JPH1072201A - Hydrogen storage method - Google Patents

Hydrogen storage method

Info

Publication number
JPH1072201A
JPH1072201A JP8229920A JP22992096A JPH1072201A JP H1072201 A JPH1072201 A JP H1072201A JP 8229920 A JP8229920 A JP 8229920A JP 22992096 A JP22992096 A JP 22992096A JP H1072201 A JPH1072201 A JP H1072201A
Authority
JP
Japan
Prior art keywords
hydrogen
activated carbon
alloy
hydrogen storage
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8229920A
Other languages
Japanese (ja)
Inventor
Koetsu Hibino
光悦 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8229920A priority Critical patent/JPH1072201A/en
Publication of JPH1072201A publication Critical patent/JPH1072201A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To provide an effective hydrogen storage method adaptable for an automobile. SOLUTION: Hydrogen is adsorbed and occluded under cooling and pressing in a porous carbonaceous material with a coating film of a metal or alloy having function to dissociate hydrogen molecules into hydrogen atoms on the surface. Activated carbon, Fullerene, a carbon nanotube or a mixture of two or more of them is preferably used as the porous carbonaceous material. Platinum, palladium or a hydrogen storage alloy is preferably used as the metal or alloy having function to dissociate hydrogen molecules into hydrogen atoms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素貯蔵方法に関
する。より詳細には、本発明は、エネルギー源として利
用する水素の効率的な運搬、車載を可能にする、水素の
貯蔵方法に関する。
The present invention relates to a method for storing hydrogen. More specifically, the present invention relates to a method for storing hydrogen, which enables efficient transportation and on-vehicle use of hydrogen used as an energy source.

【0002】[0002]

【従来の技術】自動車の動力源として、現在はガソリ
ン、軽油を燃料とするレシプロエンジンが主流となって
いる。しかしながら、大気汚染等の社会問題と燃料の長
期安定供給のエネルギー問題に対する対策から、既存の
ガソリン、軽油を代替する低公害でかつ長期安定供給可
能な燃料が検討されている。このような代替燃料のう
ち、水素燃料は炭素を含まず、燃焼によって生ずるもの
は水であるため、その排気ガスは窒素酸化物を除けば問
題はなく、大気汚染対策として水素燃料エンジンの開発
が行われている。
2. Description of the Related Art At present, a reciprocating engine using gasoline or light oil as a fuel is mainly used as a power source of an automobile. However, in view of measures against social problems such as air pollution and energy problems of long-term stable supply of fuel, low-pollution and long-term stable fuel that can replace existing gasoline and light oil are being studied. Of these alternative fuels, hydrogen fuel does not contain carbon, and the one produced by combustion is water, so there is no problem with the exhaust gas except for nitrogen oxides. Is being done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、水素燃
料の最大の問題は、その貯蔵法と運搬法にある。すなわ
ち、水素を気体として貯蔵・輸送するには高圧ガスボン
ベが用いられ、このような高圧貯蔵は単純ではあるが、
肉厚の容器が必要であり、そのため容器の重量が重くな
り輸送・貯蔵効率が低く、車載等への実用化には困難で
ある。また、水素を液体として輸送・貯蔵する場合、気
体水素にくらべて輸送・貯蔵効率は向上するが、液体水
素製造には高純度の水素が必要であること、ガスの液化
に168calの熱を除去しなければならず、液化温度が−25
2.6 ℃という低温であり、このような超低温用の特殊な
容器が必要であるため経済的に問題がある。さらに、厳
重にシールしても蒸発による消失を避けることはできな
い。
However, the biggest problem with hydrogen fuel lies in its storage and transportation. In other words, high-pressure gas cylinders are used to store and transport hydrogen as a gas, and such high-pressure storage is simple,
Since a thick container is required, the weight of the container becomes heavy, and the transportation and storage efficiency is low, and it is difficult to put the container to practical use in a vehicle or the like. Also, when transporting and storing hydrogen as a liquid, transport and storage efficiency is improved compared to gaseous hydrogen, but high-purity hydrogen is required for liquid hydrogen production, and 168 calories of heat are removed for gas liquefaction. Liquefaction temperature of -25
The temperature is as low as 2.6 ° C, and there is an economic problem because a special container for such an ultra-low temperature is required. Furthermore, even if the seal is tightly sealed, the loss due to evaporation cannot be avoided.

【0004】そこで最近、水素の貯蔵方法として水素吸
蔵合金を用いることが提案され、一部実用化されてい
る。これは、合金と水素を化合させて水素化物を形成
し、金属容積の数百倍もの水素を結晶格子間に蓄える方
法である。この方法は、安全性、効率、経済性の観点か
ら上記の気体として又は液体として輸送・運搬する方法
よりも有利であるが、現状では合金自体の重量が重く、
またMg系の軽量な水素貯蔵合金ではその使用温度が29
0 ℃と高いといった問題があり、燃料として車載するに
は実用的でないという問題がある。本発明は、車載可能
な新規な水素貯蔵方法を提供することを目的とする。
[0004] Recently, the use of a hydrogen storage alloy has been proposed as a method for storing hydrogen, and some hydrogen storage alloys have been put into practical use. This is a method of combining an alloy with hydrogen to form a hydride, and storing hydrogen several hundred times the metal volume between crystal lattices. This method is more advantageous than the above-mentioned method of transporting / transporting as a gas or a liquid from the viewpoint of safety, efficiency and economy, but at present the weight of the alloy itself is heavy,
In the case of Mg-based lightweight hydrogen storage alloy, the operating temperature is 29
There is a problem that the temperature is as high as 0 ° C, and there is a problem that it is not practical to be mounted on a vehicle as a fuel. An object of the present invention is to provide a novel hydrogen storage method that can be mounted on a vehicle.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに1番目の発明によれば、水素分子を水素原子に分離
させる機能を有する金属もしくは合金の被膜を表面に有
する多孔性炭素質材料に対し、冷却かつ加圧下において
水素を吸着・吸蔵させている。
According to a first aspect of the present invention, there is provided a porous carbonaceous material having on its surface a metal or alloy coating having a function of separating hydrogen molecules into hydrogen atoms. On the other hand, hydrogen is adsorbed and stored under cooling and pressure.

【0006】また、2番目の発明では上記問題点を解決
するために1番目の発明において、前記多孔性炭素質材
料として、活性炭、フラーレン、カーボンナノチュー
ブ、又はこれらの2種以上の混合物が用いられている。
In the second invention, in order to solve the above-mentioned problems, in the first invention, activated carbon, fullerene, carbon nanotube, or a mixture of two or more thereof is used as the porous carbonaceous material. ing.

【0007】また、3番目の発明では上記問題点を解決
するために2番目の発明において、前記混合物として、
フラーレンと活性炭、カーボンナノチューブと活性炭、
又はフラーレンとカーボンナノチューブと活性炭の混合
物が用いられ、かつ活性炭がこの混合物の総重量の1〜
15重量%を構成している。
[0007] In a third invention, in order to solve the above problems, in the second invention, as the mixture,
Fullerene and activated carbon, carbon nanotube and activated carbon,
Alternatively, a mixture of fullerene, carbon nanotube, and activated carbon is used, and the activated carbon is 1 to 3 times the total weight of the mixture.
Make up 15% by weight.

【0008】また、4番目の発明では上記問題点を解決
するために1〜3番目の発明において、前記水素分子を
水素原子に分離させる機能を有する金属もしくは合金と
して、白金、パラジウムもしくは水素貯蔵合金が用いら
れている。
According to a fourth aspect of the present invention, there is provided the first to third aspects of the present invention, wherein the metal or alloy having a function of separating hydrogen molecules into hydrogen atoms is platinum, palladium or a hydrogen storage alloy. Is used.

【0009】[0009]

【発明の実施の形態】本発明の水素貯蔵方法は、多孔性
炭素質材料に水素を原子状態で吸着・吸蔵させることに
基づくものである。多孔性炭素質材料は比表面積が大き
く、その表面にガスを吸着する特性を有することが知ら
れており、本発明において各種のもの、例えばグラファ
イト、活性炭、フラーレン、カーボンナノチューブ等を
用いることができる。これらの炭素質材料のうち、グラ
ファイトは、図1に示すように、炭素の価電子のsp2
混成軌道に起因する六角形の網目構造の層面を基本ユニ
ットとし、この層がπ電子による結合によって積層した
構造をとっている。また、フラーレンは、ダイヤモン
ド、グラファイトに次ぐ第三の炭素同素体の総称であ
り、代表的なものとしてC60及びC70が知られている。
例えばC60は図2に示すように、60個のsp2 炭素が20
個の六員環と12個の五員環の各頂点に配置されたサッカ
ーボール形の中空球状構造を有している。さらに、カー
ボンナノチューブは、図1に示すグラファイトの六員環
で構成された面を丸めた管状の構造を有している。この
カーボン面で囲まれた管の内部は中空になっており、こ
の管の直径は2nmほどのナノメーターオーダーであり、
軸方向の長さは直径にくらべて格段に長く1μmほども
あることを特徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage method of the present invention is based on the adsorption and occlusion of hydrogen in a porous carbonaceous material in an atomic state. It is known that porous carbonaceous materials have a large specific surface area and have a property of adsorbing gas on the surface thereof, and various materials such as graphite, activated carbon, fullerene, and carbon nanotubes can be used in the present invention. . Among these carbonaceous materials, graphite, as shown in Figure 1, the valence of the carbon sp 2
It has a structure in which a layer surface of a hexagonal network structure caused by a hybrid orbital is used as a basic unit, and the layers are stacked by bonding with π electrons. Fullerene is a general term for the third carbon allotrope next to diamond and graphite, and C 60 and C 70 are known as typical ones.
For example, as shown in FIG. 2, C 60 has 60 sp 2 carbons of 20 carbon atoms.
It has a soccer ball-shaped hollow spherical structure arranged at each apex of six six-membered rings and twelve five-membered rings. Further, the carbon nanotube has a tubular structure having a rounded surface formed of a graphite six-membered ring shown in FIG. The inside of the tube surrounded by this carbon surface is hollow, the diameter of this tube is about 2 nm on the order of nanometers,
The length in the axial direction is much longer than the diameter, and is about 1 μm.

【0010】このような多孔性炭素質材料に水素分子を
吸着・吸蔵させようとすると、分子状態では多孔性炭素
質材料の表面のみに吸着し、その内部、すなわちグラフ
ァイトにおいては六角編目層の層間に、フラーレン及び
カーボンナノチューブにおいては中空部内に水素分子を
取り込ませることは困難であり、従って水素の吸蔵能に
は限界がある。
When an attempt is made to adsorb and occlude hydrogen molecules in such a porous carbonaceous material, in the molecular state, it is adsorbed only on the surface of the porous carbonaceous material, and in the interior thereof, that is, in the graphite, between layers of the hexagonal stitch layer. In addition, in fullerenes and carbon nanotubes, it is difficult to incorporate hydrogen molecules into the hollow portion, and therefore, there is a limit to the hydrogen storage capacity.

【0011】ところが、水素を原子状態で多孔性炭素質
材料に吸蔵させると、この材料の内部に、すなわちグラ
ファイトでは六角編目層の層間に、フラーレン等では中
空部にまで水素原子を取り込ませることができ、より多
くの水素を吸蔵させることができる。このため、本発明
では、多孔性炭素質材料の表面上に水素分子を水素原子
に分離させる機能を有する金属もしくは合金の被膜を設
けている。このような被膜を設けることにより、水素分
子はこの被膜上で原子に解離し、原子状態で被膜内部を
移動して多孔性炭素質材料に達し、さらに多孔性炭素質
材料の内部にまで入り込むことができる。このような水
素分子を水素原子に分離させる機能を有する金属もしく
は合金としては水素化物を形成するもの、例えば、白
金、パラジウム、マグネシウム、チタン、マンガン、ラ
ンタン、バナジウム、ジルコニウム、水素吸蔵合金等を
用いることができる。
However, when hydrogen is absorbed into the porous carbonaceous material in an atomic state, hydrogen atoms can be taken into the inside of the material, that is, between graphite hexagonal mesh layers, and into fullerenes and the like into hollow portions. And more hydrogen can be stored. Therefore, in the present invention, a coating of a metal or an alloy having a function of separating hydrogen molecules into hydrogen atoms is provided on the surface of the porous carbonaceous material. By providing such a coating, hydrogen molecules dissociate into atoms on the coating, move inside the coating in an atomic state, reach the porous carbonaceous material, and further penetrate into the porous carbonaceous material. Can be. As the metal or alloy having a function of separating hydrogen molecules into hydrogen atoms, those which form hydrides, for example, platinum, palladium, magnesium, titanium, manganese, lanthanum, vanadium, zirconium, hydrogen storage alloys and the like are used. be able to.

【0012】水素吸蔵合金とは上記のように、比較的容
易に水素化物を形成して多量の水素を吸蔵するととも
に、わずかな加熱や減圧だけで水素化物が解離し、多量
の水素を放出する合金をいう。この水素吸蔵合金から発
生する水素は分子状の水素ではなく、原子状の水素であ
り、従って放出された水素は容易に多孔性炭素質材料の
内部に入り込むことができる。この水素吸蔵合金として
は、例えばLaNi5 ,TiFeを用いることができ
る。
As described above, a hydrogen storage alloy forms a hydride relatively easily and absorbs a large amount of hydrogen, and dissociates the hydride with a slight heating or decompression to release a large amount of hydrogen. An alloy. The hydrogen generated from the hydrogen storage alloy is not molecular hydrogen but atomic hydrogen, and thus the released hydrogen can easily enter the inside of the porous carbonaceous material. As this hydrogen storage alloy, for example, LaNi 5 or TiFe can be used.

【0013】多孔性炭素質材料の表面上に水素分子を水
素原子に分離させる機能を有する金属もしくは合金の被
膜を形成する方法は、通常の金属成膜方法、例えば真空
蒸着法、スパッタリング法、CVD法等を用いることが
できる。
A method of forming a metal or alloy film having a function of separating hydrogen molecules into hydrogen atoms on the surface of a porous carbonaceous material includes a usual metal film formation method, for example, a vacuum deposition method, a sputtering method, and a CVD method. Method or the like can be used.

【0014】こうして形成した水素分子を水素原子に分
離させる機能を有する金属もしくは合金の被膜を有する
多孔性炭素質材料を所定の容器に収納し、冷却かつ加圧
下において水素を吸蔵させる。冷却するのは、水素分子
もしくは水素原子の振動を抑制し、吸蔵を促進するため
であり、低いほど吸蔵能は高まる。液体として水素を貯
蔵する場合には−253 ℃の液体水素温度まで冷却する必
要があるが、本発明の方法では液体窒素温度(−196
℃)程度で十分である。また、圧力は、好ましくは3MP
a(30気圧)以上、より好ましくは5.1MPa(50 気圧)以上
である。こうして吸蔵された水素は、温度を30℃ほど上
げることにより容易に取り出すことができる。
The porous carbonaceous material having a metal or alloy coating having a function of separating the hydrogen molecules thus formed into hydrogen atoms is housed in a predetermined container, and hydrogen is stored under cooling and pressure. The cooling is performed to suppress the vibration of the hydrogen molecules or the hydrogen atoms and promote the occlusion. The lower the temperature, the higher the occlusion ability. When hydrogen is stored as a liquid, it must be cooled to a liquid hydrogen temperature of -253 ° C.
℃) is sufficient. The pressure is preferably 3MP
a (30 atm) or more, more preferably 5.1 MPa (50 atm) or more. The hydrogen thus occluded can be easily taken out by raising the temperature by about 30 ° C.

【0015】多孔性炭素質材料としては、水素の吸着能
の高い活性炭、フラーレン、及びカーボンナノチューブ
を用いることが好ましい。また、活性炭は、賦活する材
料にもよるが、基本的には上記のようなグラファイトと
同様の炭素六員環の編目層の積層構造である。この層平
面と層平面はロンドン分散力により積み重なっており、
分子状態が2次元であるため、活性炭の内部に水素を吸
蔵させることは容易でないと考えられる。これに対し、
フラーレン及びカーボンナノチューブは、図2に示すよ
うな3次元構造を有し、この内部の中空部により多くの
水素原子を吸蔵することができるため、活性炭よりも好
ましい。
As the porous carbonaceous material, it is preferable to use activated carbon, fullerene, and carbon nanotube having a high hydrogen adsorption capacity. Activated carbon has a laminated structure of a six-membered carbon stitch layer basically similar to graphite as described above, though it depends on the material to be activated. This layer plane and layer plane are stacked by London dispersion force,
Since the molecular state is two-dimensional, it is considered that it is not easy to store hydrogen inside the activated carbon. In contrast,
Fullerenes and carbon nanotubes have a three-dimensional structure as shown in FIG. 2 and can store more hydrogen atoms in a hollow portion inside the fullerenes and carbon nanotubes, and thus are more preferable than activated carbon.

【0016】表面に金属を被覆したフラーレンもしくは
カーボンナノチューブを容器に収納した場合、加圧時に
おいてフラーレン等同士が固着してしまうことがある。
この結果、容器の内部の、表面から遠い位置にあるフラ
ーレンまで水素が到達しにくくなり、水素吸蔵能が低下
してしまう。このような現象を防ぐため、フラーレンも
しくはカーボンナノチューブ、又はこれらの混合物に活
性炭を混入させて用いることが好ましい。活性炭を混入
させることにより、フラーレン等の間に活性炭が配置さ
れ、隙間が拡大する。その結果、容器の内部にあるフラ
ーレン等にまで水素を到達させることができ、水素吸蔵
能を高めることができる。この活性炭の混合量は、混合
物全体の1〜15重量%であることが好ましい。1重量%
より少ないと上記の効果が十分得られず、15重量%より
多いと、活性炭の水素吸蔵能はフラーレン等の水素吸蔵
能よりも低いため、全体として水素吸蔵能が低下してし
まうからである。なお、この活性炭の混合量は5〜15重
量%であることがより好ましい。
When fullerenes or carbon nanotubes whose surfaces are coated with metal are housed in a container, the fullerenes and the like may adhere to each other when pressurized.
As a result, it becomes difficult for hydrogen to reach the fullerene located at a position far from the surface inside the container, and the hydrogen storage capacity is reduced. In order to prevent such a phenomenon, it is preferable to use activated carbon mixed with fullerene, carbon nanotube, or a mixture thereof. By mixing the activated carbon, the activated carbon is arranged between the fullerenes and the like, and the gap is enlarged. As a result, hydrogen can reach the fullerenes and the like inside the container, and the hydrogen storage capacity can be increased. The mixing amount of the activated carbon is preferably 1 to 15% by weight of the whole mixture. 1% by weight
If the amount is less than the above, the above effect cannot be sufficiently obtained, and if the amount is more than 15% by weight, the hydrogen storage capacity of the activated carbon is lower than the hydrogen storage capacity of fullerene or the like, so that the hydrogen storage capacity is reduced as a whole. The mixing amount of the activated carbon is more preferably 5 to 15% by weight.

【0017】[0017]

【実施例】【Example】

実施例1 活性炭(AC)に真空蒸着により厚さ20nmのパラジウム
(Pd)の被膜を成膜し(Pd−Ac)、容量100ml の
ガス容器に約30g 収納した。容器内を真空にし、−196
℃に冷却した。そして圧力を加えて容器内に水素を導入
し、各圧力におけるガス流量とその積算計から活性炭へ
の水素貯蔵量をもとめた。また、比較のため、パラジウ
ムの被膜を設けない活性炭(AC)を用いて同様に水素
貯蔵量を測定した。なお、用いた活性炭の比表面積は18
00mm2/g であり、パラジウムの被覆後もほぼ同じ比表面
積であり、密度は約1%増加した。この結果を図3に示
す。この結果より明らかなように、パラジウムの被膜を
形成することにより水素貯蔵量が明らかに増加した。
Example 1 A palladium (Pd) film having a thickness of 20 nm was formed on activated carbon (AC) by vacuum evaporation (Pd-Ac), and about 30 g was stored in a gas container having a capacity of 100 ml. Vacuum the inside of the container, and
Cooled to ° C. Then, pressure was applied to introduce hydrogen into the vessel, and the gas flow rate at each pressure and the amount of hydrogen stored in the activated carbon were determined from the integrator. For comparison, the hydrogen storage amount was similarly measured using activated carbon (AC) without a palladium coating. The specific surface area of the activated carbon used was 18
00 mm 2 / g, almost the same specific surface area after coating with palladium, and the density increased by about 1%. The result is shown in FIG. As is evident from the results, the formation of the palladium coating significantly increased the hydrogen storage capacity.

【0018】実施例2 フラーレン(C60)に真空蒸着により厚さ20nmのパラジ
ウム(Pd)の被膜を成膜し(Pd−C60)、容量100m
l のガス容器に約30g 収納した。容器内を真空にし、−
196 ℃に冷却した。そして圧力を加えて容器内に水素を
導入し、各圧力におけるガス流量とその積算計からフラ
ーレン(C60)への水素貯蔵量をもとめた。また、比較
のため、パラジウムの被膜を設けないフラーレンを用い
て同様に水素貯蔵量を測定した。この結果を図4に示
す。この結果より明らかなように、パラジウムの被膜を
形成することにより水素貯蔵量が飛躍的に増加した。こ
れは、水素は分子状ではフラーレンの中空内部に入り込
むことはできないが、パラジウムの被膜を設けることに
より水素が原子に分離し、フラーレンの中空内部に入り
込むことができたためであると考えられる。
EXAMPLE 2 A palladium (Pd) film having a thickness of 20 nm was formed on fullerene (C 60 ) by vacuum evaporation (Pd-C 60 ), and the capacity was 100 m.
Approximately 30 g was stored in a l gas container. Vacuum the container,
Cooled to 196 ° C. Then, hydrogen was introduced into the vessel by applying pressure, and the gas flow rate at each pressure and the amount of hydrogen stored in fullerene (C 60 ) were determined from the integrator. For comparison, the hydrogen storage amount was measured in the same manner using fullerene without a palladium coating. The result is shown in FIG. As is clear from the results, the formation of the palladium coating dramatically increased the hydrogen storage capacity. This is considered to be because hydrogen could not enter the hollow interior of the fullerene in molecular form, but by providing the palladium coating, the hydrogen was separated into atoms and could enter the hollow interior of the fullerene.

【0019】実施例3 実施例2で用いたPd−C60に実施例1で用いたPd−
Acを10重量%加え(全体30g)、実施例2と同様にして
水素貯蔵量を測定した。この結果を図5に示す。図4に
示したPd−C60の水素貯蔵量のデータを比較のため図
5に示す。この図より明らかなように、活性炭を混入す
ることにより、水素貯蔵量が増加した。
[0019] Using the Pd-C 60 used in Example 3 Example 2 In Example 1 Pd-
Ac was added at 10% by weight (30 g in total), and the hydrogen storage amount was measured in the same manner as in Example 2. The result is shown in FIG. The data of the hydrogen storage amount of Pd-C 60 shown in FIG. 4 for comparison shown in FIG. As is clear from this figure, the amount of hydrogen storage was increased by mixing activated carbon.

【0020】車載手段としての評価 従来の水素の貯蔵方法及び本発明の方法について、車載
手段としての評価した。すなわち、各方法について水素
を8.2kg 貯蔵させるのに必要なタンク重量及び総重量を
以下の表1に示す。
Evaluation as on-vehicle means The conventional hydrogen storage method and the method of the present invention were evaluated as on-vehicle means. In other words, the tank weight and total weight required to store 8.2 kg of hydrogen for each method are shown in Table 1 below.

【表1】 [Table 1]

【0021】水素吸蔵合金の1種であるMg系は軽量で
あることが利点であるが、その使用温度、すなわち水素
を放出させるに必要な温度は290 ℃と高く、車載手段と
しては適さない。一方、Ti系合金は使用温度が50〜10
0 ℃であり、この点では問題ないが、重量が重すぎて車
載手段としては適さない。液体水素は貯蔵に超低温が必
要であり、また1日あたり0.5 〜3%程度の蒸発による
ロスが起こる。さらに10〜25%の量が補給中に蒸発する
という問題もあり車載手段としては適さない。
The Mg-based alloy, one of the hydrogen storage alloys, has the advantage of being lightweight, but its use temperature, ie, the temperature required to release hydrogen is as high as 290 ° C., and is not suitable as a vehicle-mounted means. On the other hand, the operating temperature of Ti-based alloys is 50 to 10
Although the temperature is 0 ° C, there is no problem in this respect, but the weight is too heavy to be suitable as a vehicle-mounted means. Liquid hydrogen requires ultra-low temperatures for storage, and loss due to evaporation of about 0.5 to 3% per day. Furthermore, there is a problem that 10 to 25% of the amount evaporates during replenishment, so that it is not suitable as a vehicle-mounted means.

【0022】これに対し、本発明の方法によれば、液体
窒素程度の温度において液体水素なみの水素を貯蔵する
ことができる。このような液体窒素程度の温度(−196
℃)であれば断熱処理がかなり容易になり、蒸発による
ロスは1日あたり0.1 〜0.3%程度であり、補給中の蒸
発量も3〜5%程度である。また、冷却エネルギーは液
体水素の場合の約半分程度である。さらに、液体水素の
場合とは異なり、水素がC60の内部に吸蔵されているた
め、一度に多量に水素が漏れることもない。
On the other hand, according to the method of the present invention, hydrogen as much as liquid hydrogen can be stored at a temperature of about liquid nitrogen. Such a temperature of about liquid nitrogen (−196
° C), the adiabatic treatment becomes much easier, the loss due to evaporation is about 0.1 to 0.3% per day, and the evaporation during replenishment is about 3 to 5%. The cooling energy is about half that of liquid hydrogen. Further, unlike the case of liquid hydrogen, it is because it is occluded in the interior of the C 60, that no leak of hydrogen in a large amount at a time hydrogen.

【0023】[0023]

【発明の効果】本発明の水素貯蔵方法は、液体水素によ
る貯蔵と水素吸蔵合金による貯蔵の両者の利点を兼ね備
えた有効な水素の輸送・貯蔵方法であり、車載性におい
ても優れている。
The hydrogen storage method of the present invention is an effective method for transporting and storing hydrogen having both advantages of storage using liquid hydrogen and storage using a hydrogen storage alloy, and is excellent also in terms of vehicle mountability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】グラファイトの結晶構造を示す図である。FIG. 1 is a view showing a crystal structure of graphite.

【図2】フラーレン(C60)の結晶構造を示す図であ
る。
FIG. 2 is a view showing a crystal structure of fullerene (C 60 ).

【図3】活性炭とパラジウム被膜を有する活性炭の水素
貯蔵量を示すグラフである。
FIG. 3 is a graph showing hydrogen storage amounts of activated carbon and activated carbon having a palladium coating.

【図4】フラーレンとパラジウム被膜を有するフラーレ
ンの水素貯蔵量を示すグラフである。
FIG. 4 is a graph showing hydrogen storage amounts of fullerene and fullerene having a palladium coating.

【図5】活性炭を混合したフラーレンの水素貯蔵量を示
すグラフである。
FIG. 5 is a graph showing a hydrogen storage amount of fullerene mixed with activated carbon.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素分子を水素原子に分離させる機能を
有する金属もしくは合金の被膜を表面に有する多孔性炭
素質材料に対し、冷却かつ加圧下において水素を吸着・
吸蔵させることを特徴とする水素貯蔵方法。
1. A method for adsorbing hydrogen on a porous carbonaceous material having a coating of a metal or alloy having a function of separating hydrogen molecules into hydrogen atoms on a surface thereof under cooling and pressure.
A hydrogen storage method characterized by storing.
【請求項2】 前記多孔性炭素質材料が活性炭、フラー
レン、カーボンナノチューブ、又はこれらの2種以上の
混合物である、請求項1記載の水素貯蔵方法。
2. The hydrogen storage method according to claim 1, wherein the porous carbonaceous material is activated carbon, fullerene, carbon nanotube, or a mixture of two or more thereof.
【請求項3】 前記混合物がフラーレンと活性炭、カー
ボンナノチューブと活性炭、又はフラーレンとカーボン
ナノチューブと活性炭の混合物であり、活性炭含量がこ
の混合物の総重量の1〜15重量%であることを特徴とす
る、請求項2記載の水素貯蔵方法。
3. The mixture is a mixture of fullerene and activated carbon, carbon nanotube and activated carbon, or a mixture of fullerene, carbon nanotube and activated carbon, and the activated carbon content is 1 to 15% by weight of the total weight of the mixture. The method for storing hydrogen according to claim 2.
【請求項4】 前記水素分子を水素原子に分離させる機
能を有する金属もしくは合金が白金、パラジウムもしく
は水素貯蔵合金である、請求項1〜3のいずれか記載の
方法。
4. The method according to claim 1, wherein the metal or alloy having a function of separating hydrogen molecules into hydrogen atoms is platinum, palladium, or a hydrogen storage alloy.
JP8229920A 1996-08-30 1996-08-30 Hydrogen storage method Pending JPH1072201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8229920A JPH1072201A (en) 1996-08-30 1996-08-30 Hydrogen storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8229920A JPH1072201A (en) 1996-08-30 1996-08-30 Hydrogen storage method

Publications (1)

Publication Number Publication Date
JPH1072201A true JPH1072201A (en) 1998-03-17

Family

ID=16899817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8229920A Pending JPH1072201A (en) 1996-08-30 1996-08-30 Hydrogen storage method

Country Status (1)

Country Link
JP (1) JPH1072201A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056870A1 (en) * 1998-05-01 1999-11-11 Osaka Gas Company Limited Gas-occluding material and method for occluding gas
WO2000018682A1 (en) * 1998-09-25 2000-04-06 Kvaerner Technology And Research Limited Carbon media for storage of hydrogen
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
WO2001017900A1 (en) * 1999-09-09 2001-03-15 Sony Corporation Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
JP2001163603A (en) * 1999-12-08 2001-06-19 Sanyo Electric Co Ltd Metal hydride and manufacturing method thereof
WO2001068525A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2001068526A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
KR20010091479A (en) * 2000-03-15 2001-10-23 남기석 Hydrogen storage techniques using carbon nanotubes
JP2001313049A (en) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd Hydrogen supply device for fuel cell
WO2001089684A1 (en) * 2000-05-23 2001-11-29 Sony Corporation Method of producing hydrogen occluding material and hydrogen occluding/discharging device
JP2002228097A (en) * 2000-11-22 2002-08-14 Air Products & Chemicals Inc Reversible method for adsorbing and occluding gaseous hydrogen
JP2004261739A (en) * 2003-03-03 2004-09-24 Toyota Motor Corp Hydrogen occlusion composite material
WO2005036073A1 (en) * 2003-09-28 2005-04-21 Yongding Ouyang An improved solid absorbent bed and absorbent refrigeration system comprising the same
US7014951B2 (en) 2000-03-16 2006-03-21 Sony Corporation Carbonaceous material for hydrogen storage, and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US7037622B2 (en) 2000-03-16 2006-05-02 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US7094276B2 (en) * 2001-09-28 2006-08-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen storage material and hydrogen storage apparatus
US7259124B2 (en) * 2005-02-07 2007-08-21 Industrial Technology Research Institiute Hydrogen storage composite and preparation thereof
CN100445196C (en) * 2004-03-24 2008-12-24 南京理工大学 Carbon nanotube hydrogen-storing and coating method
JP2016216888A (en) * 2004-11-09 2016-12-22 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Production and application of nanofiber ribbon and sheet and nanofiber twisted yarn and non-twisted yarn
KR20220065533A (en) * 2020-11-13 2022-05-20 한국과학기술원 Method for preparing reduced graphene oxide-magnesium nanocrystal composite
KR20220065608A (en) * 2020-11-13 2022-05-20 한국과학기술원 Enhancement of Thermal Conductivity of Graphene Derivative-Magnesium Crystal Nanocomposite for High-Performance Solid-State Hydrogen Storage

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056870A1 (en) * 1998-05-01 1999-11-11 Osaka Gas Company Limited Gas-occluding material and method for occluding gas
WO2000018682A1 (en) * 1998-09-25 2000-04-06 Kvaerner Technology And Research Limited Carbon media for storage of hydrogen
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
US6960334B1 (en) 1998-12-28 2005-11-01 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
EP1146013A4 (en) * 1998-12-28 2010-12-22 Osaka Gas Co Ltd Amorphous nano-scale carbon tube and production method therefor
EP1146013A1 (en) * 1998-12-28 2001-10-17 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
WO2001017900A1 (en) * 1999-09-09 2001-03-15 Sony Corporation Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
JP2001163603A (en) * 1999-12-08 2001-06-19 Sanyo Electric Co Ltd Metal hydride and manufacturing method thereof
KR20010091479A (en) * 2000-03-15 2001-10-23 남기석 Hydrogen storage techniques using carbon nanotubes
WO2001068526A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2001068525A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US7014952B2 (en) 2000-03-16 2006-03-21 Sony Corporation Hydrogen-storing carbonaceous material and method for producing the same, hydrogen-stored carbonaceous material and method for producing the same and battery and fuel cell using hydrogen-stored carbonaceous material
US7014951B2 (en) 2000-03-16 2006-03-21 Sony Corporation Carbonaceous material for hydrogen storage, and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US7037622B2 (en) 2000-03-16 2006-05-02 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP2001313049A (en) * 2000-04-28 2001-11-09 Japan Metals & Chem Co Ltd Hydrogen supply device for fuel cell
JP4644334B2 (en) * 2000-04-28 2011-03-02 日本重化学工業株式会社 Hydrogen supply device for fuel cell
WO2001089684A1 (en) * 2000-05-23 2001-11-29 Sony Corporation Method of producing hydrogen occluding material and hydrogen occluding/discharging device
JP2002228097A (en) * 2000-11-22 2002-08-14 Air Products & Chemicals Inc Reversible method for adsorbing and occluding gaseous hydrogen
US7094276B2 (en) * 2001-09-28 2006-08-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen storage material and hydrogen storage apparatus
JP2004261739A (en) * 2003-03-03 2004-09-24 Toyota Motor Corp Hydrogen occlusion composite material
WO2005036073A1 (en) * 2003-09-28 2005-04-21 Yongding Ouyang An improved solid absorbent bed and absorbent refrigeration system comprising the same
CN100445196C (en) * 2004-03-24 2008-12-24 南京理工大学 Carbon nanotube hydrogen-storing and coating method
JP2016216888A (en) * 2004-11-09 2016-12-22 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Production and application of nanofiber ribbon and sheet and nanofiber twisted yarn and non-twisted yarn
US7259124B2 (en) * 2005-02-07 2007-08-21 Industrial Technology Research Institiute Hydrogen storage composite and preparation thereof
KR20220065533A (en) * 2020-11-13 2022-05-20 한국과학기술원 Method for preparing reduced graphene oxide-magnesium nanocrystal composite
KR20220065608A (en) * 2020-11-13 2022-05-20 한국과학기술원 Enhancement of Thermal Conductivity of Graphene Derivative-Magnesium Crystal Nanocomposite for High-Performance Solid-State Hydrogen Storage

Similar Documents

Publication Publication Date Title
JPH1072201A (en) Hydrogen storage method
Sazelee et al. Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review
KR100476631B1 (en) High storage capacity alloys enabling a hydrogen-based ecosystem
EP1051350B1 (en) Hydrogen storage in carbon material
US7118611B2 (en) Nanoparticle mixtures for hydrogen storage, transportation, and distribution
US20030167778A1 (en) Hydrogen storage in nanostructures with physisorption
US6519951B2 (en) Hydrogen-based ecosystem
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
JPS62216901A (en) Cryogenic storage method and device for hydrogen by carbon for assisting metal
Nazir et al. Recent Advances and Reliable Assessment of Solid‐State Materials for Hydrogen Storage: A Step Forward toward a Sustainable H2 Economy
US6491866B1 (en) High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
JP2001220101A (en) Hydrogen storage method and hydrogen storage device
JP3551127B2 (en) Hydrogen storage material
JP2004261739A (en) Hydrogen occlusion composite material
Winarta et al. Hydrogen and methane storage in nanoporous materials
JP4456712B2 (en) Hydrogen gas storage material and storage method
WO2009057127A1 (en) A system for effective storing and fuelling of hydrogen
Maeland The storage of hydrogen for vehicular use-a review and reality check
US20050268779A1 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
WO2005064227A1 (en) Method for storing hydrogen in hybrid form
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
Mukherjee Carbon nanofiber for hydrogen storage
Zhang et al. Materials for Hydrogen Mobile Storage Applications
KR20100004023A (en) Hydrogen storage material and hydrogen strorage device employing the same
JP2004360727A (en) Hydrogen storage device