JP2002237444A - Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner - Google Patents

Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner

Info

Publication number
JP2002237444A
JP2002237444A JP2001033970A JP2001033970A JP2002237444A JP 2002237444 A JP2002237444 A JP 2002237444A JP 2001033970 A JP2001033970 A JP 2001033970A JP 2001033970 A JP2001033970 A JP 2001033970A JP 2002237444 A JP2002237444 A JP 2002237444A
Authority
JP
Japan
Prior art keywords
charged particle
knife edge
particle beam
opening
reticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001033970A
Other languages
Japanese (ja)
Inventor
Takehisa Yahiro
威久 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001033970A priority Critical patent/JP2002237444A/en
Priority to US10/000,458 priority patent/US6831282B2/en
Publication of JP2002237444A publication Critical patent/JP2002237444A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of evaluating image-forming capability of a charged-particle-beam aligner, capable of realizing a highly precise measurement of a beam blur, and to provide a charged-particle-beam aligner to which the method is applicable. SOLUTION: A beam-limiting opening 5 is placed several mm-20 mm apart under a knife edge 1. The diameter of the beam-limiting opening 5 is designed such that an angle θ that views the opening edge 5a from the knife edge 1 is slightly larger than the convergent angle of the rectangular-shaped beam EB at a projection lens of a lower stage. When the rectangular-shaped beam EB that has passed through the projection lens of the lower stage is scanned on the knife edge 1, non-scattered electrons e1 and forward-scattered electrons e2, not absorbed by a knife-edge plate 2, pass to the downward direction. Then, these electron e1, e2 reach the beam-limiting opening 5, and the non-scattered electrons e1 pass through the opening 5, while the forward-scattered electrons e2 are mostly interrupted. Therefore, only the non-scattered electrons e1 are detected by an electron detector 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路等
のリソグラフィに用いる荷電粒子線露光装置における結
像性能の評価方法と、それを適用し得る荷電粒子線露光
装置に関する。特には、高精度なビームボケの計測を実
現できる荷電粒子線露光装置の結像性能の評価方法に関
する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for evaluating the imaging performance of a charged particle beam exposure apparatus used for lithography of semiconductor integrated circuits and the like, and a charged particle beam exposure apparatus to which the method can be applied. In particular, the present invention relates to a method for evaluating the imaging performance of a charged particle beam exposure apparatus capable of realizing highly accurate beam blur measurement.

【0002】[0002]

【関連技術】電子線描画装置は、スループット(処理速
度)が向上しにくいことが知られている。これに対し、
電子線描画装置の高スループット化を目的として、大面
積のパターンを一括して転写露光するタイプの電子線露
光装置(EBステッパー等)の開発が進められている。
そして、このような露光装置においては、電子ビームの
ボケ(Blur)を計測し、ビーム調整(焦点、非点、倍
率、回転等の各種補正値のキャリブレーション)や結像
性能の評価を行う必要がある。
2. Related Art It is known that an electron beam drawing apparatus hardly improves throughput (processing speed). In contrast,
For the purpose of increasing the throughput of an electron beam lithography apparatus, development of an electron beam exposure apparatus (such as an EB stepper) for transferring and exposing a large area pattern collectively has been advanced.
In such an exposure apparatus, it is necessary to measure the blur of the electron beam, perform beam adjustment (calibration of various correction values such as focus, astigmatism, magnification, rotation, etc.) and evaluate the imaging performance. There is.

【0003】図5は、従来の電子線露光装置のビームボ
ケ計測系を模式的に示す斜視図である。図6は、同ビー
ムボケ計測系を模式的に示す側面断面図及びブロック図
である。図7は、同ビームボケ計測系における計測結果
を説明するためのグラフである。
FIG. 5 is a perspective view schematically showing a beam blur measurement system of a conventional electron beam exposure apparatus. FIG. 6 is a side sectional view and a block diagram schematically showing the beam blur measurement system. FIG. 7 is a graph for explaining a measurement result in the beam blur measurement system.

【0004】この電子線露光装置の最上流部には、図示
せぬ照明ビーム源及び計測用パターンを有するレチクル
が配置されており、その下方に図5及び図6に示すナイ
フエッジ101をもつ矩形開口が配置されている。照明
ビーム源から照射された電子ビームは、ナイフエッジ1
01をもつ矩形開口上において、矩形ビームEB(レチ
クルの転写像)として照射される。ナイフエッジ101
の下方には、電子検出器(センサ)105が配置されて
いる。矩形ビームEBをスキャンすると、ナイフエッジ
101の非開口部(ナイフエッジ板100)に当たった
電子は、ナイフエッジ板が厚い場合は吸収され、開口部
102を通過した電子は電子検出器105に検出され
る。しかし、ナイフエッジ板が薄い場合(例えば厚さ2
μm)は、ナイフエッジ板100に当った電子のほとん
どは、ナイフエッジ板100を散乱を受けながら透過す
る。なお、ナイフエッジ101の幾何学的精度を上げる
ためには、ナイフエッジ板100は薄いほうが有利であ
る。以下、このナイフエッジ板100は薄いものとして
話を進める。
At the most upstream portion of the electron beam exposure apparatus, a reticle having an illumination beam source and a measurement pattern (not shown) is arranged, and a rectangular having a knife edge 101 shown in FIGS. An opening is arranged. The electron beam emitted from the illumination beam source
The light beam is irradiated as a rectangular beam EB (transfer image of the reticle) on the rectangular opening having the number 01. Knife edge 101
An electronic detector (sensor) 105 is arranged below the electronic device. When the rectangular beam EB is scanned, the electrons hitting the non-opening (knife edge plate 100) of the knife edge 101 are absorbed when the knife edge plate is thick, and the electrons passing through the opening 102 are detected by the electron detector 105. Is done. However, if the knife edge plate is thin (eg,
(μm), most of the electrons hitting the knife edge plate 100 are transmitted while being scattered by the knife edge plate 100. In order to increase the geometric accuracy of the knife edge 101, it is advantageous that the knife edge plate 100 is thin. Hereinafter, the description will proceed assuming that the knife edge plate 100 is thin.

【0005】電子検出器105で検出される電子は、開
口部102を通過した無散乱電子e1と、ナイフエッジ
板100を散乱透過した前方散乱電子e2である。これ
らの電子e1、e2に相当するビーム電流は、プリアン
プ106で増幅された後、微分回路107で時間に対す
る変化率に換算され、その出力波形がオシロスコープ1
08で表示される。そして、この出力波形からビームボ
ケが計測され、これに基づきビーム調整(焦点、非点、
倍率、回転等の各種補正値のキャリブレーション)や結
像性能の評価が行われる。なお、この種のビームボケ計
測方法としては、例えば特開平10−289851号公
報、又は、特願2000−12620等がある。
The electrons detected by the electron detector 105 are a non-scattered electron e1 passing through the opening 102 and a forward scattered electron e2 scattered and transmitted through the knife edge plate 100. The beam currents corresponding to these electrons e1 and e2 are amplified by a preamplifier 106, then converted into a rate of change with respect to time by a differentiating circuit 107, and the output waveform is converted to an oscilloscope 1
08 is displayed. Beam blur is measured from the output waveform, and beam adjustment (focus, astigmatism,
Calibration of various correction values such as magnification and rotation) and evaluation of the imaging performance are performed. In addition, as this kind of beam blur measurement method, there is, for example, Japanese Patent Application Laid-Open No. 10-289851, Japanese Patent Application No. 2000-12620, and the like.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述のビー
ムボケ計測方法では、本来は電子検出器105に到達し
て欲しくない前方散乱電子e2の多くが、電子検出器1
05に到達してしまい、この前方散乱電子e2により計
測のコントラストが悪化してしまう。すなわち、前方散
乱電子e2がノイズ源になるため、図7に示すように、
理想的な検出電流波形W(0レベルに沿った波形)から
オフセットした検出電流波形W′が検出されるため、ノ
イズの影響で測定精度が悪化する。
By the way, in the above-described beam blur measurement method, most of the forward scattered electrons e2, which do not originally want to reach the electron detector 105, are generated by the electron detector 1.
05, and the measurement contrast is deteriorated by the forward scattered electrons e2. That is, since the forward scattered electrons e2 become a noise source, as shown in FIG.
Since the detected current waveform W 'offset from the ideal detected current waveform W (waveform along the 0 level) is detected, the measurement accuracy deteriorates due to the influence of noise.

【0007】本発明は、このような問題に鑑みてなされ
たものであって、高精度なビームボケの計測を実現でき
る荷電粒子線露光装置の結像性能の評価方法と、それを
適用し得る荷電粒子線露光装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and a method for evaluating the imaging performance of a charged particle beam exposure apparatus capable of realizing highly accurate measurement of beam blur, and a charging method to which the method can be applied. An object of the present invention is to provide a particle beam exposure apparatus.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の荷電粒子線露光装置の結像性能の評価方法
は、感応基板上に転写すべき原版パターンを有するレチ
クルを荷電粒子線照明し、該レチクルを通過した荷電粒
子線を前記感応基板上に投影結像させて転写パターンを
形成する荷電粒子線露光装置における結像性能の評価方
法であって、前記原版パターンの位置(物面位置)に、
計測用パターンを形成したレチクルを配置し、 前記転
写パターンの位置(像面位置)に、計測用のナイフエッ
ジ開口を配置し、 前記計測用パターンを通過した計測
用荷電粒子ビームで前記ナイフエッジを走査し、 前記
ナイフエッジ開口を通過した荷電粒子線をセンサで検出
して処理することにより前記ビームのボケを測定し、
この際、前記ナイフエッジの非開口部(ナイフエッジ
板)を透過する荷電粒子線の少なくとも相当の部分を前
記センサの手前で排除し、実質的に、前記ナイフエッジ
開口を通過した荷電粒子線のみを前記センサに入射させ
ることを特徴とする。
In order to solve the above-mentioned problems, a method for evaluating the imaging performance of a charged particle beam exposure apparatus according to the present invention comprises the steps of: using a charged particle beam reticle having an original pattern to be transferred onto a sensitive substrate; A charged particle beam exposure apparatus that forms a transfer pattern by illuminating the charged particle beam that has passed through the reticle onto the sensitive substrate to form a transfer pattern, the method comprising: Surface position)
A reticle on which a pattern for measurement is formed is arranged, a knife edge opening for measurement is arranged at the position (image plane position) of the transfer pattern, and the knife edge is charged with a charged particle beam for measurement having passed through the pattern for measurement. Scanning, measuring the blur of the beam by detecting and processing the charged particle beam passing through the knife edge opening with a sensor,
At this time, at least a substantial portion of the charged particle beam that passes through the non-opening portion (knife edge plate) of the knife edge is removed in front of the sensor, and substantially only the charged particle beam that has passed through the knife edge opening is removed. Is incident on the sensor.

【0009】本発明によれば、実質的に、ナイフエッジ
開口を通過した荷電粒子線のみをセンサに入射させてビ
ームボケを求めるので、計測のコントラストが悪化せ
ず、高精度なビームボケの計測ができる。なお、ビーム
ボケの計測は、通常は、検出電流の微分波形の立ち上が
り(12%〜88%)の距離を求めることにより測定す
ることができる。
According to the present invention, since only the charged particle beam that has passed through the knife edge aperture is made incident on the sensor to determine the beam blur, the measurement contrast is not deteriorated and the beam blur can be measured with high accuracy. . Note that the beam blur can be measured usually by calculating the distance of the rising edge (12% to 88%) of the differential waveform of the detection current.

【0010】本発明の荷電粒子線露光装置の結像性能の
評価方法においては、前記ナイフエッジを、薄膜上に形
成した矩形開口状パターンのエッジとすることができ
る。ナイフエッジを薄膜化することにより、真っ直ぐで
エッジラフネスが小さい高品質なエッジを比較的容易に
作成することができる。なお、このような薄膜として
は、例えば厚さ2μm程度のSi薄膜を用いることが好
ましい。
In the method for evaluating the imaging performance of a charged particle beam exposure apparatus according to the present invention, the knife edge may be an edge of a rectangular opening pattern formed on a thin film. By thinning the knife edge, a high-quality edge that is straight and has low edge roughness can be relatively easily formed. As such a thin film, it is preferable to use, for example, a Si thin film having a thickness of about 2 μm.

【0011】また、本発明の荷電粒子線露光装置の結像
性能の評価方法においては、前記ナイフエッジと前記セ
ンサとの間にビーム制限開口を設置して、このビーム制
限開口により、前記ナイフエッジ板を透過した荷電粒子
線を遮るものとすることができる。ビーム制限開口によ
り、ナイフエッジを透過した散乱荷電粒子線(前方散乱
電子)をほぼ完全に遮ることができる。これにより、理
想的に近いコントラストにて、良好な検出波形を得るこ
とができる。
Further, in the method for evaluating the imaging performance of a charged particle beam exposure apparatus according to the present invention, a beam limiting aperture is provided between the knife edge and the sensor, and the knife edge is controlled by the beam limiting aperture. The charged particle beam transmitted through the plate can be blocked. By the beam limiting aperture, scattered charged particle beams (forward scattered electrons) transmitted through the knife edge can be almost completely blocked. As a result, a good detection waveform can be obtained with nearly ideal contrast.

【0012】さらに、本発明の荷電粒子線露光装置の結
像性能の評価方法においては、前記ナイフエッジから該
ビーム制限開口端縁を見込む角が、前記荷電粒子ビーム
の収束角よりも僅かに大きくなるよう、前記ビーム制限
開口の開口幅(開口径)を選択することができる。例え
ば、荷電粒子線照明の加速電圧が100kVであり、荷
電粒子線ビームEBの収束角が6mradである場合
は、ナイフエッジからビーム制限開口端縁を見込む角を
6〜10mradに設定する。この場合、無散乱電子は
100%通過し、前方散乱電子は0.1%以下しか通過
しない。このため、ほぼ完全なコントラストで計測が可
能になる。
Further, in the method for evaluating the imaging performance of the charged particle beam exposure apparatus according to the present invention, the angle at which the edge of the beam limiting aperture is viewed from the knife edge is slightly larger than the convergence angle of the charged particle beam. Thus, the opening width (opening diameter) of the beam limiting aperture can be selected. For example, when the acceleration voltage of the charged particle beam illumination is 100 kV and the convergence angle of the charged particle beam EB is 6 mrad, the angle from the knife edge to the edge of the beam limiting aperture is set to 6 to 10 mrad. In this case, 100% of non-scattered electrons pass and only 0.1% or less of forward scattered electrons pass. Therefore, measurement can be performed with almost perfect contrast.

【0013】本発明の荷電粒子線露光装置は、感応基板
上に転写すべき原版パターンを有するレチクルを荷電粒
子線照明し、該レチクルを通過した荷電粒子線を前記感
応基板上に投影結像させて転写パターンを形成する荷電
粒子線露光装置であって、前記感応基板上の転写パター
ンの位置(像面位置)に配置された、開口を有する計測
用のナイフエッジと、 該ナイフエッジの下方に配置さ
れた、該ナイフエッジの非開口部(ナイフエッジ板)で
散乱した荷電粒子線を遮るビーム制限開口と、 該ビー
ム制限開口の下方に配置された、該ビーム制限開口を通
過した荷電粒子線を検出するセンサと、 該センサの検
出結果に基づきビームのボケを測定するビームボケ測定
手段と、 を備えることを特徴とする。
A charged particle beam exposure apparatus of the present invention illuminates a reticle having an original pattern to be transferred onto a sensitive substrate with a charged particle beam, and projects a charged particle beam passing through the reticle onto the sensitive substrate to form an image. A charged particle beam exposure apparatus for forming a transfer pattern by using a knife edge for measurement having an opening and disposed at a position (image plane position) of the transfer pattern on the sensitive substrate; A beam limiting aperture disposed to block a charged particle beam scattered at a non-opening portion of the knife edge (knife edge plate); and a charged particle beam disposed below the beam limiting aperture and passing through the beam limiting aperture. And a beam blur measuring means for measuring blur of the beam based on the detection result of the sensor.

【0014】このような荷電粒子線露光装置のセンサと
しては、ファラデーカップ、半導体検出器、又は、シン
チレータとフォトマルチプライヤーとを組み合わせたも
の等を用いることができる。これらを用いることによ
り、非常に高感度なビームボケ検出が可能となる。
As a sensor of such a charged particle beam exposure apparatus, a Faraday cup, a semiconductor detector, or a combination of a scintillator and a photomultiplier can be used. By using these, it is possible to detect beam blur with extremely high sensitivity.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しつつ説明す
る。図1は、本発明の一実施例に係る電子線露光装置の
光学系主要部の構成及びウエハステージ周りの構成を模
式的に示す図である。図2は、本発明の一実施例に係る
電子線露光装置のビームボケ計測系を模式的に示す斜視
図である。図3は、同ビームボケ計測系を模式的に示す
側面断面図及びブロック図である。図4は、同ビームボ
ケ計測系における計測結果を説明するためのグラフであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing a configuration of a main part of an optical system and a configuration around a wafer stage of an electron beam exposure apparatus according to an embodiment of the present invention. FIG. 2 is a perspective view schematically showing a beam blur measurement system of the electron beam exposure apparatus according to one embodiment of the present invention. FIG. 3 is a side sectional view and a block diagram schematically showing the beam blur measurement system. FIG. 4 is a graph for explaining a measurement result in the beam blur measurement system.

【0016】図1の上部には、照明ビーム12及びレチ
クル11が示されている。照明ビーム12は、図示せぬ
電子銃から発せられ照明光学系で成形される。このレチ
クル11は計測用のレチクル(マスク)であり、矩形開
口13が形成されている。照明ビーム12は、レチクル
11の矩形開口13を通過し、直線状のエッジをもつ矩
形ビームEBとなる。なお、通常の転写露光時には、転
写したいデバイスパターンの形成されているレチクルを
用いる。
At the top of FIG. 1, an illumination beam 12 and a reticle 11 are shown. The illumination beam 12 is emitted from an electron gun (not shown) and is shaped by an illumination optical system. The reticle 11 is a reticle (mask) for measurement, and has a rectangular opening 13 formed therein. The illumination beam 12 passes through the rectangular opening 13 of the reticle 11, and becomes a rectangular beam EB having a straight edge. At the time of normal transfer exposure, a reticle on which a device pattern to be transferred is formed is used.

【0017】レチクル11の下方には、2段の投影レン
ズ14、15が配置されている。これら投影レンズ1
4、15の間には、コントラスト開口17が配置されて
いる。レチクル11の矩形開口13で成形された矩形ビ
ームEBは、上段の投影レンズ14によって収束され、
コントラスト開口17にクロスオーバーを形成する。コ
ントラスト開口17は、レチクル11を散乱を受けつつ
透過したビームをカットする。
Below the reticle 11, two stages of projection lenses 14, 15 are arranged. These projection lenses 1
Between 4 and 15, a contrast opening 17 is arranged. The rectangular beam EB formed by the rectangular opening 13 of the reticle 11 is converged by the upper projection lens 14,
A crossover is formed in the contrast opening 17. The contrast aperture 17 cuts a beam transmitted while being scattered by the reticle 11.

【0018】下段の投影レンズ15の下方には、ウエハ
(感応基板)ステージ16が配置されている。このステ
ージ16上には、ナイフエッジ1が配置されている。ナ
イフエッジ1は、厚さ約2μmnのSi薄膜(一例)で
形成されている。ナイフエッジ1を薄膜化することによ
り、真っ直ぐでエッジラフネスが小さい高品質なエッジ
が比較的容易に得られる。なお、ウエハステージ16に
は、通常の転写露光時にウエハを載置するチャック(図
示されず)も配置されている。
A wafer (sensitive substrate) stage 16 is arranged below the lower projection lens 15. On this stage 16, the knife edge 1 is arranged. The knife edge 1 is formed of a Si thin film (an example) having a thickness of about 2 μmn. By thinning the knife edge 1, a high-quality straight edge having a small edge roughness can be obtained relatively easily. The wafer stage 16 is also provided with a chuck (not shown) for mounting a wafer during normal transfer exposure.

【0019】図2及び図3に示すように、ナイフエッジ
1の下にはビーム制限開口5が配置されている。このビ
ーム制限開口5とナイフエッジ1との間の距離(図3の
符号h)は、数mm〜20mm程度である。ビーム制限
開口5の開口径(図2の符号d)は、ナイフエッジ1か
ら開口端縁5aを見込む角(図2の符号θ)が、下段の
投影レンズ15における矩形ビームEBの収束角よりも
僅かに大きくなる寸法とする。この寸法dの一例は、1
00〜200μmである。ビーム制限開口5の開口板5
bは、充分に厚い(例えば1mm)導電性の金属板であ
り、この開口板5bに当った電子線は吸収される。
As shown in FIGS. 2 and 3, below the knife edge 1, a beam limiting aperture 5 is arranged. The distance between the beam limiting aperture 5 and the knife edge 1 (h in FIG. 3) is about several mm to 20 mm. The aperture diameter of the beam limiting aperture 5 (reference d in FIG. 2) is such that the angle (reference θ in FIG. 2) from the knife edge 1 to the opening edge 5a is smaller than the convergence angle of the rectangular beam EB in the lower projection lens 15. The dimensions will be slightly larger. An example of this dimension d is 1
It is 00 to 200 μm. Aperture plate 5 of beam limiting aperture 5
b is a sufficiently thick (for example, 1 mm) conductive metal plate, and the electron beam hitting the aperture plate 5b is absorbed.

【0020】ビーム制限開口5の下方には、電子検出器
(センサ)6が設置されている。この電子検出器6は、
ファラデーカップ、半導体検出器、又は、シンチレータ
とフォトマルチプライヤーとを組み合わせたもの等から
構成されている。電子検出器6には、プリアンプ7、微
分回路8及びオシロスコープ9が順に接続されている。
An electron detector (sensor) 6 is provided below the beam limiting aperture 5. This electron detector 6
It is composed of a Faraday cup, a semiconductor detector, or a combination of a scintillator and a photomultiplier. A preamplifier 7, a differentiating circuit 8, and an oscilloscope 9 are sequentially connected to the electronic detector 6.

【0021】この電子線露光装置では、下段の投影レン
ズ15を通過した矩形ビームEBをナイフエッジ1上で
スキャンすると、ナイフエッジ板2に吸収されない電子
(ナイフエッジ開口部3を通過した無散乱電子e1及び
ナイフエッジ板2を散乱透過した前方散乱電子e2)が
下方へと通過する。次いで、これらの電子e1、e2は
ビーム制限開口5に到り、無散乱電子e1は同開口5を
通過し、前方散乱電子e2のほとんどは遮られる。した
がって、ビーム制限開口5の下の電子検出器6では、ほ
とんど無散乱電子e1のみが検出される。
In this electron beam exposure apparatus, when the rectangular beam EB that has passed through the lower projection lens 15 is scanned on the knife edge 1, electrons that are not absorbed by the knife edge plate 2 (unscattered electrons that have passed through the knife edge opening 3). Forward scattered electrons e2) scattered and transmitted through the knife edge plate 2 and the knife edge plate 2 pass downward. Next, these electrons e1 and e2 reach the beam limiting aperture 5, the non-scattered electrons e1 pass through the aperture 5, and most of the forward scattered electrons e2 are blocked. Therefore, the electron detector 6 below the beam limiting aperture 5 detects almost no scattered electrons e1.

【0022】電子検出器6で検出した無散乱電子e1の
ビーム電流を図4(B)上側のグラフ(検出電流波形)
で示す。図4(A)に示すように、矩形ビームEBをナ
イフエッジ1上で矢印方向(右側)にスキャンすると、
ナイフエッジ1を通過する矩形ビームEBの幅(電子の
量)が増加し、電子検出器で検出するビーム電流が増加
する。このため、検出電流波形は、図4(B)上側のグ
ラフのように右上がりになる。このビーム電流は、図3
のプリアンプ7で増幅された後、微分回路8で時間に対
する変化率に換算される。
The beam current of the unscattered electrons e1 detected by the electron detector 6 is plotted on the upper graph in FIG. 4B (detected current waveform).
Indicated by As shown in FIG. 4A, when the rectangular beam EB is scanned on the knife edge 1 in the direction of the arrow (right side),
The width (the amount of electrons) of the rectangular beam EB passing through the knife edge 1 increases, and the beam current detected by the electron detector increases. Therefore, the detected current waveform rises to the right as shown in the upper graph of FIG. This beam current is shown in FIG.
After that, the signal is amplified by the preamplifier 7 and converted by the differentiating circuit 8 into a change rate with respect to time.

【0023】微分回路8から出力された微分波形を図4
(B)下側に示す。微分波形は、矩形ビームEBがビー
ムボケのない理想的なビームの場合は矩形波W1とな
る。しかし、実際はビームボケのためになまった波形W
2となる。ここで、図4(C)に分かり易く示すよう
に、この波形W2の立ち上がりの距離tを、微分波形の
強度の12%〜88%の範囲で求める。この距離tを求
めることによりビームボケが測定できる。微分回路8の
出力波形は、オシロスコープ9で表示される。オシロス
コープ9で表示された波形に基づき、ビーム調整(焦
点、非点、倍率、回転等の各種補正値のキャリブレーシ
ョン)や結像性能の評価を行う。
The differentiated waveform output from the differentiating circuit 8 is shown in FIG.
(B) Shown on the lower side. The differential waveform becomes a rectangular wave W1 when the rectangular beam EB is an ideal beam without beam blur. However, actually, the waveform W
It becomes 2. Here, as clearly shown in FIG. 4C, a rising distance t of the waveform W2 is obtained in a range of 12% to 88% of the intensity of the differential waveform. By calculating the distance t, the beam blur can be measured. The output waveform of the differentiating circuit 8 is displayed on an oscilloscope 9. Based on the waveform displayed by the oscilloscope 9, beam adjustment (calibration of various correction values such as focus, astigmatism, magnification, rotation, etc.) and evaluation of imaging performance are performed.

【0024】ここで、上記の電子線露光装置における、
角度θ(図2参照)の具体的な数値例について述べる。
照明ビーム12の加速電圧が100kVであり、投影レ
ンズにおける矩形ビームEBの収束角が6mradであ
る場合、ナイフエッジ1からビーム制限開口5の開口端
縁5aを見込む角θを6〜10mradに設定する。こ
の場合、無散乱電子e1は100%通過し、前方散乱電
子e2は0.1%以下しか通過しない。このため、ほぼ
完全なコントラストで計測が可能になる。
Here, in the above electron beam exposure apparatus,
A specific numerical example of the angle θ (see FIG. 2) will be described.
When the acceleration voltage of the illumination beam 12 is 100 kV and the convergence angle of the rectangular beam EB in the projection lens is 6 mrad, the angle θ from the knife edge 1 to the opening edge 5 a of the beam limiting aperture 5 is set to 6 to 10 mrad. . In this case, 100% of the non-scattered electrons e1 pass and only 0.1% or less of the forward scattered electrons e2 pass. Therefore, measurement can be performed with almost perfect contrast.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
によれば、非常に高精度なビームボケ計測ができる。さ
らに、このビームボケ計測の結果を用いて電子光学系の
調整や結像性能の評価を行うことにより、非常に高精度
に装置を調整することができる。ナイフエッジを薄膜上
に形成する場合は、真っ直ぐでエッジラフネスが小さい
高品質なエッジを容易に作成することができる。
As is clear from the above description, according to the present invention, extremely accurate beam blur measurement can be performed. Furthermore, by adjusting the electron optical system and evaluating the imaging performance using the result of the beam blur measurement, the apparatus can be adjusted with extremely high accuracy. When a knife edge is formed on a thin film, a straight, high-quality edge with small edge roughness can be easily formed.

【0026】ナイフエッジとセンサとの間にビーム制限
開口を設置する場合は、ビーム制限開口によりナイフエ
ッジ板で散乱した荷電粒子線を遮ることができ、ほぼ完
全なコントラストにて、理想的な検出波形を得ることが
できる。センサとしてファラデーカップ、半導体検出
器、又は、シンチレータとフォトマルチプライヤーとを
組み合わせたもの等を用いる場合は、非常に高感度なビ
ームボケ検出が可能となる。
When a beam limiting aperture is provided between the knife edge and the sensor, the charged particle beam scattered by the knife edge plate can be blocked by the beam limiting aperture, and ideal detection can be performed with almost perfect contrast. Waveform can be obtained. When a Faraday cup, a semiconductor detector, or a combination of a scintillator and a photomultiplier is used as a sensor, extremely high-sensitivity beam blur detection can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る電子線露光装置の光学
系主要部の構成及びウエハステージ周りの構成を模式的
に示す図である。
FIG. 1 is a diagram schematically showing a configuration of a main part of an optical system and a configuration around a wafer stage of an electron beam exposure apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係る電子線露光装置のビー
ムボケ計測系を模式的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a beam blur measurement system of the electron beam exposure apparatus according to one embodiment of the present invention.

【図3】同ビームボケ計測系を模式的に示す側面断面図
及びブロック図である。
FIG. 3 is a side sectional view and a block diagram schematically showing the beam blur measurement system.

【図4】同ビームボケ計測系における計測結果を説明す
るためのグラフである。
FIG. 4 is a graph for explaining a measurement result in the beam blur measurement system.

【図5】従来の電子線露光装置のビームボケ計測系を模
式的に示す斜視図である。
FIG. 5 is a perspective view schematically showing a beam blur measurement system of a conventional electron beam exposure apparatus.

【図6】同ビームボケ計測系を模式的に示す側面断面図
及びブロック図である。
FIG. 6 is a side sectional view and a block diagram schematically showing the beam blur measurement system.

【図7】同ビームボケ計測系における計測結果を説明す
るためのグラフである。
FIG. 7 is a graph for explaining a measurement result in the beam blur measurement system.

【符号の説明】 1 ナイフエッジ 2 ナイフエッジ板 3 ナイフエッ
ジ開口部 5 ビーム制限開口 5a 開口端縁 5b 開口板 6 電子検出器(センサ) 7 プリアンプ 8 微分回路 9 オシロスコ
ープ 11 レチクル 12 照明ビー
ム 13 矩形開口 14、15 投
影レンズ 16 ウエハステージ 17 コントラ
スト開口 EB 矩形ビーム e1 無散乱電子 e2 前方散乱
電子
[Description of Signs] 1 knife edge 2 knife edge plate 3 knife edge opening 5 beam limiting opening 5a opening edge 5b opening plate 6 electron detector (sensor) 7 preamplifier 8 differentiating circuit 9 oscilloscope 11 reticle 12 illumination beam 13 rectangular opening 14, 15 Projection lens 16 Wafer stage 17 Contrast aperture EB Rectangular beam e1 Non-scattered electron e2 Forward scattered electron

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 37/305 H01L 21/30 541E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01J 37/305 H01L 21/30 541E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 感応基板上に転写すべき原版パターンを
有するレチクルを荷電粒子線照明し、該レチクルを通過
した荷電粒子線を前記感応基板上に投影結像させて転写
パターンを形成する荷電粒子線露光装置における結像性
能の評価方法であって、 前記原版パターンの位置(物面位置)に、計測用パター
ンを形成したレチクルを配置し、 前記転写パターンの位置(像面位置)に、計測用のナイ
フエッジ開口を配置し、 前記計測用パターンを通過した計測用荷電粒子ビームで
前記ナイフエッジを走査し、 前記ナイフエッジ開口を通過した荷電粒子線をセンサで
検出して処理することにより前記ビームのボケを測定
し、 この際、前記ナイフエッジの非開口部(ナイフエッジ
板)を透過する荷電粒子線の少なくとも相当の部分を前
記センサの手前で排除し、実質的に、前記ナイフエッジ
開口を通過した荷電粒子線のみを前記センサに入射させ
ることを特徴とする荷電粒子線露光装置の結像性能の評
価方法。
A charged particle beam illuminates a reticle having an original pattern to be transferred onto a sensitive substrate, and forms a transfer pattern by projecting and imaging a charged particle beam passing through the reticle onto the sensitive substrate. A method for evaluating imaging performance in a line exposure apparatus, comprising: disposing a reticle on which a measurement pattern is formed at a position (object surface position) of the original pattern; and measuring a reticle at a position (image surface position) of the transfer pattern. By disposing a knife edge opening for, scanning the knife edge with a charged particle beam for measurement that has passed through the pattern for measurement, and detecting and processing a charged particle beam that has passed through the knife edge opening with a sensor The blur of the beam is measured. At this time, at least a substantial portion of the charged particle beam passing through the non-opening portion of the knife edge (knife edge plate) is positioned in front of the sensor. Eliminate, substantially, the evaluation method of the imaging performance of the charged particle beam exposure device only charged particle beam having passed through the knife-edge aperture, characterized in that is incident on the sensor.
【請求項2】 前記ナイフエッジが、薄膜上に形成した
矩形開口状パターンのエッジであることを特徴とする請
求項1記載の荷電粒子線露光装置の結像性能の評価方
法。
2. The method according to claim 1, wherein the knife edge is an edge of a rectangular opening pattern formed on a thin film.
【請求項3】 前記ナイフエッジと前記センサとの間に
ビーム制限開口を設置して、このビーム制限開口によ
り、前記ナイフエッジ板を透過した荷電粒子線を遮るこ
とを特徴とする請求項1又は2記載の荷電粒子線露光装
置の結像性能の評価方法。
3. A beam limiting aperture is provided between the knife edge and the sensor, and the beam limiting aperture blocks a charged particle beam transmitted through the knife edge plate. 3. A method for evaluating the imaging performance of the charged particle beam exposure apparatus according to 2.
【請求項4】 前記ナイフエッジから該ビーム制限開口
端縁を見込む角が、前記荷電粒子ビームの収束角よりも
僅かに大きくなるよう、前記ビーム制限開口の開口幅
(開口径)を選択することを特徴とする請求項3記載の
荷電粒子線露光装置の結像性能の評価方法。
4. An opening width (opening diameter) of the beam limiting aperture is selected such that an angle from the knife edge to an edge of the beam limiting aperture is slightly larger than a convergence angle of the charged particle beam. The method for evaluating the imaging performance of a charged particle beam exposure apparatus according to claim 3, wherein:
【請求項5】 感応基板上に転写すべき原版パターンを
有するレチクルを荷電粒子線照明し、該レチクルを通過
した荷電粒子線を前記感応基板上に投影結像させて転写
パターンを形成する荷電粒子線露光装置であって、 前記感応基板上の転写パターンの位置(像面位置)に配
置された、開口を有する計測用のナイフエッジと、 該ナイフエッジの下方に配置された、該ナイフエッジの
非開口部(ナイフエッジ板)で散乱した荷電粒子線を遮
るビーム制限開口と、 該ビーム制限開口の下方に配置された、該ビーム制限開
口を通過した荷電粒子線を検出するセンサと、 該センサの検出結果に基づきビームのボケを測定するビ
ームボケ測定手段と、 を備えることを特徴とする荷電粒子線露光装置。
5. A charged particle for illuminating a reticle having an original pattern to be transferred onto a sensitive substrate with a charged particle beam, and projecting and forming an image of the charged particle beam passing through the reticle on the sensitive substrate to form a transfer pattern. A line exposure apparatus, comprising: a knife edge for measurement having an opening disposed at a position (image plane position) of a transfer pattern on the sensitive substrate; and a knife edge having a knife edge disposed below the knife edge. A beam limiting aperture for blocking a charged particle beam scattered by a non-aperture (knife edge plate); a sensor disposed below the beam limiting aperture for detecting a charged particle beam passing through the beam limiting aperture; A charged particle beam exposure apparatus, comprising: a beam blur measuring unit that measures a beam blur based on the detection result of
JP2001033970A 2001-02-09 2001-02-09 Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner Pending JP2002237444A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001033970A JP2002237444A (en) 2001-02-09 2001-02-09 Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner
US10/000,458 US6831282B2 (en) 2001-02-09 2001-11-30 Methods and devices for evaluating beam blur in a charged-particle-beam microlithography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033970A JP2002237444A (en) 2001-02-09 2001-02-09 Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner

Publications (1)

Publication Number Publication Date
JP2002237444A true JP2002237444A (en) 2002-08-23

Family

ID=18897650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033970A Pending JP2002237444A (en) 2001-02-09 2001-02-09 Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner

Country Status (1)

Country Link
JP (1) JP2002237444A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460487A (en) * 1990-06-28 1992-02-26 Nec Corp Method and apparatus for measuring electron beam diameter
JPH04137720A (en) * 1990-09-28 1992-05-12 Toshiba Corp Charged beam strength profile measuring instrument, and measuring method using same
JPH09306400A (en) * 1996-05-15 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> Electron beam measuring knife edge and manufacture therefor and electron beam measuring method using electron beam measuring knife edge
JPH1050244A (en) * 1996-08-05 1998-02-20 Jeol Ltd Beam detection signal processing circuit
JPH10289851A (en) * 1997-04-14 1998-10-27 Nikon Corp Charged particle beam exposing device
JPH11186130A (en) * 1997-12-19 1999-07-09 Fujitsu Ltd Charged particle beam exposure device, exposure method, stencil mask and methods for measuring beam edge defocusing quantity and determining required refocus
JPH11191529A (en) * 1997-12-25 1999-07-13 Nikon Corp Charge beam exposure
JPH11271459A (en) * 1998-03-26 1999-10-08 Jeol Ltd Method for measuring beam
JPH11271458A (en) * 1998-03-26 1999-10-08 Jeol Ltd Method for measuring beam
JPH11271499A (en) * 1998-03-26 1999-10-08 Jeol Ltd Measuring method for beam in variable area electron beam plotting device
JP2000164509A (en) * 1998-11-30 2000-06-16 Motorola Inc Manufacture of semiconductor structure
JP2000232046A (en) * 1999-02-09 2000-08-22 Nikon Corp Correction method of scattering stencil type reticle and its correcting structure
JP2002299218A (en) * 2001-04-02 2002-10-11 Nikon Corp Evaluation device of electron beam focus performance and electron beam aligner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460487A (en) * 1990-06-28 1992-02-26 Nec Corp Method and apparatus for measuring electron beam diameter
JPH04137720A (en) * 1990-09-28 1992-05-12 Toshiba Corp Charged beam strength profile measuring instrument, and measuring method using same
JPH09306400A (en) * 1996-05-15 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> Electron beam measuring knife edge and manufacture therefor and electron beam measuring method using electron beam measuring knife edge
JPH1050244A (en) * 1996-08-05 1998-02-20 Jeol Ltd Beam detection signal processing circuit
JPH10289851A (en) * 1997-04-14 1998-10-27 Nikon Corp Charged particle beam exposing device
JPH11186130A (en) * 1997-12-19 1999-07-09 Fujitsu Ltd Charged particle beam exposure device, exposure method, stencil mask and methods for measuring beam edge defocusing quantity and determining required refocus
JPH11191529A (en) * 1997-12-25 1999-07-13 Nikon Corp Charge beam exposure
JPH11271459A (en) * 1998-03-26 1999-10-08 Jeol Ltd Method for measuring beam
JPH11271458A (en) * 1998-03-26 1999-10-08 Jeol Ltd Method for measuring beam
JPH11271499A (en) * 1998-03-26 1999-10-08 Jeol Ltd Measuring method for beam in variable area electron beam plotting device
JP2000164509A (en) * 1998-11-30 2000-06-16 Motorola Inc Manufacture of semiconductor structure
JP2000232046A (en) * 1999-02-09 2000-08-22 Nikon Corp Correction method of scattering stencil type reticle and its correcting structure
JP2002299218A (en) * 2001-04-02 2002-10-11 Nikon Corp Evaluation device of electron beam focus performance and electron beam aligner

Similar Documents

Publication Publication Date Title
JP5644850B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
US8263934B2 (en) Method for detecting information of an electric potential on a sample and charged particle beam apparatus
US20050133733A1 (en) Electron beam system and method of manufacturing devices using the system
US6218671B1 (en) On-line dynamic corrections adjustment method
JP2005056923A (en) Multi-charged particle beam optical lithography system and method, and method for manufacturing device employing the system or the method
JP2003077814A (en) Method of measuring imaging performance of charged particle beam exposure device, method thereof and charged particle beam exposure device
US6831282B2 (en) Methods and devices for evaluating beam blur in a charged-particle-beam microlithography apparatus
US7019313B2 (en) Methods and devices for evaluating beam blur in subfields projection-exposed by a charged-particle-beam microlithography apparatus
JP2024009062A (en) Method and device for pre-charging sample for charged particle beam inspection
JP2002237444A (en) Method of evaluating image-forming capability of charged-particle-beam aligner and charged-particle- beam aligner
JP3466730B2 (en) Pattern evaluation apparatus and pattern evaluation method
JP4238072B2 (en) Charged particle beam equipment
KR102623923B1 (en) Inspection tool and method of determining a distortion of an inspection tool
JP3697494B2 (en) Beam edge blur measurement method and refocus amount determination method, stencil mask used in these methods, and charged particle beam exposure method and apparatus
JP2002246298A (en) Method for evaluating imaging performance of charged particle beam exposure apparatus and charged particle beam exposure apparatus
US6847696B2 (en) Synchrotron radiation measurement apparatus, X-ray exposure apparatus, and device manufacturing method
JPH07159336A (en) Surface state inspection apparatus and aligner using it
JP2005197335A (en) Measuring method and adjusting method of image formation performance of charged particle beam aligner, and charged particle beam aligner
JP2002245960A (en) Charged particle beam device and device manufacturing method using the same
JP2004362962A (en) Method for measuring beam-blur, instrument for measuring beam-blur, and charged particle-beam exposure device
JP2005032958A (en) Method of adjusting lighting condition of charged particle beam device and method for exposure
JPH035080Y2 (en)
JP2002299218A (en) Evaluation device of electron beam focus performance and electron beam aligner
JP2004241652A (en) Reference mark body and aligner having the same
JP2004214558A (en) Charged particle beam aligner, method of measuring beam convergence radius therein and charged particle beam exposure method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705