JP2002237318A - Hydrogen storage material and hydrogen storage device - Google Patents

Hydrogen storage material and hydrogen storage device

Info

Publication number
JP2002237318A
JP2002237318A JP2001033318A JP2001033318A JP2002237318A JP 2002237318 A JP2002237318 A JP 2002237318A JP 2001033318 A JP2001033318 A JP 2001033318A JP 2001033318 A JP2001033318 A JP 2001033318A JP 2002237318 A JP2002237318 A JP 2002237318A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
capsule
fullerene
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001033318A
Other languages
Japanese (ja)
Other versions
JP3430371B2 (en
Inventor
Kinzo Ri
勤三 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001033318A priority Critical patent/JP3430371B2/en
Publication of JP2002237318A publication Critical patent/JP2002237318A/en
Application granted granted Critical
Publication of JP3430371B2 publication Critical patent/JP3430371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance hydrogen storage material which is light-weight and superior in durability, which is easy to handle and enhanced in safety and further which has a simple structure and can form an inexpensive hydrogen storage device. SOLUTION: This is the hydrogen storage material having a capsule 1 to permeate only hydrogen, fullerene 2 such as C60 or the like enclosed in the capsule 1, or a nano-tube. The capsule is preferably to be equipped with the capsule main body 11 wherein a plurality of micropores 1a are formed on a shell wall and with a hydrogen permeating membrane 12 constituted so that the outer face of the capsule body is covered and that only hydrogen is to be permeated. This is the hydrogen storage device constituted by using the hydrogen storage material, and comprised to have an air-tight container installed with hydrogen supply/drain ports, the plurality of hydrogen storage materials housed in this container, and a heating device for heating this hydrogen storage material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、燃料電池
において燃料として用いられる水素の吸蔵技術に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for storing hydrogen used as fuel in a fuel cell, for example.

【0002】[0002]

【発明が解決しようとする課題】現在、化石燃料を燃焼
させて動力を得る内燃機関に替わる、クリーンな車両用
動力源が鋭意研究開発されている。なかでも、燃料電池
を発電機として用いた電気駆動システムへの期待は非常
に大きい。
At present, research and development of a clean power source for a vehicle, which replaces an internal combustion engine that obtains power by burning fossil fuel, is being conducted. In particular, expectations for an electric drive system using a fuel cell as a generator are extremely high.

【0003】さて、言うまでもなく、燃料電池にはさま
ざまな方式が存在し、目下のところは、水素と酸素とを
反応させるタイプが主流となっている。しかしながら、
依然として解決が急がれる問題も残されている。それ
は、燃料となる水素をいかにして燃料電池に供給するか
である。
Needless to say, there are various types of fuel cells, and at present, the type in which hydrogen and oxygen react with each other is mainly used. However,
There are still problems that need to be resolved. That is how to supply hydrogen as fuel to the fuel cell.

【0004】水素の供給(貯蔵)には、概して、次の三
つの方式が考えられる。一つ目は水素吸蔵合金を使用す
る方式、二つ目は液化させて、あるいは気体のまま高圧
でタンクに貯蔵する方式、そして三つ目は改質器を用い
てメタノールなどから直接生成する方式である。だが、
いずれの方式にも欠点が存在する。
[0004] In general, the following three systems can be considered for the supply (storage) of hydrogen. The first is a method using a hydrogen storage alloy, the second is a liquefied or gaseous state and stored in a tank at high pressure, and the third is a method of producing directly from methanol using a reformer. It is. But
Both systems have drawbacks.

【0005】まず、水素吸蔵合金を使用する場合、それ
はかなりの大きさの金属塊として装置に組み込まれるの
で、装置の重量が非常に大きくなる。また、水素吸蔵合
金は早期に微粉末化するので耐久性が低い。一方、タン
ク貯蔵方式は取扱いが困難な上、安全性の点で劣る。改
質器を用いる方式は、装置が大掛かりで複雑なものとな
り、コストが非常に高くつく。
First, when a hydrogen storage alloy is used, the weight of the device becomes very large because it is incorporated into the device as a large metal lump. Further, the hydrogen storage alloy is pulverized at an early stage, and thus has low durability. On the other hand, the tank storage method is difficult to handle and inferior in safety. The method using a reformer requires a large-scale and complicated apparatus and is very expensive.

【0006】したがって、本発明が解決しようとする課
題は、軽量で、かつ、耐久性に優れ、しかも取扱いが容
易であって安全性が高く、更には構造が簡単で安価な水
素吸蔵装置を提供することである。特に、こうした水素
吸蔵装置を形成できる高性能な水素吸蔵体を提供するこ
とである。
Accordingly, an object of the present invention is to provide an inexpensive hydrogen storage device that is lightweight, has excellent durability, is easy to handle, has high safety, and has a simple structure. It is to be. In particular, it is an object of the present invention to provide a high-performance hydrogen storage device capable of forming such a hydrogen storage device.

【0007】[0007]

【課題を解決するための手段】この課題は、水素のみを
透過させるカプセルと、このカプセル内に封入されたフ
ラーレンとを具備してなることを特徴とする水素吸蔵体
によって解決される。ここで、特に好ましいフラーレン
としては、C60を挙げることができる。
This problem is solved by a hydrogen absorbing body comprising a capsule that allows only hydrogen to pass therethrough, and a fullerene sealed in the capsule. Here, C 60 can be mentioned as a particularly preferred fullerene.

【0008】また上記の課題は、水素のみを透過させる
カプセルと、このカプセル内に封入されたナノチューブ
とを具備してなることを特徴とする水素吸蔵体によって
解決される。
[0008] The above-mentioned object is attained by a hydrogen storage body comprising a capsule that allows only hydrogen to pass therethrough, and a nanotube enclosed in the capsule.

【0009】なお上記カプセルとしては、殻壁に複数の
細孔が形成されたカプセル本体と、このカプセル本体の
外面を被覆するよう設けられた、水素のみを透過させる
水素透過膜とを具備してなるものを挙げることができ
る。こうした構造のカプセルは製造するのが非常に容易
であり、加えて、殊に優れた性能を発揮する。
The capsule includes a capsule body having a plurality of pores formed in a shell wall, and a hydrogen permeable membrane provided to cover the outer surface of the capsule body and allowing only hydrogen to pass therethrough. Can be mentioned. Capsules of this construction are very easy to manufacture and, in addition, exhibit particularly good performance.

【0010】ひるがえって先の課題は、上記水素吸蔵体
を用いて構成された水素吸蔵装置であって、水素供給・
排出口が設けられた気密性を有する容器と、この容器内
に収納された複数の前記水素吸蔵体と、この水素吸蔵体
を加熱するための加熱手段とを具備してなることを特徴
とする水素吸蔵装置によって解決される。
[0010] On the contrary, an object to be solved is a hydrogen storage device constituted by using the above-mentioned hydrogen storage body.
An airtight container provided with a discharge port, a plurality of the hydrogen storage units housed in the container, and a heating unit for heating the hydrogen storage units are provided. Solved by a hydrogen storage device.

【0011】さて、本発明に係る上記水素吸蔵体では、
殻壁を透過してカプセル内に入った水素(水素分子)
は、カプセル内部に封入されたフラーレンによって物理
的に保持される。すなわち、フラーレン内部は完全な真
空であり、したがってカプセル内に入ってきた水素は、
直ちにフラーレン内部(真空空間)に侵入し、そこに閉
じ込められた状態となる。つまり、水素はカプセル内の
フラーレンに吸蔵され、この結果、水素吸蔵体によって
安定的に貯蔵された状態となる(ちなみに水素の放出は
水素吸蔵体をある一定温度まで加熱してやればよい)。
[0011] Now, in the above hydrogen storage material according to the present invention,
Hydrogen (Hydrogen molecule) penetrating the shell wall and entering the capsule
Is physically held by the fullerene encapsulated inside the capsule. That is, the inside of the fullerene is in a complete vacuum, so the hydrogen that has entered the capsule is
Immediately, it enters the fullerene interior (vacuum space) and is trapped therein. That is, hydrogen is occluded in the fullerene in the capsule, and as a result, it is in a state of being stably stored by the hydrogen occlusion body (by the way, hydrogen is released by heating the hydrogen occlusion body to a certain temperature).

【0012】ところで本発明の水素吸蔵体は、上記のご
とく、カプセル内に炭素微粉末を封入したものであるか
ら金属塊よりも格段に軽量であり、水素吸蔵合金を使用
する場合に比して、大幅な軽量化が図れる。しかも本発
明の水素吸蔵体は、水素吸蔵合金と違って微粉末化する
ことがないので、長期間にわたって繰り返し使用可能で
ある。つまり、本発明の水素吸蔵体は極めて耐久性に優
れる。また、本発明の水素吸蔵体は、水素を液化させた
り、あるいは気体のまま高圧で圧縮したりして封じ込め
るものではないから取扱いが容易であり、安全性に優れ
る。更に本発明の水素吸蔵体は、構造が非常に簡素であ
るので、低コストにて提供できる。
By the way, as described above, the hydrogen storage body of the present invention is made by encapsulating carbon fine powder in a capsule, so that it is much lighter than a metal lump, and compared to the case where a hydrogen storage alloy is used. , Significantly reducing the weight. Moreover, since the hydrogen storage body of the present invention does not become fine powder unlike a hydrogen storage alloy, it can be used repeatedly over a long period of time. That is, the hydrogen storage body of the present invention is extremely excellent in durability. In addition, the hydrogen storage body of the present invention is easy to handle because it does not contain hydrogen by liquefying or compressing it as a gas at high pressure, and is excellent in safety. Furthermore, the hydrogen storage body of the present invention can be provided at low cost because the structure is very simple.

【0013】よって、この高性能・高機能な水素吸蔵体
を用いて形成された本発明の水素吸蔵装置は、軽量で、
かつ、耐久性に優れ、しかも取扱いが容易であって安全
性が高く、更には構造が簡単で安価なものとなる。こう
した点は、フラーレンに替えてナノチューブを用いた場
合についても同様である。
Therefore, the hydrogen storage device of the present invention formed using this high-performance and high-performance hydrogen storage body is lightweight,
In addition, it has excellent durability, is easy to handle, has high safety, and has a simple structure and is inexpensive. The same applies to the case where nanotubes are used instead of fullerenes.

【0014】なお、上記カプセルの形状は特に限定され
ないが、一例としては、完全な真球状、多少ひしゃげた
球状、球を一方向に引き伸ばしてなるラグビーボールの
ような形状(回転楕円体)、更には円柱状といった形状
を挙げることができる。しかしながら、水素吸蔵体を密
に容器内に充填する際のスペース効率や表面利用効率、
更には強度などを考慮すると、カプセルは真球状である
のが最も望ましい。
Although the shape of the capsule is not particularly limited, examples thereof include a perfect true sphere, a somewhat whisker-like sphere, a shape like a rugby ball obtained by stretching a sphere in one direction (spheroid), and a spheroid. May have a columnar shape. However, space efficiency and surface utilization efficiency when filling the hydrogen storage body densely in the container,
Further, considering the strength and the like, it is most desirable that the capsule be a true sphere.

【0015】ここで参考までに上記フラーレン、特にC
60について簡単に説明する。C は、概して言う
と、計60個の炭素原子が、正二十面体の頂点を切り落
としてできる切頭二十面体形に、いいかえればサッカー
ボール形に結合した構造となっている。フラーレンには
60以外にも、例えばC70やC76、C78、C
といったものが存在する。しかし総合的に判断する
と、フラーレンとしては、やはりC60が最も望まし
い。一方、ナノチューブについては、炭素原子が長尺な
管状に結合した構造となっており、したがって分子量
は、フラーレンのそれよりも格段に大きい。
Here, for reference, the fullerene, especially C
60 will be briefly described. C 6 0 is Generally speaking, a total of 60 carbon atoms, a truncated twenty faces form which can cut off the vertices of the regular icosahedron, and has a structure bonded to a soccer ball shape other words. Besides C 60 to fullerene, for example, C 70 and C 76, C 78, C 8
There are things like 2 . However, overall it is determined, as the fullerene, also C 60 is most desirable. On the other hand, the nanotube has a structure in which carbon atoms are bonded in a long tubular shape, and thus has a much higher molecular weight than that of fullerene.

【0016】[0016]

【発明の実施の形態】以下、図1および図2を用い、本
発明の一実施形態について具体的に説明する。なお、図
1は本実施形態に係る水素吸蔵体の半断面図、図2は本
実施形態に係る水素吸蔵装置の概略断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be specifically described below with reference to FIGS. FIG. 1 is a half cross-sectional view of the hydrogen storage body according to the present embodiment, and FIG. 2 is a schematic cross-sectional view of the hydrogen storage device according to the present embodiment.

【0017】本実施形態に係る水素吸蔵体(以下、本水
素吸蔵体と言う)は、同じく本実施形態に係る水素吸蔵
装置(以下、本水素吸蔵装置あるいは本装置と言う)を
構成するものである。すなわち、無数の本水素吸蔵体か
ら本装置の主要部が形成されている。なお、以下で説明
する本装置は、車両用燃料電池において燃料として用い
られる水素の吸蔵(貯蔵)を目的とするものである。い
いかえれば、本装置は水素供給源としての役割を果た
す。
The hydrogen storage unit according to the present embodiment (hereinafter referred to as the present hydrogen storage unit) also constitutes the hydrogen storage device according to the present embodiment (hereinafter referred to as the present hydrogen storage unit or the present device). is there. That is, the main part of the present device is formed from countless present hydrogen storage bodies. The present device described below is intended for storing (storing) hydrogen used as fuel in a vehicle fuel cell. In other words, the device serves as a hydrogen supply.

【0018】さて本水素吸蔵体は、図1から判るよう
に、水素のみを透過させる真球状のカプセル1と、この
カプセル1内に封入されたフラーレン(正確にはフラー
レンからなる一定量の微粉末)2とを主要構成要素とし
て具備する。但し、ここではフラーレン2として、C
60を用いた。また、フラーレン2のカプセル内部空間
占有率(見かけの占有率)は、80%程度である。
As can be seen from FIG. 1, the present hydrogen storage material comprises a spherical capsule 1 that allows only hydrogen to pass therethrough, and a fullerene encapsulated in the capsule 1 (more precisely, a certain amount of fine powder made of fullerene). 2) as main components. However, here, fullerene 2 is C
60 was used. The occupancy rate (apparent occupancy rate) of the fullerene 2 in the capsule interior space is about 80%.

【0019】カプセル1は二層構造を有する。更に詳し
く言うとカプセル1は、殻壁に無数の細孔(貫通孔)1
aが形成された、直径(外径)が数mm程度のカプセル
本体11と、このカプセル本体11の外面を被覆するよ
う設けられた水素透過膜12とからできている。このう
ち前者は、石英ガラスを主成分とするものであり、上記
細孔1aは、例えば、公知慣用の光エッチング処理など
を用いて形成されている。
The capsule 1 has a two-layer structure. More specifically, the capsule 1 has an infinite number of pores (through holes) 1 in the shell wall.
The capsule body 11 is formed of a capsule body 11 having a diameter (outer diameter) of about several mm and a hydrogen permeable membrane 12 provided so as to cover the outer surface of the capsule body 11. The former is mainly composed of quartz glass, and the pores 1a are formed by using, for example, a known and commonly used photo-etching process.

【0020】一方、後者すなわち水素透過膜12は、水
素(水素分子)のみを透過させる役割を果たすもので、
その厚みは、1〜数μm程度である。本実施形態では、
この水素透過膜12を、パラジウム単体を材料とし、真
空蒸着やメッキなどの手法を用いて形成した。しかし、
パラジウム単体に替えて、パラジウム・銀・金系の合金
やランタン・ニッケル系の合金を上記水素透過膜12の
材料として用いてもよい。
On the other hand, the latter, that is, the hydrogen permeable membrane 12 plays a role of transmitting only hydrogen (hydrogen molecules).
Its thickness is about 1 to several μm. In this embodiment,
The hydrogen permeable film 12 was formed using a material such as palladium alone by a technique such as vacuum evaporation or plating. But,
Instead of palladium alone, a palladium / silver / gold based alloy or a lanthanum / nickel based alloy may be used as the material of the hydrogen permeable film 12.

【0021】この水素透過膜12を設けたことで、カプ
セル本体11内には水素以外のガス、例えば酸素が侵入
しなくなる。このためフラーレン2の酸化が、したがっ
てその水素吸蔵能力の低下が効果的に抑止される。ちな
みに、本水素吸蔵体の製造に関しては、開口を有するカ
プセル原材内に、同開口から適量のフラーレンを注入
し、その後、加熱して開口を閉塞する方法を用いた。但
し、本水素吸蔵体の製造作業の全工程は、水素雰囲気中
にて実施されることになる。これは、カプセル1内に酸
素などの無用なガスが入り込まないようにするためであ
る。
By providing this hydrogen permeable membrane 12, gas other than hydrogen, for example, oxygen, does not enter the capsule body 11. Therefore, oxidation of the fullerene 2 and, hence, a decrease in its hydrogen storage capacity are effectively suppressed. Incidentally, in the production of the present hydrogen storage material, a method was used in which an appropriate amount of fullerene was injected into the capsule base material having an opening from the opening and then heated to close the opening. However, all the steps of the manufacturing operation of the present hydrogen storage body are performed in a hydrogen atmosphere. This is to prevent unnecessary gas such as oxygen from entering the capsule 1.

【0022】続いて、上記構造の本水素吸蔵体を用いて
形成された本実施形態に係る水素吸蔵装置について説明
する。本装置は、図2から判るように、気密性を有する
金属製の堅牢な容器31と、その内部に収納された無数
(例えば数万〜数百万)の上記水素吸蔵体32と、この
水素吸蔵体32を加熱するための電熱式のヒータ(加熱
手段)33とを主要構成要素として具備する。
Next, a description will be given of a hydrogen storage device according to the present embodiment formed using the present hydrogen storage body having the above structure. As can be seen from FIG. 2, the present apparatus comprises a rigid metal container 31 having airtightness, the myriad (for example, tens of thousands to several millions) of the above-mentioned hydrogen storage bodies 32 housed therein, An electric heater (heating means) 33 for heating the occlusion body 32 is provided as a main component.

【0023】なお、上記構成要素のうち容器31には、
水素供給口31aおよび水素排出口31bが設けられて
いる。それらの開口にはフィルター(図示せず)を配置
してあり、したがって容器31内の水素吸蔵体32が外
に飛び出すことはない。なお、水素供給口31aおよび
水素排出口31bを一つにまとめ、弁で切り換えるよう
にしてもよい。
The container 31 among the above components is
A hydrogen supply port 31a and a hydrogen discharge port 31b are provided. Filters (not shown) are arranged in these openings, so that the hydrogen storage bodies 32 in the container 31 do not jump out. Note that the hydrogen supply port 31a and the hydrogen discharge port 31b may be integrated into one, and may be switched by a valve.

【0024】本装置を用いて水素を吸蔵するには、ヒー
タ33を用いて水素吸蔵体32を所定の温度まで加熱し
ておき、この状態で、水素供給口31aから容器31の
内部に、やや圧力をかけて水素を充填すればよい(この
際、水素排出口31bは閉塞状態とする)。すると、容
器31の内部に流入した水素は、水素吸蔵体32に、正
確には、それを構成するフラーレンによって直ちに吸蔵
され、この結果、安全確実に貯蔵される。
In order to occlude hydrogen using the present apparatus, the hydrogen occlusion body 32 is heated to a predetermined temperature using the heater 33, and in this state, the hydrogen occlusion body 31 is slightly inserted into the container 31 through the hydrogen supply port 31a. The hydrogen may be filled by applying pressure (at this time, the hydrogen discharge port 31b is closed). Then, the hydrogen that has flowed into the container 31 is immediately stored in the hydrogen storage body 32 by the fullerene constituting the hydrogen storage body 32, and as a result, is safely and reliably stored.

【0025】これに対して、吸蔵しておいた水素を放出
させる際には、ヒータ33を作動させ、水素吸蔵体32
の温度を吸蔵時の温度よりも200℃程度高くする(こ
の際、水素供給口31aは閉塞状態とする)。すると、
フラーレンの内部に閉じ込められていた水素は、速やか
に外に飛び出し、更にカプセル殻壁および水素透過膜を
通過して、最終的に水素排出口31bから容器31の外
に排出される。
On the other hand, when releasing the stored hydrogen, the heater 33 is operated and the hydrogen storage body 32 is released.
Is raised by about 200 ° C. from the temperature at the time of occlusion (at this time, the hydrogen supply port 31a is closed). Then
The hydrogen trapped inside the fullerene quickly jumps out, further passes through the capsule shell wall and the hydrogen permeable membrane, and is finally discharged out of the container 31 from the hydrogen discharge port 31b.

【0026】このように本水素吸蔵体では、殻壁を透過
してカプセル内に入った水素は、カプセル内部に封入さ
れたフラーレンによって物理的に保持される。すなわ
ち、フラーレンの内部は完全な真空であるから、カプセ
ル内に入ってきた水素は、直ちにフラーレン内部に侵入
し、そこに閉じ込められた状態となる。つまり、水素は
カプセル内のフラーレンに吸蔵され、この結果、水素吸
蔵体によって安定的に貯蔵される。
As described above, in the present hydrogen storage body, the hydrogen that has penetrated the shell wall and entered the capsule is physically held by the fullerene sealed inside the capsule. That is, since the inside of the fullerene is in a complete vacuum, hydrogen that has entered the capsule immediately enters the inside of the fullerene, and is trapped therein. That is, hydrogen is stored in fullerene in the capsule, and as a result, hydrogen is stably stored by the hydrogen storage.

【0027】その一方で本水素吸蔵体は、上記のごとく
カプセル内にフラーレンの微粉末を封入したものである
から金属塊よりも格段に軽量であり、いいかえれば水素
吸蔵合金を使用する場合に比して著しく軽量である。し
かも、水素吸蔵合金と違って微粉末化することがなく耐
久性に優れ、長期間にわたって繰り返し使用できる。
On the other hand, the present hydrogen storage material is much lighter than a metal lump because it contains a fine powder of fullerene in a capsule as described above. And significantly lighter. Moreover, unlike a hydrogen storage alloy, it does not become finely divided, has excellent durability, and can be used repeatedly over a long period of time.

【0028】また、水素を液化させたり、あるいは気体
のまま高圧で圧縮したりして封じ込めるものではないの
で、取扱いが容易であり、安全性に優れる。更に本水素
吸蔵体は、構造が非常に簡素なので製造コストは低廉で
ある。よって、この高性能・高機能な水素吸蔵体を用い
てなる本水素吸蔵装置も、軽量で、かつ、耐久性に優
れ、しかも取扱いが容易であって安全性が高く、更には
構造が簡単で、安価にて提供できる。
Further, since hydrogen is not liquefied or compressed as it is at a high pressure as a gas, it is easy to handle and excellent in safety. Further, the present hydrogen storage body has a very simple structure, so that the manufacturing cost is low. Therefore, this hydrogen storage device using this high-performance and high-performance hydrogen storage body is also lightweight, has excellent durability, is easy to handle, has high safety, and has a simple structure. , Can be provided at low cost.

【0029】なお本実施形態では、燃料電池への水素供
給源として使用した場合を例に挙げて、本装置の構造や
機能を説明した。しかし、言うまでもなく、本発明に係
る水素吸蔵装置の用途は、こうした事例に限られるもの
ではない。また、本発明に係る水素吸蔵体の他の実施形
態としては、水素のみを透過させるカプセルと、このカ
プセル内に封入されたナノチューブとを具備してなる構
造のものを挙げることができる。
In this embodiment, the structure and function of the present apparatus have been described by taking as an example a case where the apparatus is used as a hydrogen supply source to a fuel cell. However, it goes without saying that the application of the hydrogen storage device according to the present invention is not limited to such a case. Further, as another embodiment of the hydrogen storage material according to the present invention, a structure having a capsule that allows only hydrogen to pass therethrough and a nanotube sealed in the capsule can be mentioned.

【0030】[0030]

【発明の効果】本発明によれば、軽量で、かつ、耐久性
に優れ、しかも取扱いが容易であって安全性が高く、更
には構造が簡単で安価な水素吸蔵装置を提供できる。特
に、こうした水素吸蔵装置を形成できる高性能な水素吸
蔵体が得られる。
According to the present invention, it is possible to provide an inexpensive hydrogen storage device which is lightweight, has excellent durability, is easy to handle, has high safety, and has a simple structure. In particular, a high-performance hydrogen storage body capable of forming such a hydrogen storage device is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る水素吸蔵体の半断面図FIG. 1 is a half sectional view of a hydrogen storage body according to an embodiment of the present invention.

【図2】本発明の実施形態に係る水素吸蔵装置の概略断
面図
FIG. 2 is a schematic sectional view of a hydrogen storage device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 カプセル 1a 細孔(貫通孔) 2 フラーレン 11 カプセル本体 12 水素透過膜 31 容器 31a 水素供給口 31b 水素排出口 32 水素吸蔵体 33 ヒータ(加熱手段) Reference Signs List 1 capsule 1a pore (through hole) 2 fullerene 11 capsule main body 12 hydrogen permeable membrane 31 container 31a hydrogen supply port 31b hydrogen discharge port 32 hydrogen storage body 33 heater (heating means)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素のみを透過させるカプセルと、この
カプセル内に封入されたフラーレンとを具備してなるこ
とを特徴とする水素吸蔵体。
1. A hydrogen storage body comprising: a capsule that allows only hydrogen to pass therethrough; and a fullerene encapsulated in the capsule.
【請求項2】 フラーレンがC60であることを特徴と
する請求項1に記載の水素吸蔵体。
2. A hydrogen absorbing material according to claim 1, fullerene characterized in that it is a C 60.
【請求項3】 水素のみを透過させるカプセルと、この
カプセル内に封入されたナノチューブとを具備してなる
ことを特徴とする水素吸蔵体。
3. A hydrogen storage body comprising: a capsule that allows only hydrogen to pass therethrough; and a nanotube sealed in the capsule.
【請求項4】 カプセルは、殻壁に複数の細孔が形成さ
れたカプセル本体と、このカプセル本体の外面を被覆す
るよう設けられた、水素のみを透過させる水素透過膜と
を具備してなるものであることを特徴とする請求項1〜
請求項3のいずれかに記載の水素吸蔵体。
4. A capsule comprising: a capsule body having a plurality of pores formed in a shell wall; and a hydrogen permeable membrane provided to cover an outer surface of the capsule body and permeable only to hydrogen. Claim 1 characterized by the above-mentioned.
The hydrogen storage material according to claim 3.
【請求項5】 上記請求項1〜請求項4のいずれかに記
載の水素吸蔵体を用いて構成された水素吸蔵装置であっ
て、 水素供給・排出口が設けられた気密性を有する容器と、 この容器内に収納された複数の前記水素吸蔵体と、 この水素吸蔵体を加熱するための加熱手段とを具備して
なることを特徴とする水素吸蔵装置。
5. A hydrogen storage device comprising the hydrogen storage body according to any one of claims 1 to 4, wherein the hydrogen storage device has an airtight container provided with a hydrogen supply / discharge port. A hydrogen storage device comprising: a plurality of the hydrogen storage units housed in the container; and heating means for heating the hydrogen storage units.
JP2001033318A 2001-02-09 2001-02-09 Hydrogen storage body and hydrogen storage device Expired - Fee Related JP3430371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033318A JP3430371B2 (en) 2001-02-09 2001-02-09 Hydrogen storage body and hydrogen storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033318A JP3430371B2 (en) 2001-02-09 2001-02-09 Hydrogen storage body and hydrogen storage device

Publications (2)

Publication Number Publication Date
JP2002237318A true JP2002237318A (en) 2002-08-23
JP3430371B2 JP3430371B2 (en) 2003-07-28

Family

ID=18897085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033318A Expired - Fee Related JP3430371B2 (en) 2001-02-09 2001-02-09 Hydrogen storage body and hydrogen storage device

Country Status (1)

Country Link
JP (1) JP3430371B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138171A (en) * 2002-10-18 2004-05-13 Seiji Kubo Hydrogen storing method and storing system
JP2007225109A (en) * 2006-01-30 2007-09-06 General Electric Co <Ge> Method for storing hydrogen, and related component and device
JP2008513712A (en) * 2004-09-21 2008-05-01 ワシントン サバンナ リバー カンパニー リミテッド ライアビリティ カンパニー Hollow porous wall glass microspheres for hydrogen storage
JP2009512618A (en) * 2005-10-21 2009-03-26 ワシントン サバンナ リバー カンパニー リミテッド ライアビリティ カンパニー Hollow glass microspheres with porous walls for hydrogen storage
JP2009144837A (en) * 2007-12-14 2009-07-02 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Hydrogen storage can device applied to metallic organic frame material
JP2010144926A (en) * 2008-12-22 2010-07-01 Korea Electronics Telecommun Gas storage structure and gas storage device including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138171A (en) * 2002-10-18 2004-05-13 Seiji Kubo Hydrogen storing method and storing system
JP2008513712A (en) * 2004-09-21 2008-05-01 ワシントン サバンナ リバー カンパニー リミテッド ライアビリティ カンパニー Hollow porous wall glass microspheres for hydrogen storage
JP2009512618A (en) * 2005-10-21 2009-03-26 ワシントン サバンナ リバー カンパニー リミテッド ライアビリティ カンパニー Hollow glass microspheres with porous walls for hydrogen storage
JP2007225109A (en) * 2006-01-30 2007-09-06 General Electric Co <Ge> Method for storing hydrogen, and related component and device
JP2009144837A (en) * 2007-12-14 2009-07-02 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Hydrogen storage can device applied to metallic organic frame material
JP2010144926A (en) * 2008-12-22 2010-07-01 Korea Electronics Telecommun Gas storage structure and gas storage device including the same

Also Published As

Publication number Publication date
JP3430371B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
KR101448572B1 (en) Fluid enclosure and methods related thereto
US6672077B1 (en) Hydrogen storage in nanostructure with physisorption
US8172928B2 (en) Fuel source for electrochemical cell
KR20100040940A (en) Composite hydrogen storage material and methods related thereto
US8227144B2 (en) Cellular reservoir and methods related thereto
KR101604512B1 (en) Hydrogen storage alloy and hydrogen storage unit using same
JP2002033113A (en) Fuel gas generating device for fuel cell and composite material for hydrogen separation
JP2002237318A (en) Hydrogen storage material and hydrogen storage device
JPH1072201A (en) Hydrogen storage method
US8871671B2 (en) Hydrogen storage unit
US7771520B1 (en) System and method for forming a membrane that is super-permeable to hydrogen
JP2005219950A (en) Carbon material, method of manufacturing carbon material, gas adsorption apparatus and composite material
US20180194622A1 (en) Ammonia borane confinement in graphene oxide 3d structures
CN100391827C (en) Field-assisted gas storage materials and fuel cells comprising same
WO2001068525A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP4686865B2 (en) Hydrogen storage / release device
JP2004261739A (en) Hydrogen occlusion composite material
Maeland The storage of hydrogen for vehicular use-a review and reality check
JP2001316104A (en) Carbon material for hydrogen occlusion and its manufacturing method, hydrogen occluding carbon material and its manufacturing method, and cell using hydrogen occluding carbon material and fuel cell using hydrogen occluding carbon material
KR101400228B1 (en) Nano porous material, method for preparing the nano porous material and hydrogen strorage device employing the same
JP4604332B2 (en) Reforming composite and hydrogen generating structure provided therewith
JP2002166122A (en) Method for refining and storing hydrogen
JP2015208695A (en) Method for manufacturing separation membrane
Leonidovich et al. Phenomenological thermodynamics of adsorption for justification of synthesis of the optimal hydrogen accumulator based on zeolites, carbon nanotubes and mikrospheres
WO2001068524A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees