JP2002231257A - Electrode catalyst for fuel cell and method of manufacturing the same - Google Patents

Electrode catalyst for fuel cell and method of manufacturing the same

Info

Publication number
JP2002231257A
JP2002231257A JP2001021946A JP2001021946A JP2002231257A JP 2002231257 A JP2002231257 A JP 2002231257A JP 2001021946 A JP2001021946 A JP 2001021946A JP 2001021946 A JP2001021946 A JP 2001021946A JP 2002231257 A JP2002231257 A JP 2002231257A
Authority
JP
Japan
Prior art keywords
ruthenium
platinum
colloid particles
solution
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001021946A
Other languages
Japanese (ja)
Inventor
Hidenobu Wakita
英延 脇田
Masato Hosaka
正人 保坂
Makoto Uchida
誠 内田
Eiichi Yasumoto
栄一 安本
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001021946A priority Critical patent/JP2002231257A/en
Publication of JP2002231257A publication Critical patent/JP2002231257A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst for an anode of a fuel cell capable of exercising sufficient performance even when a supported amount of noble metal is reduced. SOLUTION: A method of manufacturing an electrode catalyst for a fuel cell comprises a process for producing ruthenium colloid particles by adding a reducing agent to a ruthenium salt solution, a process for bubbling hydrogen in a dispersed liquid in which the ruthenium colloid particles are dispersed, for allowing hydrogen to be adsorbed to the colloid particles, and a process for adding a solution of platinum salt to the dispersed liquid to produce ruthenium-platinum binary colloid particles containing ruthenium as its nucleus, and platinum on its surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池などに用いられる燃料電池用電極触媒およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode catalyst used for a polymer electrolyte fuel cell and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池の電極触媒のカ
ソード触媒としては、白金を含む貴金属をカーボンブラ
ックに担持した触媒が用いられてきた。白金担持カーボ
ンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリ
ウムを加えた後、過酸化水素水と反応させ、生じた白金
コロイドをカーボンブラックに吸着させ、洗浄後、必要
に応じて熱処理することにより調製する手法が一般的で
ある。高分子電解質型燃料電池では、白金担持カーボン
ブラックを高分子電解質溶液に分散させてインクとし、
そのインクをカーボンペーパーなどのガス拡散電極に塗
布し、乾燥した後、2枚のガス拡散電極で高分子電解質
膜をはさみ、ホットプレスをすることにより電解質膜−
電極接合体(MEA)が製造される。燃料として、炭化
水素、メタノールの改質ガスを用いる場合、水素、二酸
化炭素以外に数十ppm程度の一酸化炭素が混入する。
この一酸化炭素は、アノードの白金触媒を被毒するた
め、アノード用触媒としてはルテニウムと白金を合金化
させた触媒が用いられる。この合金触媒では、ルテニウ
ム上に生成したヒドロキシル基により、白金に吸着した
一酸化炭素が酸化され、触媒活性が良好に保たれる。
2. Description of the Related Art As a cathode catalyst of an electrode catalyst of a polymer electrolyte fuel cell, a catalyst in which a noble metal containing platinum is supported on carbon black has been used. Platinum-supported carbon black is prepared by adding sodium hydrogen sulfite to aqueous chloroplatinic acid solution, reacting with hydrogen peroxide solution, adsorbing the resulting platinum colloid on carbon black, washing, and heat-treating as necessary. The method of preparation is general. In a polymer electrolyte fuel cell, platinum-supported carbon black is dispersed in a polymer electrolyte solution to form an ink,
The ink is applied to a gas diffusion electrode such as carbon paper and dried, and then the polymer electrolyte membrane is sandwiched between the two gas diffusion electrodes and hot pressed to form an electrolyte membrane.
An electrode assembly (MEA) is manufactured. When a reformed gas of hydrocarbon or methanol is used as the fuel, about tens of ppm of carbon monoxide is mixed in addition to hydrogen and carbon dioxide.
Since this carbon monoxide poisons the platinum catalyst of the anode, a catalyst obtained by alloying ruthenium and platinum is used as a catalyst for the anode. In this alloy catalyst, the carbon monoxide adsorbed on platinum is oxidized by the hydroxyl group generated on ruthenium, and the catalytic activity is kept good.

【0003】[0003]

【発明が解決しようとする課題】高分子電解質型燃料電
池を実用化する上での課題の一つは、材料コストであ
る。これを解決する手段の一つが白金量の低減である。
アノード触媒として白金−ルテニウム合金が用いられ、
白金とルテニウムのモル比は1:1近くが良好とされて
いる。一般に、白金−ルテニウム触媒は、白金粒子をカ
ーボンブラックに担持してから、ルテニウムを担持させ
て、その後加熱により合金化させる手法により調製され
ている。ルテニウムは、白金よりもイオン化傾向が大き
いため、ルテニウム担持の際白金が溶出することを防ぐ
ためこの手法がとられているのである。しかし、このよ
うな調製法によると、白金触媒をある程度の大きさの粒
子にしないと合金化が不十分となるなどの問題がある。
このような理由により、燃料極に供給する燃料中に一酸
化炭素を酸化するための空気を混入させない場合、アノ
ードの白金の量は0.2〜0.5mg/cm2以上必要
であるといわれている。
One of the problems in putting a polymer electrolyte fuel cell into practical use is the material cost. One of the means to solve this is to reduce the amount of platinum.
A platinum-ruthenium alloy is used as an anode catalyst,
It is considered that the molar ratio of platinum to ruthenium is close to 1: 1. In general, a platinum-ruthenium catalyst is prepared by a method of supporting platinum particles on carbon black, supporting ruthenium, and then alloying by heating. Since ruthenium has a higher ionization tendency than platinum, this method is employed to prevent the elution of platinum during the loading of ruthenium. However, according to such a preparation method, there is a problem that alloying becomes insufficient unless the platinum catalyst is made into particles of a certain size.
For this reason, when air for oxidizing carbon monoxide is not mixed into the fuel supplied to the fuel electrode, the amount of platinum in the anode is said to be 0.2 to 0.5 mg / cm 2 or more. ing.

【0004】本発明は、貴金属の担持量を低減しても十
分な性能を発揮する燃料電池のアノード用電極触媒を提
供することを目的とする。
An object of the present invention is to provide an anode electrode catalyst for a fuel cell which exhibits sufficient performance even when the amount of noble metal carried is reduced.

【0005】[0005]

【課題を解決するための手段】本発明の燃料電池用電極
触媒は、ルテニウム粒子およびその表面の一部を被覆す
る白金層よりなることを特徴とする。本発明は、ルテニ
ウム塩溶液に還元剤を加えてルテニウムコロイド粒子を
生成させる工程、前記ルテニウムコロイド粒子を分散し
ている分散液に水素をバブリングして前記コロイド粒子
に水素を吸着させる工程、および白金塩の溶液を前記分
散液に加えてルテニウムを核としてその表面に白金を含
むルテニウム−白金二元コロイド粒子を生成させる工程
を有する燃料電池用電極触媒の製造方法を提供する。
The electrode catalyst for a fuel cell according to the present invention comprises ruthenium particles and a platinum layer covering a part of the surface thereof. The present invention includes a step of adding a reducing agent to a ruthenium salt solution to generate ruthenium colloid particles, a step of bubbling hydrogen into a dispersion in which the ruthenium colloid particles are dispersed, and causing the colloid particles to adsorb hydrogen, and Provided is a method for producing an electrode catalyst for a fuel cell, comprising a step of adding a salt solution to the dispersion to generate ruthenium-platinum binary colloid particles containing platinum on the surface with ruthenium as a core.

【0006】[0006]

【発明の実施の形態】本発明の電極触媒は、ルテニウム
粒子の表面の一部を白金層により被覆されている。これ
により、触媒金属粒子の内部に存在し、反応に関与しな
い白金を低減させることができ、反応に関与する白金を
選択的に粒子外表面に担持することができる。この電極
触媒は、特にアノード触媒として有効である。なお、ル
テニウム粒子の全部を白金が覆ってしまうと、一酸化炭
素の酸化機能が発揮できないため、ルテニウム粒子の少
なくとも一部は露出していることが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the electrode catalyst of the present invention, a part of the surface of ruthenium particles is covered with a platinum layer. This makes it possible to reduce the amount of platinum that is present inside the catalytic metal particles and does not participate in the reaction, and that platinum that participates in the reaction can be selectively carried on the outer surface of the particles. This electrode catalyst is particularly effective as an anode catalyst. Note that if platinum is completely covered with ruthenium particles, the function of oxidizing carbon monoxide cannot be exerted. Therefore, it is preferable that at least a part of the ruthenium particles is exposed.

【0007】本発明の電極触媒の製造方法は、ルテニウ
ム金属塩の溶液からルテニウムコロイド粒子を形成した
後、前記コロイド粒子に水素を吸着させ、その後白金塩
の溶液を加え、コロイド粒子に吸着している水素により
白金塩を還元してルテニウムコロイド粒子の表面に白金
を生じさせる。ここで、ルテニウムは、白金よりもイオ
ン化傾向が大きいため、通常の方法では白金を析出させ
る際、ルテニウムなどの金属が溶出する。この事態を避
けるため、ルテニウムコロイド粒子を形成した後、これ
に水素を吸着させ、白金がコロイド表面に析出する際、
ルテニウムの代わりに水素をプロトンへと酸化させる。
ルテニウム金属塩の溶液からルテニウムコロイド粒子を
形成する際、前記溶液にポリ−N−ビニル−2−ピロリ
ドンなどを凝集防止剤として添加しておくのが好まし
い。凝集防止剤としては、ポリアクリル酸ナトリウム、
ポリビニルアルコールなどを用いることもできる。
According to the method for producing an electrode catalyst of the present invention, after forming ruthenium colloid particles from a solution of a ruthenium metal salt, hydrogen is adsorbed on the colloid particles, and then a solution of a platinum salt is added and adsorbed on the colloid particles. The platinum salt is reduced by the hydrogen present to form platinum on the surface of the ruthenium colloid particles. Here, since ruthenium has a higher ionization tendency than platinum, a metal such as ruthenium elutes when platinum is deposited by a normal method. In order to avoid this situation, after forming ruthenium colloid particles, hydrogen is adsorbed on this, and when platinum precipitates on the colloid surface,
Oxidizes hydrogen to protons instead of ruthenium.
When forming ruthenium colloid particles from a solution of a ruthenium metal salt, it is preferable to add poly-N-vinyl-2-pyrrolidone or the like to the solution as an aggregation preventing agent. As an anti-agglomeration agent, sodium polyacrylate,
Polyvinyl alcohol or the like can also be used.

【0008】[0008]

【実施例】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【0009】《実施例1》ポリ−N−ビニル−2−ピロ
リドン(以下PVPで表す)と塩化ルテニウム(III)
をメタノール−水の混合溶媒に溶解させた後、水素化ホ
ウ素ナトリウムを加えて撹拌することにより、PVPで
安定化させたルテニウムコロイド溶液を調製した。限外
濾過器により濾別したコロイド粒子を、窒素で脱気した
水−エタノールで洗浄した。このルテニウムコロイド粒
子を水−エチレングリコール−エタノールの等容積混合
液に分散させた。このルテニウムコロイド溶液に水素を
バブリングしてコロイド粒子に水素を吸着させた後、窒
素で脱気した塩化白金酸カリウム水溶液を滴下し、PV
Pで保護されたルテニウムを核とするRu−Ptの二元
コロイド溶液を調製した。次に、カーボンブラック(ケ
ッチェンブラックEC)を分散させた水をこのコロイド
溶液に加え、撹拌して、コロイド粒子をカーボンブラッ
クに吸着させた。この溶液を濾過し、Pt−Ru/カー
ボンブラックを回収した。これを窒素気流中300℃で
熱処理し、水洗後、300℃で水素還元し、カーボンブ
ラックにRu−Ptを担持させた電極触媒Aを得た。カ
ーボンブラックとRuとPtの重量比は56:24:2
0である。続いて、電極触媒Aに水とパーフルオロスル
ホン酸イオノマーエタノール溶液(旭硝子(株)製のフ
レミオンで、パーフルオロスルホン酸イオノマー濃度9
wt%)を加えインクとした。このインクを、カーボン
ペーパーにPt量が0.2mg/cm2となるように塗
布し、60℃で乾燥してアノード触媒層を形成した。
Example 1 Poly-N-vinyl-2-pyrrolidone (hereinafter referred to as PVP) and ruthenium (III) chloride
Was dissolved in a mixed solvent of methanol and water, and sodium borohydride was added and stirred to prepare a ruthenium colloid solution stabilized with PVP. The colloid particles separated by an ultrafilter were washed with water-ethanol degassed with nitrogen. The ruthenium colloid particles were dispersed in an equal volume mixture of water-ethylene glycol-ethanol. Hydrogen is bubbled into the ruthenium colloid solution to adsorb the hydrogen to the colloid particles, and then an aqueous solution of potassium chloroplatinate deaerated with nitrogen is added dropwise,
A binary colloidal solution of Ru-Pt with a P-protected ruthenium nucleus was prepared. Next, water in which carbon black (Ketjen Black EC) was dispersed was added to the colloid solution, followed by stirring to adsorb the colloid particles to the carbon black. This solution was filtered to recover Pt-Ru / carbon black. This was heat-treated at 300 ° C. in a nitrogen stream, washed with water, and then reduced at 300 ° C. with hydrogen to obtain an electrode catalyst A having Ru—Pt supported on carbon black. The weight ratio of carbon black to Ru and Pt is 56: 24: 2
0. Subsequently, water and a perfluorosulfonic acid ionomer ethanol solution (perfumesulfonic acid ionomer concentration of 9 with Flemion manufactured by Asahi Glass Co., Ltd.) was applied to the electrode catalyst A.
wt%) to obtain an ink. This ink was applied to carbon paper so that the Pt amount was 0.2 mg / cm 2, and dried at 60 ° C. to form an anode catalyst layer.

【0010】また、次のようにしてカソードを作成し
た。調製後一日放置した2×10-4Mの塩化白金(II)
酸カリウム水溶液に0.1Mのポリアクリル酸ナトリウ
ム水溶液(分子量2300)を塩化白金(II)酸カリウ
ムとポリアクリル酸ナトリウムとのモル比が1:5にな
るように加えた。この溶液にアルゴンガスを20分間バ
ブリングさせた後、水素ガスを5分間バブリングさせ
た。次いで、この溶液を密封して12時間放置して、金
色透明の白金コロイド溶液を得た。一方、300mlの
水にカーボンブラック(ケッチェンEC)0.7gを分
散させ、この分散液を前記のコロイド溶液10リットル
に加え、さらに塩酸を加えてpH5にし、半日間マグネ
ティックスターラで撹拌した後、さらにpH3.5にし
て半日間撹拌し、コロイド粒子をカーボンブラックに吸
着させた。これを濾過し、Ptを吸着したカーボンブラ
ックを回収し、窒素気流中300℃で熱処理し、水洗
後、250℃で水素還元した。こうしてカーボンブラッ
クに白金を75:25の重量比で担持させた電極触媒B
を調製した。この電極触媒Bを用いて前記と同様にして
Pt量が0.3mg/cm2となるようにカーボンペー
パー上にカソード触媒層を形成した。
A cathode was prepared as follows. 2 × 10 -4 M platinum (II) chloride left for one day after preparation
A 0.1 M aqueous solution of sodium polyacrylate (molecular weight: 2300) was added to the aqueous solution of potassium acrylate such that the molar ratio of potassium chloroplatinate (II) to sodium polyacrylate was 1: 5. After argon gas was bubbled through the solution for 20 minutes, hydrogen gas was bubbled for 5 minutes. Then, this solution was sealed and left for 12 hours to obtain a golden transparent platinum colloid solution. On the other hand, 0.7 g of carbon black (Ketjen EC) is dispersed in 300 ml of water, and this dispersion is added to 10 liters of the above colloid solution, and further adjusted to pH 5 by adding hydrochloric acid. The mixture was stirred at a pH of 3.5 for half a day to adsorb the colloid particles on the carbon black. This was filtered, and the carbon black on which Pt was adsorbed was recovered, heat-treated at 300 ° C. in a nitrogen stream, washed with water, and then reduced with hydrogen at 250 ° C. Electrode catalyst B in which platinum is supported on carbon black in a weight ratio of 75:25.
Was prepared. Using this electrode catalyst B, a cathode catalyst layer was formed on carbon paper in the same manner as described above so that the Pt amount was 0.3 mg / cm 2 .

【0011】上記のアノード触媒層を有するカーボンペ
ーパーとカソード触媒層を有するカーボンペーパーでそ
れぞれの触媒層が高分子電解質膜(デュポン社製のナフ
ィオン112膜)と接するように高分子電解質膜をはさ
み、ホットプレスして電解質膜−電極接合体(a)を作
成した。
The polymer electrolyte membrane is sandwiched between the carbon paper having the anode catalyst layer and the carbon paper having the cathode catalyst layer such that each catalyst layer is in contact with the polymer electrolyte membrane (Nafion 112 membrane manufactured by DuPont), Hot pressing was performed to prepare an electrolyte membrane-electrode assembly (a).

【0012】《比較例1》塩化白金酸水溶液に、亜硫酸
水素ナトリウムを加えた後、過酸化水素水と反応させ、
生じた白金コロイド粒子をカーボンブラックに担持させ
る一般的な手法で、白金をカーボンブラックに担持させ
た。次に、この白金担持カーボンブラックを塩化ルテニ
ウム(III)水溶液に分散させ、水素でバブリングする
ことにより、ルテニウムを担持させた。この触媒を30
0℃で水素還元して、Pt−Ruを担持した電極触媒C
を調製した。カーボンブラックとRuとPtの重量比は
56:24:20である。この電極触媒Cをアノード触
媒としてMEA(a)と同様の方法で、MEA(b)を
作成した。
<< Comparative Example 1 >> Sodium bisulfite was added to an aqueous chloroplatinic acid solution and reacted with an aqueous hydrogen peroxide solution.
Platinum was supported on carbon black by a general method of supporting the resulting platinum colloid particles on carbon black. Next, the platinum-supported carbon black was dispersed in an aqueous ruthenium (III) chloride solution, and bubbled with hydrogen to support ruthenium. This catalyst is
Electrode catalyst C supporting Pt—Ru by hydrogen reduction at 0 ° C.
Was prepared. The weight ratio of carbon black to Ru and Pt is 56:24:20. Using this electrode catalyst C as an anode catalyst, MEA (b) was prepared in the same manner as MEA (a).

【0013】上記のMEA(a)および(b)を用いた
セルの特性を測定した。各セルを75℃に保持し、カソ
ードには露点が65℃となるように加湿した空気を、ア
ノードには露点が70℃となるように加湿した水素をそ
れぞれ供給し、酸素利用率40%、水素利用率70%、
電流密度0.2A/cm2の条件で稼動させたところ、
MEA(a)を用いたセルは709mV、MEA(b)
を用いたセルは715mVを示した。次に、水素を75
%H2−25%CO2−50ppmCOの改質模擬ガスに
切り替えたところ、MEA(a)を用いたセルの電圧低
下は32mV、MEA(b)を用いたセルの電圧低下は
54mVであった。この結果から明らかなように、ルテ
ニウム粒子を白金で被覆することにより、優れた耐CO
被毒特性を発揮することがわかる。
The characteristics of cells using the above MEAs (a) and (b) were measured. Each cell was maintained at 75 ° C., and humidified air was supplied to the cathode so as to have a dew point of 65 ° C., and humidified hydrogen was supplied to the anode so that the dew point was 70 ° C., and the oxygen utilization rate was 40%. Hydrogen utilization rate 70%,
When operated under the condition of a current density of 0.2 A / cm 2 ,
The cell using MEA (a) was 709 mV, and the MEA (b)
The cell using 715 showed 715 mV. Next, 75
When switching to the reforming simulation gas of% H 2 -25% CO 2 -50 ppm CO, the voltage drop of the cell using MEA (a) was 32 mV, and the voltage drop of the cell using MEA (b) was 54 mV. . As is evident from the results, coating the ruthenium particles with platinum provides excellent CO resistance.
It turns out that it exhibits poisoning characteristics.

【0014】[0014]

【発明の効果】以上のように本発明によれば、白金低担
持量で優れた特性の燃料電池用電極触媒を得ることがで
きる。
As described above, according to the present invention, it is possible to obtain an electrode catalyst for a fuel cell having a low platinum loading and excellent characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 8/10 H01M 8/10 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G069 AA03 AA08 BA08B BA37 BB02A BB02B BB08C BB20C BC02C BC03C BC70A BC70B BC70C BC75A BC75B BC75C BD03C BD12C CC32 DA06 EA01X EA01Y EB19 EE08 FA01 FB08 FB13 FB44 FC02 FC04 5H018 AA06 AS02 AS03 BB00 BB17 EE03 EE08 5H026 AA06 BB00 BB04 BB10 EE02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) // H01M 8/10 H01M 8/10 (72) Inventor Makoto Uchida 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Inside Sangyo Co., Ltd. (72) Inventor Eiichi Yasumoto 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (Ref.)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウム粒子およびその表面の一部を
被覆する白金層よりなることを特徴とする燃料電池用電
極触媒。
1. An electrode catalyst for a fuel cell, comprising a ruthenium particle and a platinum layer covering a part of its surface.
【請求項2】 ルテニウム塩溶液に還元剤を加えてルテ
ニウムコロイド粒子を生成させる工程、前記ルテニウム
コロイド粒子を分散している分散液に水素をバブリング
して前記コロイド粒子に水素を吸着させる工程、および
白金塩の溶液を前記分散液に加えてルテニウムを核とし
てその表面に白金を含むルテニウム−白金二元コロイド
粒子を生成させる工程を有することを特徴とする燃料電
池用電極触媒の製造方法。
2. A step of adding a reducing agent to a ruthenium salt solution to generate ruthenium colloid particles, a step of bubbling hydrogen into a dispersion in which the ruthenium colloid particles are dispersed, and causing the colloid particles to adsorb hydrogen. A method for producing an electrode catalyst for a fuel cell, comprising a step of adding a solution of a platinum salt to the dispersion to generate ruthenium-platinum binary colloid particles containing platinum on the surface of the dispersion with ruthenium as a nucleus.
JP2001021946A 2001-01-30 2001-01-30 Electrode catalyst for fuel cell and method of manufacturing the same Pending JP2002231257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021946A JP2002231257A (en) 2001-01-30 2001-01-30 Electrode catalyst for fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021946A JP2002231257A (en) 2001-01-30 2001-01-30 Electrode catalyst for fuel cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002231257A true JP2002231257A (en) 2002-08-16

Family

ID=18887424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021946A Pending JP2002231257A (en) 2001-01-30 2001-01-30 Electrode catalyst for fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002231257A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102704A1 (en) * 2003-05-14 2004-11-25 Matsushita Electric Industrial Co., Ltd. Solid oxide fuel cell and method for producing same
EP1653535A1 (en) * 2004-10-28 2006-05-03 Samsung SDI Co., Ltd. Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising the same
WO2007029607A1 (en) * 2005-09-08 2007-03-15 Nippon Sheet Glass Company, Limited Noble metal microparticle and method for production thereof
WO2007055229A1 (en) * 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell and method for producing same
JP2008080322A (en) * 2006-09-25 2008-04-10 Hyundai Motor Co Ltd Method for preparing platinum supported catalyst
JP2008173524A (en) * 2007-01-16 2008-07-31 Sharp Corp Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby
WO2008105484A1 (en) * 2007-03-01 2008-09-04 Shin-Etsu Chemical Co., Ltd. Method for production of electrode catalyst for fuel cell
WO2008120515A1 (en) * 2007-03-29 2008-10-09 Shin-Etsu Chemical Co., Ltd. Process for producing electrode catalyst for fuel cell
JP2010075857A (en) * 2008-09-26 2010-04-08 Nippon Paint Co Ltd Metal-supported porous body, method of manufacturing the same, and catalyst for fuel cell electrode containing metal-supported porous body
WO2010050550A1 (en) 2008-10-30 2010-05-06 ソニー株式会社 Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device
WO2010140506A1 (en) * 2009-06-01 2010-12-09 ソニー株式会社 Platinum-containing catalyst and fuel cell using same
US8361924B2 (en) 2010-08-17 2013-01-29 Sony Corporation Fine particles of core-shell structure and functional device incorporated therewith
US8618019B2 (en) 2008-06-26 2013-12-31 Aisin Seiki Kabushiki Kaisha Method for producing platinum nanoparticles
JP2014018796A (en) * 2012-07-17 2014-02-03 Hyundai Motor Company Co Ltd Method for manufacturing palladium-platinum core shell catalyst for fuel cell
WO2021161929A1 (en) * 2020-02-10 2021-08-19 国立大学法人山梨大学 Supported metal catalyst, method for producing same, and method for producing carrier

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102704A1 (en) * 2003-05-14 2004-11-25 Matsushita Electric Industrial Co., Ltd. Solid oxide fuel cell and method for producing same
EP1653535A1 (en) * 2004-10-28 2006-05-03 Samsung SDI Co., Ltd. Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising the same
US9120087B2 (en) 2004-10-28 2015-09-01 Samsung Sdi Co., Ltd. Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising same
US7754644B2 (en) 2005-09-08 2010-07-13 Nippon Sheet Glass Company, Limited Noble metal particle and process of producing the same
WO2007029607A1 (en) * 2005-09-08 2007-03-15 Nippon Sheet Glass Company, Limited Noble metal microparticle and method for production thereof
WO2007055229A1 (en) * 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell and method for producing same
JP2008080322A (en) * 2006-09-25 2008-04-10 Hyundai Motor Co Ltd Method for preparing platinum supported catalyst
JP2008173524A (en) * 2007-01-16 2008-07-31 Sharp Corp Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby
WO2008105484A1 (en) * 2007-03-01 2008-09-04 Shin-Etsu Chemical Co., Ltd. Method for production of electrode catalyst for fuel cell
WO2008120515A1 (en) * 2007-03-29 2008-10-09 Shin-Etsu Chemical Co., Ltd. Process for producing electrode catalyst for fuel cell
US8748334B2 (en) 2007-03-29 2014-06-10 Shin-Etsu Chemical Co., Ltd. Process for producing electrode catalyst for fuel cell
US8618019B2 (en) 2008-06-26 2013-12-31 Aisin Seiki Kabushiki Kaisha Method for producing platinum nanoparticles
JP2010075857A (en) * 2008-09-26 2010-04-08 Nippon Paint Co Ltd Metal-supported porous body, method of manufacturing the same, and catalyst for fuel cell electrode containing metal-supported porous body
US8871672B2 (en) 2008-10-30 2014-10-28 Sony Corporation Platinum-containing catalyst and method of producing the same, electrode and electrochemical device
JP2011072981A (en) * 2008-10-30 2011-04-14 Sony Corp Platinum-containing catalyst and process for producing the platinum-containing catalyst, and electrode, and electrochemical device
WO2010050550A1 (en) 2008-10-30 2010-05-06 ソニー株式会社 Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device
WO2010140506A1 (en) * 2009-06-01 2010-12-09 ソニー株式会社 Platinum-containing catalyst and fuel cell using same
US8361924B2 (en) 2010-08-17 2013-01-29 Sony Corporation Fine particles of core-shell structure and functional device incorporated therewith
JP2014018796A (en) * 2012-07-17 2014-02-03 Hyundai Motor Company Co Ltd Method for manufacturing palladium-platinum core shell catalyst for fuel cell
WO2021161929A1 (en) * 2020-02-10 2021-08-19 国立大学法人山梨大学 Supported metal catalyst, method for producing same, and method for producing carrier
JPWO2021161929A1 (en) * 2020-02-10 2021-08-19
JP7201892B2 (en) 2020-02-10 2023-01-11 国立大学法人山梨大学 Supported metal catalyst, method for producing the same, method for producing carrier

Similar Documents

Publication Publication Date Title
JP5270098B2 (en) Improved electrode
JP5166842B2 (en) ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST
JP4721539B2 (en) Fuel cell electrode catalyst and method for producing the same
US9825307B2 (en) Anode-side catalyst composition for fuel cells, and membrane electrode assembly (MEA) for solid polymer fuel cells which comprises same
JP3353518B2 (en) Polymer electrolyte fuel cell
JP2002231257A (en) Electrode catalyst for fuel cell and method of manufacturing the same
JP2004006306A (en) Fuel cell, electrode for fuel cell and manufacturing method of these
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
EP1022795B1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP4859124B2 (en) Membrane electrode unit, manufacturing method thereof, and direct methanol fuel cell
JP2003007308A (en) Anode for fuel cell and fuel cell
US20080090128A1 (en) Electrode Catalyst for Fuel Cell and Fuel Cell
JP2002305001A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2001093531A (en) Solid polymer fuel cell and method for manufacturing electrode catalyst
JP3649061B2 (en) Fuel cell electrode and manufacturing method thereof
EP0899348B1 (en) Co-tolerant platinum-zinc alloy suitable for use in a fuel cell electrode
JP2006127979A (en) Fuel cell and electrode catalyst therefor
JP2005353408A (en) Fuel cell
JP2002343403A (en) Operation method of fuel cell
JP4311070B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
JP4679815B2 (en) Direct fuel cell
JP3844022B2 (en) Direct methanol fuel cell with solid polymer electrolyte
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP2002358971A (en) Fuel cell electrode and its manufacturing method and fuel cell using the same