication member)
(36a) Notch
(53) Feed layer
(54) Reinforcing layer
(13) (16) Water passage hole
(14) (17) Oxygen passage hole
(15) (18) Hydrogen passage hole

Claims (8)

陽極主電極(1)および陰極主電極(2)と、これら主電極(1)(2)の間に直列に配された複数の単位セルとを具備し、1つのセルが、複極板(9)と、陽極給電体(31)と、固体高分子電解質膜からなる電極接合体膜(3)と、陰極給電体(32)と、複極板(9)の周縁に設けられたOリング嵌込み溝(21)に嵌められて複極板(9)の周縁部と電極接合体膜(3)の周縁部との間をシールするOリング(20)(40)(50)とを有している高分子型水電解槽において、
Oリング嵌込み溝 (21) の底面が電極接合体膜 (3) の陽極側の面に接するようになされており、陽極給電体(31) 左右縁部(31a) Oリング嵌込み溝(21)の内周縁部(21a)に接し、陰極給電体 (32)(42)(52) の左右縁部 (32a)(42a)(53a)(54a) がOリング (20) に接するようになされていることを特徴とする高分子型水電解槽。
An anode main electrode (1) and a cathode main electrode (2), and a plurality of unit cells arranged in series between these main electrodes (1) (2), each cell is a bipolar plate ( 9), an anode feeder (31), an electrode assembly film (3) made of a solid polymer electrolyte membrane, a cathode feeder (32), and an O-ring provided on the periphery of the bipolar plate (9) O-rings (20), (40) and (50) which are fitted in the fitting grooves (21) and seal between the peripheral edge of the bipolar plate (9) and the peripheral edge of the electrode assembly film (3). in the high-molecular water electrolyzer it is,
O-ring fitting the bottom of the groove (21) have been made in contact with the anode side of the electrode assembly film (3), right and left edges (31a) of O-ring fitting groove of the anode current collector (31) and contacting the inner peripheral edge portion of (21) (21a), against the cathode current collector (32) (42) right and left edges of the (52) (32a) (42a) (53a) (54a) is O-ring (20) A polymer type water electrolyzer characterized in that
Oリング(40)(50)の内周に沿って溝部(40a)(50a)が設けられ、この溝部(40a)(50a)に陰極給電体(42)(52)の左右縁部(42a)(54a)が嵌め入れられていることを特徴とする請求項記載の高分子型水電解槽。Grooves (40a) and (50a) are provided along the inner periphery of the O-ring (40) and (50), and left and right edges (42a) of the cathode power feeders (42) and (52) are provided in the grooves (40a and 50a). (54a) polymer water electrolyzer according to claim 1, wherein the is fitted. 陰極給電体(52)が、給電層(53)と補強層(54)との二層構造とされていることを特徴とする請求項1記載の高分子型水電解槽。Cathode current collector (52), a feeding layer (53) and the reinforcing layer (54) and the polymer water electrolyzer of claim 1 Symbol mounting, characterized in that it is a two-layer structure. 陰極給電体(52)が、給電層(53)と補強層(54)との二層構造とされており、Oリング(50)の内周に沿って設けられた溝部(50a)の幅が補強層(54)の厚みに対応させられて、補強層(54)の左右縁部(54a)だけがこの溝部(50a)に嵌め入れられていることを特徴とする請求項記載の高分子型水電解槽。The cathode feeder (52) has a two-layer structure of a feeding layer (53) and a reinforcing layer (54), and the width of the groove (50a) provided along the inner periphery of the O-ring (50) is 3. The polymer according to claim 2, wherein only the left and right edge portions (54a) of the reinforcing layer (54) are fitted into the groove portion (50a) in correspondence with the thickness of the reinforcing layer (54). Type water electrolyzer. 複極板(9)および電極接合体膜(3)の下縁部に水通過孔(13)(16)が、同上縁部に水素および酸素の通過用孔(14)(15)(17)(18)がそれぞれ設けられて、対応する通過孔(13)(14)(15)(16)(17)(18)同士が短円筒状連通部材(36)によって連通されており、陰極給電体(32)が、電極接合体膜(3)の上下縁部に当接する上下縁部(32b)を有し、その上下縁部(32b)に、連通部材(36)の内径より大きくかつ外径より小さい径の連通部材挿通孔(33)が設けられており、連通部材(36)の外周部に、連通部材挿通孔(33)の周縁部を収める環状の切欠き(36a)が設けられていることを特徴とする請求項1〜のうち1項記載の高分子型水電解槽。Water passage holes (13), (16) at the lower edge of the bipolar plate (9) and electrode assembly membrane (3), and passage holes for hydrogen and oxygen at the upper edge (14), (15), (17) (18) is provided, and the corresponding through holes (13), (14), (15), (16), (17), and (18) are communicated with each other by a short cylindrical communication member (36), (32) has upper and lower edges (32b) that contact the upper and lower edges of the electrode assembly film (3), and the upper and lower edges (32b) are larger than the inner diameter of the communication member (36) and have an outer diameter. A communication member insertion hole (33) having a smaller diameter is provided, and an annular notch (36a) for accommodating the peripheral portion of the communication member insertion hole (33) is provided on the outer peripheral portion of the communication member (36). polymer type water electrolysis cell as claimed one of claims 1-4, characterized in that there. 陽極主電極(1)および陰極主電極(2)と、これら主電極(1)(2)の間に直列に配された複数の単位セルとを具備し、1つのセルが、複極板(9)と、陽極給電体(31)と、固体高分子電解質膜からなる電極接合体膜(3)と、陰極給電体(32)とを有し、複極板(9)および電極接合体膜(3)の下縁部に水通過孔(13)(16)が、同上縁部に酸素通過孔(14)(15)および水素通過孔(17)(18)がそれぞれ設けられて、対応する通過孔(13)(14)(15)(16)(17)(18)同士が短円筒状連通部材(36)によって連通されている高分子型水電解槽において、
陰極給電体(32)が、電極接合体膜(3)の上下縁部に当接する上下縁部(32b)を有し、この上下縁部(32b)に、連通部材(36)の内径より大きくかつ外径より小さい径の連通部材挿通孔(33)が設けられており、連通部材(36)の外周部に、連通部材挿通孔(33)の周縁部を収める環状の切欠き(36a)が設けられていることを特徴とする高分子型水電解槽。
An anode main electrode (1) and a cathode main electrode (2), and a plurality of unit cells arranged in series between these main electrodes (1) (2), each cell is a bipolar plate ( 9), an anode feeder (31), an electrode assembly film (3) made of a solid polymer electrolyte membrane, and a cathode feeder (32), and a bipolar plate (9) and an electrode assembly membrane (3) Water passage holes (13) and (16) are provided at the lower edge portion, and oxygen passage holes (14) and (15) and hydrogen passage holes (17) and (18) are provided at the upper edge portion. in passing hole (13) (14) (15) (16) (17) (18) high-molecular water electrolyzer that have communicated with each other by the short cylindrical communication member (36),
The cathode power supply (32) has upper and lower edges (32b) that contact the upper and lower edges of the electrode assembly film (3), and the upper and lower edges (32b) are larger than the inner diameter of the communication member (36). In addition, a communication member insertion hole (33) having a diameter smaller than the outer diameter is provided, and an annular notch (36a) for accommodating the peripheral portion of the communication member insertion hole (33) is provided on the outer peripheral portion of the communication member (36). A polymer type water electrolyzer characterized by being provided.
陽極給電体(31)および陰極給電体(32)(42)(52)が、それぞれチタン繊維の焼結体に白金メッキされたものからなることを特徴とする請求項1〜のうち1項記載の高分子型水電解槽。Anode current collector (31) and a cathode current collector (32) (42) (52), one of claims 1-6, characterized in that it consists of those respectively platinized sintered body of titanium fibers The polymer type water electrolyzer described. 陽極給電体(31)が、チタン繊維の焼結体に白金メッキされたものからなり、陰極給電体(32)(42)(52)が、カーボン繊維の焼結体からなることを特徴とする請求項1〜のうち1項記載の高分子型水電解槽。The anode power feeding body (31) is made of a platinum-plated titanium fiber sintered body, and the cathode power feeding bodies (32), (42) and (52) are made of a carbon fiber sintered body. polymer type water electrolysis cell as claimed one of claims 1 to 6.
JP2001041162A 2001-02-19 2001-02-19 Solid polymer water electrolyzer Expired - Fee Related JP3991147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041162A JP3991147B2 (en) 2001-02-19 2001-02-19 Solid polymer water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041162A JP3991147B2 (en) 2001-02-19 2001-02-19 Solid polymer water electrolyzer

Publications (2)

Publication Number Publication Date
JP2002241979A JP2002241979A (en) 2002-08-28
JP3991147B2 true JP3991147B2 (en) 2007-10-17

Family

ID=18903642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041162A Expired - Fee Related JP3991147B2 (en) 2001-02-19 2001-02-19 Solid polymer water electrolyzer

Country Status (1)

Country Link
JP (1) JP3991147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510035B2 (en) * 2003-03-13 2010-07-21 株式会社神鋼環境ソリューション Electrolysis cell and hydrogen oxygen generator
JP6963978B2 (en) * 2017-11-29 2021-11-10 株式会社トクヤマ Electrolytic cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893238B2 (en) * 1994-03-14 1999-05-17 工業技術院長 Water electrolyzer using polymer electrolyte membrane
JP3235649B2 (en) * 1997-03-04 2001-12-04 神鋼パンテツク株式会社 Electrolysis cell for hydrogen oxygen generator
JP2961228B2 (en) * 1998-03-10 1999-10-12 財団法人地球環境産業技術研究機構 Water electrolyzer using solid polymer electrolyte membrane
JP3649598B2 (en) * 1998-08-27 2005-05-18 三菱重工業株式会社 Concentrated ozone generator
JP3122736B2 (en) * 1999-03-24 2001-01-09 財団法人地球環境産業技術研究機構 Bipolar plate for water electrolysis tank and method for producing the same

Also Published As

Publication number Publication date
JP2002241979A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
TWI770320B (en) Membrane-electrode-gasket assembly for electrolysis of alkaline water
TWI797285B (en) Electrolysis vessel for alkaline water electrolysis
JP6013448B2 (en) Electrochemical cell and use of electrochemical cell
JP6963978B2 (en) Electrolytic cell
US6495006B1 (en) Bipolar ion exchange membrane electrolytic cell
JP6001646B2 (en) Electrochemical cell with gasket frame as an alternative to sealing material to prevent electrolyte from leaching to the edge
US5221452A (en) Monopolar ion exchange membrane electrolytic cell assembly
EP3778993A1 (en) Diaphragm-gasket-protective member complex, electrolysis element, and electrolysis vessel
JP3991147B2 (en) Solid polymer water electrolyzer
CN1197999C (en) Bipolar multi-purpose electrolytic cell for high current loads
WO2021200374A1 (en) Electrolysis vessel
US6527923B2 (en) Bifurcated electrode of use in electrolytic cells
KR100704437B1 (en) Electrochemical unit cell and electrochemical cell assembly with non-conductive separator
JP3091617B2 (en) Bipolar electrolytic cell
JP6306879B2 (en) Manifold unit and electrolytic cell
US4329218A (en) Vertical cathode pocket assembly for membrane-type electrolytic cell
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JP7330422B1 (en) Electrolyzer for alkaline water electrolysis
CN220788819U (en) Electrolytic tank
CN115335551A (en) Alkaline water electrolytic bath
WO2020080201A1 (en) Electrochemical cell and cell stack
KR200326224Y1 (en) Electrolyzer
CN118043498A (en) Electrolytic cell
JP2020066799A (en) Electrochemical cell and cell stack
KR20240068756A (en) Alkali water electrolysis membrane - electrode - gasket composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

R150 Certificate of patent or registration of utility model

Ref document number: 3991147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees