JP2002234796A - Method for synthesizing lithium cobaltate and method for growing its single crystal - Google Patents

Method for synthesizing lithium cobaltate and method for growing its single crystal

Info

Publication number
JP2002234796A
JP2002234796A JP2001067787A JP2001067787A JP2002234796A JP 2002234796 A JP2002234796 A JP 2002234796A JP 2001067787 A JP2001067787 A JP 2001067787A JP 2001067787 A JP2001067787 A JP 2001067787A JP 2002234796 A JP2002234796 A JP 2002234796A
Authority
JP
Japan
Prior art keywords
licoo2
single crystal
lithium cobaltate
lithium
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001067787A
Other languages
Japanese (ja)
Inventor
Naoshi Kuroda
直志 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001067787A priority Critical patent/JP2002234796A/en
Publication of JP2002234796A publication Critical patent/JP2002234796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To synthesize lithium cobaltate (LiCoO2) from a molten state and to produce its single crystal. SOLUTION: Lithium cobaltate (LiCoO2) is synthesized from a melt obtained by meting a mixture containing lithium carbonate (LiCO3), cobalt oxide (Co2O3) and boron oxide (B2O3) in a molar ratio of LiCO3:Co2O3:B2O3 of (1+x):1:x, at a high temperature, and then LiCoO2 is crystallized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池の正極材料等に用いるコバルト酸リチウム(LiCo
O2)を合成する方法、及び単結晶成長基板としても用
いうるコバルト酸リチウム(LiCoO2)単結晶を育
成する方法に関係する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lithium cobalt oxide (LiCo
The present invention relates to a method for synthesizing O2) and a method for growing a lithium cobaltate (LiCoO2) single crystal that can be used also as a single crystal growth substrate.

【0002】[0002]

【従来の技術】コバルト酸リチウム(LiCoO2)
は、現在のところ、主に、リチウムイオン電池の正極活
物質として利用されている。この場合、コバルト酸リチ
ウム(LiCoO2)は、炭酸リチウムと酸化コバルト
の混合物を高温で焼成する等の固相反応で得られたセラ
ミックス粉末即ち多結晶体を用いるのが、一般的であ
る。
2. Description of the Related Art Lithium cobaltate (LiCoO2)
At present, is mainly used as a positive electrode active material of a lithium ion battery. In this case, as the lithium cobalt oxide (LiCoO2), it is general to use a ceramic powder, that is, a polycrystal obtained by a solid phase reaction such as baking a mixture of lithium carbonate and cobalt oxide at a high temperature.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、固相反
応の場合には、原料粉末が不均一に混合されている場合
にLiとCoが不均一になるおそれがある。又、粒系の
サイズを調整することが、固相反応では難しい。そこ
で、均一に原料が混合する高温の融液状態から、コバル
ト酸リチウム(LiCoO2)を合成する方法が考えら
れるが、具体的方法については報告がない。
However, in the case of the solid-phase reaction, when the raw material powders are mixed unevenly, there is a possibility that Li and Co become uneven. Further, it is difficult to adjust the size of the granular system by the solid-phase reaction. Therefore, a method of synthesizing lithium cobalt oxide (LiCoO2) from a high-temperature molten state in which the raw materials are uniformly mixed can be considered, but there is no report on a specific method.

【0004】さらに、良質の結晶を育成する方法は公知
になっていない。一般に物質の大型結晶には、様々な用
途がある。例えば、物質の大型単結晶は、格子定数の近
い物質の結晶成長基板として用いる事ができる。それゆ
えに、今後、コバルト酸リチウムに新たな産業上利用で
きる性質が見つかる場合を考慮すると、単結晶育成法を
確立しておくことは非常に有益である。
[0004] Further, a method for growing high-quality crystals has not been known. In general, large crystals of matter have a variety of uses. For example, a large single crystal of a substance can be used as a crystal growth substrate of a substance having a close lattice constant. Therefore, it is very useful to establish a single crystal growing method in consideration of a case where new industrially usable properties of lithium cobalt oxide are found in the future.

【0005】[0005]

【課題を解決するための手段】このため、本発明は、請
求項1記載のように、炭酸リチウムLi2CO3、酸化
コバルトCo2O3、酸化ホウ素B2O3の混合物を高
温で溶かした融液から、コバルト酸リチウム(LiCo
O2)を晶出させることにより、コバルト酸リチウム
(LiCoO2)を合成する。均一に原料が混合する融
液からの晶出であり、コバルト酸リチウムの構成元素の
均一度は、固相反応で合成するより本質的に高い。さら
に、本発明は、請求項2記載のように、炭酸リチウムL
i2CO3、酸化コバ 混合物を高温で溶かした融液から、コバルト酸リチウム
(LiCoO2)を晶出させることにより、コバルト酸
リチウム(LiCoO2)の単結晶を育成する。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for producing lithium cobalt oxide from a melt in which a mixture of lithium carbonate Li2CO3, cobalt oxide Co2O3, and boron oxide B2O3 is melted at a high temperature. LiCo
O2) is crystallized to synthesize lithium cobalt oxide (LiCoO2). This is a crystallization from a melt in which the raw materials are mixed uniformly, and the uniformity of the constituent elements of lithium cobalt oxide is essentially higher than that obtained by synthesis by a solid-phase reaction. Further, according to the present invention, a lithium carbonate L
i2CO3, oxidation edge A single crystal of lithium cobaltate (LiCoO2) is grown by crystallizing lithium cobaltate (LiCoO2) from a melt in which the mixture is melted at a high temperature.

【0006】[0006]

【発明の効果】請求項1に係る発明によれば、融液から
コバルト酸リチウム(LiCoO2)を晶出でき、均一
度の高いコバルト酸リチウム(LiCoO2)を合成で
きる。請求項2に係る発明によれば、融液からコバルト
酸リチウム(LiCoO2)を晶出しコバルト酸リチウ
ム(LiCoO2)の単結晶を育成することにより、良
質のコバルト酸リチウム(LiCoO2)単結晶を得る
ことができる。また、フラックスと単結晶を容易に分離
することができる。
According to the first aspect of the present invention, lithium cobalt oxide (LiCoO2) can be crystallized from the melt, and lithium cobalt oxide (LiCoO2) having high uniformity can be synthesized. According to the invention of claim 2, lithium cobalt oxide (LiCoO 2) is crystallized from the melt to grow a single crystal of lithium cobalt oxide (LiCoO 2), whereby a high quality lithium cobalt oxide (LiCoO 2) single crystal is obtained. Can be. Further, the flux and the single crystal can be easily separated.

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例】高温で溶かした後、室温に温度を下げたLi
CoO2粉末を粉末X線回折により分析すると、CoO
とLi2O2に分解していることがわかった。つまり、
LiCoO2は分解溶融することが確認できた。LiC
oO2を合成しさらに結晶化する方法としていわゆるフ
ラックス法が最適である。
EXAMPLE Li melted at a high temperature and then cooled to room temperature
When the CoO 2 powder was analyzed by powder X-ray diffraction,
And Li2O2. That is,
It was confirmed that LiCoO2 was decomposed and melted. LiC
The so-called flux method is optimal as a method for synthesizing and further crystallizing oO2.

【0008】以下に、溶媒(フラックス)を用いて、原
料粉末を高温で溶融し、LiCoO2を合成及び晶出さ
せ、単結晶として成長させる具体例方法を示す。
Hereinafter, a specific example of a method of melting a raw material powder at a high temperature using a solvent (flux), synthesizing and crystallizing LiCoO 2, and growing it as a single crystal will be described.

【0009】 100gになるよう秤量し、その後全体が均一になるよ
う混合する。溶媒前記の混合により生じた混合物25g
を白金坩堝(30mmφ×40mm)に入れ、電気炉中
で1070℃まで加熱し溶融する。このような高温で
は、Li2CO3→Li2O+CO2(気体)のよう
に、炭酸リチウムLi2CO3は分解しており、溶融
は、Li2O、Co2O3、B2O3の混合物が溶け合
ったものになっていると推測される。
[0009] Weigh to 100 g and then mix until the whole is uniform. Solvent 25 g of the mixture resulting from the above mixing
Is placed in a platinum crucible (30 mmφ × 40 mm), and heated to 1070 ° C. in an electric furnace to be melted. At such a high temperature, the lithium carbonate Li2CO3 is decomposed like Li2CO3 → Li2O + CO2 (gas), and it is presumed that the melting is a mixture of Li2O, Co2O3, and B2O3.

【0010】溶融の状態で2時間から3時間保持した
後、3℃/hrの冷却速度で徐冷する。920℃まで温
度を下げた後、室温(25℃)まで190℃/hrの冷
却速度で急冷する。室温になった後、固化した混合物の
表面が一様に黒色の平板状の結晶で覆われていることが
確認できる。表面の結晶以外の部分は、白色の固化物で
あり、溶媒(フラックス)が固化したものに相当する。
融液から晶出する単結晶の比重が、前記融液の比重より
小さいため、表面に結晶は晶出し成長するのである。坩
堝に水(H20)を入れ沸騰させることで白色の固化物
(フラックス)を水に半溶解させ、結晶と白色の固化物
は容易に分離することができる。白色の固化物は、水に
対する溶解度があまり高くなく、完全には溶解しない。
ピンセットで坩堝から取り出した結晶には、若干、白色
の固化物が付着しているが、超音波洗浄することで、完
全に結晶から取り除くことができる。
After maintaining the molten state for 2 to 3 hours, it is gradually cooled at a cooling rate of 3 ° C./hr. After the temperature is lowered to 920 ° C., it is rapidly cooled to room temperature (25 ° C.) at a cooling rate of 190 ° C./hr. After reaching room temperature, it can be confirmed that the surface of the solidified mixture is uniformly covered with black plate-like crystals. The portion other than the crystals on the surface is a white solid, which corresponds to the solidified solvent (flux).
Since the specific gravity of the single crystal crystallized from the melt is smaller than the specific gravity of the melt, the crystal is crystallized and grown on the surface. Water (H20) is put into a crucible and boiled, whereby a white solid (flux) is half-dissolved in water, and the crystal and the white solid can be easily separated. The white solid is not very soluble in water and does not completely dissolve.
The crystal taken out of the crucible with tweezers slightly adheres to the white solid, but can be completely removed from the crystal by ultrasonic cleaning.

【0011】このようにして得られる平板上の結晶のサ
イズは、最大で7mm×7mm×0.02mmであり、
典型的には、3mm×3mm×0.02mmである。図
1に単結晶の写真を示す。数個の結晶粉砕し粉末X線解
析を行うと、回折パターンは前記結晶が単相のコバルト
酸リチウム(LiCoO2)であることを示し、炭酸リ
チウムLi2CO3、酸化コバルトCo2O3、酸化ホ
ウ素B2O3をモル比が(1+x):1:xになるよう
混ぜた混合物を高温で溶かした融液から、コバルト酸リ
チウム(LiCoO2)が合成され、さらに結晶化した
ことがわかる。
The size of the crystal on the flat plate thus obtained is 7 mm × 7 mm × 0.02 mm at maximum.
Typically, it is 3 mm × 3 mm × 0.02 mm. FIG. 1 shows a photograph of the single crystal. When several crystals were crushed and subjected to powder X-ray analysis, the diffraction pattern showed that the crystals were single-phase lithium cobalt oxide (LiCoO2), and the molar ratio of lithium carbonate Li2CO3, cobalt oxide Co2O3, and boron oxide B2O3 was It can be seen that lithium cobalt oxide (LiCoO 2) was synthesized from the melt obtained by melting the mixture mixed at (1 + x): 1: x at a high temperature, and further crystallized.

【0012】平板上の結晶の表面に対する垂直面内でX
線を入射することにより得られた2Θ−Θ法によるX線
回折パターンを図2に示す。図2を参照すると、X線回
折パターンには、六方晶系の単位格子を適用した場合の
(003)(006)(009)面からの回折に相当す
るピークが現れている。この結果は、この単結晶が、結
晶軸のc軸が揃った極めて良質の単結晶であることを示
唆している。単結晶が平板上であることは、コバルト酸
リチウムの層状六方晶構造を反映した結果である。層状
物質は、層に垂直な方向に成長しにくいので、平板上の
結晶が得られるのである。ICP組成分析すると、リチ
ウムとコバルトの比がほぼ1対1になり、単結晶がコバ
ルト酸リチウムであることことがさらにわかる。
X in a plane perpendicular to the surface of the crystal on the plate
FIG. 2 shows an X-ray diffraction pattern by the 2Θ-Θ method obtained by injecting a line. Referring to FIG. 2, a peak corresponding to diffraction from the (003), (006), and (009) planes when a hexagonal unit cell is applied appears in the X-ray diffraction pattern. This result suggests that this single crystal is a very good single crystal in which the c-axes of the crystal axes are aligned. The fact that the single crystal is flat is a result of reflecting the layered hexagonal structure of lithium cobaltate. Since the layered material is difficult to grow in a direction perpendicular to the layer, a crystal on a flat plate is obtained. The ICP composition analysis shows that the ratio of lithium to cobalt is almost 1 to 1, further indicating that the single crystal is lithium cobalt oxide.

【0013】冷却速度を速めること、溶媒の溶質に対す
る濃度、等により、結晶サイズのコントロールは、容易
にできる。また、LiCoO2をLiBO2を溶媒(フ
ラックス)として用い、LiCoO2とLiBO2のモ
ル比率を1:xにして、LiCoO2の合成および結晶
成長をさせることも可能である。本発明は、上記の実施
例の範囲に留まらず、その技術的思想の範囲において様
々な変更がなしうる。例えば、Li2CO3の代わりに
Li2O、Co2O3の代わりにCo3O4を用いるこ
とも可能である。本発明は、LiNiO2、LiMn2
O4などのLiイオン電池正極材料やリチウム遷移金属
酸化物の結晶育成に対して適用しうることが容易に想到
できる。
The crystal size can be easily controlled by increasing the cooling rate, the concentration of the solvent with respect to the solute, and the like. It is also possible to use LiCoO2 as a solvent (flux) and to make the molar ratio between LiCoO2 and LiBO2 1: x for the synthesis and crystal growth of LiCoO2. The present invention is not limited to the scope of the above-described embodiments, and various modifications can be made within the scope of the technical idea. For example, Li2O can be used instead of Li2CO3, and Co3O4 can be used instead of Co2O3. The present invention relates to LiNiO2, LiMn2
It can be easily conceived that the present invention can be applied to a positive electrode material of Li ion battery such as O4 or a crystal of a lithium transition metal oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Li2CO3、Co2O3、B2O3の融液
から得られたLiCoO2単結晶の写真。
FIG. 1 is a photograph of a LiCoO2 single crystal obtained from a melt of Li2CO3, Co2O3, and B2O3.

【図2】 Li2CO3、Co2O3、B2O3の融液
から得られたLiCoO2単結晶のX線回折パターン。
FIG. 2 is an X-ray diffraction pattern of a LiCoO2 single crystal obtained from a melt of Li2CO3, Co2O3, and B2O3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭酸リチウムLi2CO3、酸化コバルト
Co2O3、酸化ホウ素B2O3をモル比が(1+
x):1:xになるよう混ぜた混合物を高温で溶かした
融液から、コバルト酸リチウム(LiCoO2)を晶出
させることを特徴とするコバルト酸リチウム(LiCo
O2)合成法。
(1) The molar ratio of lithium carbonate Li2CO3, cobalt oxide Co2O3, and boron oxide B2O3 is (1+
x): Lithium cobaltate (LiCoO2) is crystallized from a melt obtained by dissolving a mixture mixed at 1: x at a high temperature, characterized in that lithium cobaltate (LiCoO2) is crystallized.
O2) Synthesis method.
【請求項2】炭酸リチウムLi2CO3、酸化コバルト
Co2O3、酸化ホウ素B2O3をモル比が(1+
x):1:xになるよう混ぜた混合物を高温で溶かした
融液から、コバルト酸リチウム(LiCoO2)を晶出
させることを特徴とするコバルト酸リチウム(LiCo
O2)単結晶育成法。
2. The lithium carbonate Li2CO3, cobalt oxide Co2O3, and boron oxide B2O3 having a molar ratio of (1+
x): Lithium cobaltate (LiCoO2) is crystallized from a melt obtained by melting a mixture mixed at 1: x at a high temperature, characterized in that lithium cobaltate (LiCoO2) is crystallized.
O2) Single crystal growing method.
JP2001067787A 2001-02-03 2001-02-03 Method for synthesizing lithium cobaltate and method for growing its single crystal Pending JP2002234796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067787A JP2002234796A (en) 2001-02-03 2001-02-03 Method for synthesizing lithium cobaltate and method for growing its single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067787A JP2002234796A (en) 2001-02-03 2001-02-03 Method for synthesizing lithium cobaltate and method for growing its single crystal

Publications (1)

Publication Number Publication Date
JP2002234796A true JP2002234796A (en) 2002-08-23

Family

ID=18926074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067787A Pending JP2002234796A (en) 2001-02-03 2001-02-03 Method for synthesizing lithium cobaltate and method for growing its single crystal

Country Status (1)

Country Link
JP (1) JP2002234796A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110309291A1 (en) * 2010-06-18 2011-12-22 Ngk Insulators, Ltd. Method for producing cathode active material for a lithium secondary battery
WO2011158575A1 (en) * 2010-06-18 2011-12-22 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery
JP2014123431A (en) * 2012-12-20 2014-07-03 Shinshu Univ Crystal film organizer and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110309291A1 (en) * 2010-06-18 2011-12-22 Ngk Insulators, Ltd. Method for producing cathode active material for a lithium secondary battery
WO2011158575A1 (en) * 2010-06-18 2011-12-22 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery
CN102947982A (en) * 2010-06-18 2013-02-27 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery
EP2584632A1 (en) * 2010-06-18 2013-04-24 NGK Insulators, Ltd. Method for producing positive electrode active material for lithium secondary battery
JPWO2011158575A1 (en) * 2010-06-18 2013-08-19 日本碍子株式会社 Method for producing positive electrode active material of lithium secondary battery
US8709662B2 (en) 2010-06-18 2014-04-29 Ngk Insulators, Ltd. Method for producing cathode active material for a lithium secondary battery
EP2584632A4 (en) * 2010-06-18 2014-05-07 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery
JP2014123431A (en) * 2012-12-20 2014-07-03 Shinshu Univ Crystal film organizer and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6565950B2 (en) Method for producing garnet-type oxide solid electrolyte
CN110923801B (en) Preparation method and application of single crystal ternary material
TWI624100B (en) Solid electrolyte material and all solid lithium ion battery
Liu et al. Effect of excess Nb2O5 on the growth behavior of KSr2Nb5O15 particles by molten salt synthesis
JP2011195372A (en) Single crystal of lithium ion conductive oxide and method for producing the same, and electrochemical device using the same as member
Awaka et al. Single crystal synthesis of cubic garnet related-type Li7La3Zr2O12 by a self-flux method
JP5858410B2 (en) Single crystal of lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as member
KR20010056565A (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
AU748927B2 (en) Process for producing lithium-cobalt composite oxide
WO2003084873A1 (en) Lithium-containing complex oxide and its producing method
Sun et al. Synthesis routes and formation rule of Ni-rich single crystal material based on the regulation of process lithium content
JP2002234796A (en) Method for synthesizing lithium cobaltate and method for growing its single crystal
JP2004269327A (en) Method of manufacturing lanthanide perovskite compound
JP2002522344A (en) Method for producing lithium manganese oxide insertion compound and compound produced
CN111139516A (en) Preparation method of single crystal type lithium manganate material and precursor thereof
JP3509498B2 (en) Plate-shaped ceramic particles
CN115787060A (en) Rare earth perovskite nickel oxide high-pressure fluxing agent method crystal growth and application
JP2017033801A (en) Manufacturing method of garnet type oxide solid electrolyte
CN112647131B (en) Gadolinium lithium zirconate compound and preparation method and application of single crystal thereof
Fauteux et al. Flexible synthesis of mixed metal oxides illustrated for LiMn2O4 and LiCoO2
JP3655737B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2004035299A (en) Single crystal of sodium cobalt oxide and its manufacturing method
JP2004189537A (en) Bulky single crystal of alkali cobalt oxide and its manufacturing method
Minegishi et al. Crystal growth and characterization of LixLa (1− x)/3NbO3 using Czochralski method
Ma et al. Synthesis of anisotropic lead titanate powders for templated grain growth of textured piezoelectric ceramics