JP2002231257A - Electrode catalyst for fuel cell and method of manufacturing the same - Google Patents
Electrode catalyst for fuel cell and method of manufacturing the sameInfo
- Publication number
- JP2002231257A JP2002231257A JP2001021946A JP2001021946A JP2002231257A JP 2002231257 A JP2002231257 A JP 2002231257A JP 2001021946 A JP2001021946 A JP 2001021946A JP 2001021946 A JP2001021946 A JP 2001021946A JP 2002231257 A JP2002231257 A JP 2002231257A
- Authority
- JP
- Japan
- Prior art keywords
- ruthenium
- platinum
- colloid particles
- solution
- electrode catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 37
- 239000000446 fuel Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 69
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 34
- 239000002245 particle Substances 0.000 claims abstract description 33
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 33
- 239000000084 colloidal system Substances 0.000 claims abstract description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 20
- 239000000243 solution Substances 0.000 claims abstract description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 19
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000003057 platinum Chemical class 0.000 claims abstract description 4
- 150000003303 ruthenium Chemical class 0.000 claims abstract description 4
- 239000012266 salt solution Substances 0.000 claims abstract description 4
- 230000005587 bubbling Effects 0.000 claims abstract description 3
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 3
- 239000006185 dispersion Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 7
- 229910000510 noble metal Inorganic materials 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract 2
- 239000006229 carbon black Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000005518 polymer electrolyte Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910002848 Pt–Ru Inorganic materials 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- VAPQAGMSICPBKJ-UHFFFAOYSA-N 2-nitroacridine Chemical compound C1=CC=CC2=CC3=CC([N+](=O)[O-])=CC=C3N=C21 VAPQAGMSICPBKJ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003006 anti-agglomeration agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- KVIPHDKUOLVVQN-UHFFFAOYSA-N ethene;hydrate Chemical group O.C=C KVIPHDKUOLVVQN-UHFFFAOYSA-N 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高分子電解質型燃
料電池などに用いられる燃料電池用電極触媒およびその
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode catalyst used for a polymer electrolyte fuel cell and the like, and a method for producing the same.
【0002】[0002]
【従来の技術】高分子電解質型燃料電池の電極触媒のカ
ソード触媒としては、白金を含む貴金属をカーボンブラ
ックに担持した触媒が用いられてきた。白金担持カーボ
ンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリ
ウムを加えた後、過酸化水素水と反応させ、生じた白金
コロイドをカーボンブラックに吸着させ、洗浄後、必要
に応じて熱処理することにより調製する手法が一般的で
ある。高分子電解質型燃料電池では、白金担持カーボン
ブラックを高分子電解質溶液に分散させてインクとし、
そのインクをカーボンペーパーなどのガス拡散電極に塗
布し、乾燥した後、2枚のガス拡散電極で高分子電解質
膜をはさみ、ホットプレスをすることにより電解質膜−
電極接合体(MEA)が製造される。燃料として、炭化
水素、メタノールの改質ガスを用いる場合、水素、二酸
化炭素以外に数十ppm程度の一酸化炭素が混入する。
この一酸化炭素は、アノードの白金触媒を被毒するた
め、アノード用触媒としてはルテニウムと白金を合金化
させた触媒が用いられる。この合金触媒では、ルテニウ
ム上に生成したヒドロキシル基により、白金に吸着した
一酸化炭素が酸化され、触媒活性が良好に保たれる。2. Description of the Related Art As a cathode catalyst of an electrode catalyst of a polymer electrolyte fuel cell, a catalyst in which a noble metal containing platinum is supported on carbon black has been used. Platinum-supported carbon black is prepared by adding sodium hydrogen sulfite to aqueous chloroplatinic acid solution, reacting with hydrogen peroxide solution, adsorbing the resulting platinum colloid on carbon black, washing, and heat-treating as necessary. The method of preparation is general. In a polymer electrolyte fuel cell, platinum-supported carbon black is dispersed in a polymer electrolyte solution to form an ink,
The ink is applied to a gas diffusion electrode such as carbon paper and dried, and then the polymer electrolyte membrane is sandwiched between the two gas diffusion electrodes and hot pressed to form an electrolyte membrane.
An electrode assembly (MEA) is manufactured. When a reformed gas of hydrocarbon or methanol is used as the fuel, about tens of ppm of carbon monoxide is mixed in addition to hydrogen and carbon dioxide.
Since this carbon monoxide poisons the platinum catalyst of the anode, a catalyst obtained by alloying ruthenium and platinum is used as a catalyst for the anode. In this alloy catalyst, the carbon monoxide adsorbed on platinum is oxidized by the hydroxyl group generated on ruthenium, and the catalytic activity is kept good.
【0003】[0003]
【発明が解決しようとする課題】高分子電解質型燃料電
池を実用化する上での課題の一つは、材料コストであ
る。これを解決する手段の一つが白金量の低減である。
アノード触媒として白金−ルテニウム合金が用いられ、
白金とルテニウムのモル比は1:1近くが良好とされて
いる。一般に、白金−ルテニウム触媒は、白金粒子をカ
ーボンブラックに担持してから、ルテニウムを担持させ
て、その後加熱により合金化させる手法により調製され
ている。ルテニウムは、白金よりもイオン化傾向が大き
いため、ルテニウム担持の際白金が溶出することを防ぐ
ためこの手法がとられているのである。しかし、このよ
うな調製法によると、白金触媒をある程度の大きさの粒
子にしないと合金化が不十分となるなどの問題がある。
このような理由により、燃料極に供給する燃料中に一酸
化炭素を酸化するための空気を混入させない場合、アノ
ードの白金の量は0.2〜0.5mg/cm2以上必要
であるといわれている。One of the problems in putting a polymer electrolyte fuel cell into practical use is the material cost. One of the means to solve this is to reduce the amount of platinum.
A platinum-ruthenium alloy is used as an anode catalyst,
It is considered that the molar ratio of platinum to ruthenium is close to 1: 1. In general, a platinum-ruthenium catalyst is prepared by a method of supporting platinum particles on carbon black, supporting ruthenium, and then alloying by heating. Since ruthenium has a higher ionization tendency than platinum, this method is employed to prevent the elution of platinum during the loading of ruthenium. However, according to such a preparation method, there is a problem that alloying becomes insufficient unless the platinum catalyst is made into particles of a certain size.
For this reason, when air for oxidizing carbon monoxide is not mixed into the fuel supplied to the fuel electrode, the amount of platinum in the anode is said to be 0.2 to 0.5 mg / cm 2 or more. ing.
【0004】本発明は、貴金属の担持量を低減しても十
分な性能を発揮する燃料電池のアノード用電極触媒を提
供することを目的とする。An object of the present invention is to provide an anode electrode catalyst for a fuel cell which exhibits sufficient performance even when the amount of noble metal carried is reduced.
【0005】[0005]
【課題を解決するための手段】本発明の燃料電池用電極
触媒は、ルテニウム粒子およびその表面の一部を被覆す
る白金層よりなることを特徴とする。本発明は、ルテニ
ウム塩溶液に還元剤を加えてルテニウムコロイド粒子を
生成させる工程、前記ルテニウムコロイド粒子を分散し
ている分散液に水素をバブリングして前記コロイド粒子
に水素を吸着させる工程、および白金塩の溶液を前記分
散液に加えてルテニウムを核としてその表面に白金を含
むルテニウム−白金二元コロイド粒子を生成させる工程
を有する燃料電池用電極触媒の製造方法を提供する。The electrode catalyst for a fuel cell according to the present invention comprises ruthenium particles and a platinum layer covering a part of the surface thereof. The present invention includes a step of adding a reducing agent to a ruthenium salt solution to generate ruthenium colloid particles, a step of bubbling hydrogen into a dispersion in which the ruthenium colloid particles are dispersed, and causing the colloid particles to adsorb hydrogen, and Provided is a method for producing an electrode catalyst for a fuel cell, comprising a step of adding a salt solution to the dispersion to generate ruthenium-platinum binary colloid particles containing platinum on the surface with ruthenium as a core.
【0006】[0006]
【発明の実施の形態】本発明の電極触媒は、ルテニウム
粒子の表面の一部を白金層により被覆されている。これ
により、触媒金属粒子の内部に存在し、反応に関与しな
い白金を低減させることができ、反応に関与する白金を
選択的に粒子外表面に担持することができる。この電極
触媒は、特にアノード触媒として有効である。なお、ル
テニウム粒子の全部を白金が覆ってしまうと、一酸化炭
素の酸化機能が発揮できないため、ルテニウム粒子の少
なくとも一部は露出していることが望ましい。BEST MODE FOR CARRYING OUT THE INVENTION In the electrode catalyst of the present invention, a part of the surface of ruthenium particles is covered with a platinum layer. This makes it possible to reduce the amount of platinum that is present inside the catalytic metal particles and does not participate in the reaction, and that platinum that participates in the reaction can be selectively carried on the outer surface of the particles. This electrode catalyst is particularly effective as an anode catalyst. Note that if platinum is completely covered with ruthenium particles, the function of oxidizing carbon monoxide cannot be exerted. Therefore, it is preferable that at least a part of the ruthenium particles is exposed.
【0007】本発明の電極触媒の製造方法は、ルテニウ
ム金属塩の溶液からルテニウムコロイド粒子を形成した
後、前記コロイド粒子に水素を吸着させ、その後白金塩
の溶液を加え、コロイド粒子に吸着している水素により
白金塩を還元してルテニウムコロイド粒子の表面に白金
を生じさせる。ここで、ルテニウムは、白金よりもイオ
ン化傾向が大きいため、通常の方法では白金を析出させ
る際、ルテニウムなどの金属が溶出する。この事態を避
けるため、ルテニウムコロイド粒子を形成した後、これ
に水素を吸着させ、白金がコロイド表面に析出する際、
ルテニウムの代わりに水素をプロトンへと酸化させる。
ルテニウム金属塩の溶液からルテニウムコロイド粒子を
形成する際、前記溶液にポリ−N−ビニル−2−ピロリ
ドンなどを凝集防止剤として添加しておくのが好まし
い。凝集防止剤としては、ポリアクリル酸ナトリウム、
ポリビニルアルコールなどを用いることもできる。According to the method for producing an electrode catalyst of the present invention, after forming ruthenium colloid particles from a solution of a ruthenium metal salt, hydrogen is adsorbed on the colloid particles, and then a solution of a platinum salt is added and adsorbed on the colloid particles. The platinum salt is reduced by the hydrogen present to form platinum on the surface of the ruthenium colloid particles. Here, since ruthenium has a higher ionization tendency than platinum, a metal such as ruthenium elutes when platinum is deposited by a normal method. In order to avoid this situation, after forming ruthenium colloid particles, hydrogen is adsorbed on this, and when platinum precipitates on the colloid surface,
Oxidizes hydrogen to protons instead of ruthenium.
When forming ruthenium colloid particles from a solution of a ruthenium metal salt, it is preferable to add poly-N-vinyl-2-pyrrolidone or the like to the solution as an aggregation preventing agent. As an anti-agglomeration agent, sodium polyacrylate,
Polyvinyl alcohol or the like can also be used.
【0008】[0008]
【実施例】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.
【0009】《実施例1》ポリ−N−ビニル−2−ピロ
リドン(以下PVPで表す)と塩化ルテニウム(III)
をメタノール−水の混合溶媒に溶解させた後、水素化ホ
ウ素ナトリウムを加えて撹拌することにより、PVPで
安定化させたルテニウムコロイド溶液を調製した。限外
濾過器により濾別したコロイド粒子を、窒素で脱気した
水−エタノールで洗浄した。このルテニウムコロイド粒
子を水−エチレングリコール−エタノールの等容積混合
液に分散させた。このルテニウムコロイド溶液に水素を
バブリングしてコロイド粒子に水素を吸着させた後、窒
素で脱気した塩化白金酸カリウム水溶液を滴下し、PV
Pで保護されたルテニウムを核とするRu−Ptの二元
コロイド溶液を調製した。次に、カーボンブラック(ケ
ッチェンブラックEC)を分散させた水をこのコロイド
溶液に加え、撹拌して、コロイド粒子をカーボンブラッ
クに吸着させた。この溶液を濾過し、Pt−Ru/カー
ボンブラックを回収した。これを窒素気流中300℃で
熱処理し、水洗後、300℃で水素還元し、カーボンブ
ラックにRu−Ptを担持させた電極触媒Aを得た。カ
ーボンブラックとRuとPtの重量比は56:24:2
0である。続いて、電極触媒Aに水とパーフルオロスル
ホン酸イオノマーエタノール溶液(旭硝子(株)製のフ
レミオンで、パーフルオロスルホン酸イオノマー濃度9
wt%)を加えインクとした。このインクを、カーボン
ペーパーにPt量が0.2mg/cm2となるように塗
布し、60℃で乾燥してアノード触媒層を形成した。Example 1 Poly-N-vinyl-2-pyrrolidone (hereinafter referred to as PVP) and ruthenium (III) chloride
Was dissolved in a mixed solvent of methanol and water, and sodium borohydride was added and stirred to prepare a ruthenium colloid solution stabilized with PVP. The colloid particles separated by an ultrafilter were washed with water-ethanol degassed with nitrogen. The ruthenium colloid particles were dispersed in an equal volume mixture of water-ethylene glycol-ethanol. Hydrogen is bubbled into the ruthenium colloid solution to adsorb the hydrogen to the colloid particles, and then an aqueous solution of potassium chloroplatinate deaerated with nitrogen is added dropwise,
A binary colloidal solution of Ru-Pt with a P-protected ruthenium nucleus was prepared. Next, water in which carbon black (Ketjen Black EC) was dispersed was added to the colloid solution, followed by stirring to adsorb the colloid particles to the carbon black. This solution was filtered to recover Pt-Ru / carbon black. This was heat-treated at 300 ° C. in a nitrogen stream, washed with water, and then reduced at 300 ° C. with hydrogen to obtain an electrode catalyst A having Ru—Pt supported on carbon black. The weight ratio of carbon black to Ru and Pt is 56: 24: 2
0. Subsequently, water and a perfluorosulfonic acid ionomer ethanol solution (perfumesulfonic acid ionomer concentration of 9 with Flemion manufactured by Asahi Glass Co., Ltd.) was applied to the electrode catalyst A.
wt%) to obtain an ink. This ink was applied to carbon paper so that the Pt amount was 0.2 mg / cm 2, and dried at 60 ° C. to form an anode catalyst layer.
【0010】また、次のようにしてカソードを作成し
た。調製後一日放置した2×10-4Mの塩化白金(II)
酸カリウム水溶液に0.1Mのポリアクリル酸ナトリウ
ム水溶液(分子量2300)を塩化白金(II)酸カリウ
ムとポリアクリル酸ナトリウムとのモル比が1:5にな
るように加えた。この溶液にアルゴンガスを20分間バ
ブリングさせた後、水素ガスを5分間バブリングさせ
た。次いで、この溶液を密封して12時間放置して、金
色透明の白金コロイド溶液を得た。一方、300mlの
水にカーボンブラック(ケッチェンEC)0.7gを分
散させ、この分散液を前記のコロイド溶液10リットル
に加え、さらに塩酸を加えてpH5にし、半日間マグネ
ティックスターラで撹拌した後、さらにpH3.5にし
て半日間撹拌し、コロイド粒子をカーボンブラックに吸
着させた。これを濾過し、Ptを吸着したカーボンブラ
ックを回収し、窒素気流中300℃で熱処理し、水洗
後、250℃で水素還元した。こうしてカーボンブラッ
クに白金を75:25の重量比で担持させた電極触媒B
を調製した。この電極触媒Bを用いて前記と同様にして
Pt量が0.3mg/cm2となるようにカーボンペー
パー上にカソード触媒層を形成した。A cathode was prepared as follows. 2 × 10 -4 M platinum (II) chloride left for one day after preparation
A 0.1 M aqueous solution of sodium polyacrylate (molecular weight: 2300) was added to the aqueous solution of potassium acrylate such that the molar ratio of potassium chloroplatinate (II) to sodium polyacrylate was 1: 5. After argon gas was bubbled through the solution for 20 minutes, hydrogen gas was bubbled for 5 minutes. Then, this solution was sealed and left for 12 hours to obtain a golden transparent platinum colloid solution. On the other hand, 0.7 g of carbon black (Ketjen EC) is dispersed in 300 ml of water, and this dispersion is added to 10 liters of the above colloid solution, and further adjusted to pH 5 by adding hydrochloric acid. The mixture was stirred at a pH of 3.5 for half a day to adsorb the colloid particles on the carbon black. This was filtered, and the carbon black on which Pt was adsorbed was recovered, heat-treated at 300 ° C. in a nitrogen stream, washed with water, and then reduced with hydrogen at 250 ° C. Electrode catalyst B in which platinum is supported on carbon black in a weight ratio of 75:25.
Was prepared. Using this electrode catalyst B, a cathode catalyst layer was formed on carbon paper in the same manner as described above so that the Pt amount was 0.3 mg / cm 2 .
【0011】上記のアノード触媒層を有するカーボンペ
ーパーとカソード触媒層を有するカーボンペーパーでそ
れぞれの触媒層が高分子電解質膜(デュポン社製のナフ
ィオン112膜)と接するように高分子電解質膜をはさ
み、ホットプレスして電解質膜−電極接合体(a)を作
成した。The polymer electrolyte membrane is sandwiched between the carbon paper having the anode catalyst layer and the carbon paper having the cathode catalyst layer such that each catalyst layer is in contact with the polymer electrolyte membrane (Nafion 112 membrane manufactured by DuPont), Hot pressing was performed to prepare an electrolyte membrane-electrode assembly (a).
【0012】《比較例1》塩化白金酸水溶液に、亜硫酸
水素ナトリウムを加えた後、過酸化水素水と反応させ、
生じた白金コロイド粒子をカーボンブラックに担持させ
る一般的な手法で、白金をカーボンブラックに担持させ
た。次に、この白金担持カーボンブラックを塩化ルテニ
ウム(III)水溶液に分散させ、水素でバブリングする
ことにより、ルテニウムを担持させた。この触媒を30
0℃で水素還元して、Pt−Ruを担持した電極触媒C
を調製した。カーボンブラックとRuとPtの重量比は
56:24:20である。この電極触媒Cをアノード触
媒としてMEA(a)と同様の方法で、MEA(b)を
作成した。<< Comparative Example 1 >> Sodium bisulfite was added to an aqueous chloroplatinic acid solution and reacted with an aqueous hydrogen peroxide solution.
Platinum was supported on carbon black by a general method of supporting the resulting platinum colloid particles on carbon black. Next, the platinum-supported carbon black was dispersed in an aqueous ruthenium (III) chloride solution, and bubbled with hydrogen to support ruthenium. This catalyst is
Electrode catalyst C supporting Pt—Ru by hydrogen reduction at 0 ° C.
Was prepared. The weight ratio of carbon black to Ru and Pt is 56:24:20. Using this electrode catalyst C as an anode catalyst, MEA (b) was prepared in the same manner as MEA (a).
【0013】上記のMEA(a)および(b)を用いた
セルの特性を測定した。各セルを75℃に保持し、カソ
ードには露点が65℃となるように加湿した空気を、ア
ノードには露点が70℃となるように加湿した水素をそ
れぞれ供給し、酸素利用率40%、水素利用率70%、
電流密度0.2A/cm2の条件で稼動させたところ、
MEA(a)を用いたセルは709mV、MEA(b)
を用いたセルは715mVを示した。次に、水素を75
%H2−25%CO2−50ppmCOの改質模擬ガスに
切り替えたところ、MEA(a)を用いたセルの電圧低
下は32mV、MEA(b)を用いたセルの電圧低下は
54mVであった。この結果から明らかなように、ルテ
ニウム粒子を白金で被覆することにより、優れた耐CO
被毒特性を発揮することがわかる。The characteristics of cells using the above MEAs (a) and (b) were measured. Each cell was maintained at 75 ° C., and humidified air was supplied to the cathode so as to have a dew point of 65 ° C., and humidified hydrogen was supplied to the anode so that the dew point was 70 ° C., and the oxygen utilization rate was 40%. Hydrogen utilization rate 70%,
When operated under the condition of a current density of 0.2 A / cm 2 ,
The cell using MEA (a) was 709 mV, and the MEA (b)
The cell using 715 showed 715 mV. Next, 75
When switching to the reforming simulation gas of% H 2 -25% CO 2 -50 ppm CO, the voltage drop of the cell using MEA (a) was 32 mV, and the voltage drop of the cell using MEA (b) was 54 mV. . As is evident from the results, coating the ruthenium particles with platinum provides excellent CO resistance.
It turns out that it exhibits poisoning characteristics.
【0014】[0014]
【発明の効果】以上のように本発明によれば、白金低担
持量で優れた特性の燃料電池用電極触媒を得ることがで
きる。As described above, according to the present invention, it is possible to obtain an electrode catalyst for a fuel cell having a low platinum loading and excellent characteristics.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 8/10 H01M 8/10 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G069 AA03 AA08 BA08B BA37 BB02A BB02B BB08C BB20C BC02C BC03C BC70A BC70B BC70C BC75A BC75B BC75C BD03C BD12C CC32 DA06 EA01X EA01Y EB19 EE08 FA01 FB08 FB13 FB44 FC02 FC04 5H018 AA06 AS02 AS03 BB00 BB17 EE03 EE08 5H026 AA06 BB00 BB04 BB10 EE02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) // H01M 8/10 H01M 8/10 (72) Inventor Makoto Uchida 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Inside Sangyo Co., Ltd. (72) Inventor Eiichi Yasumoto 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (Ref.)
Claims (2)
被覆する白金層よりなることを特徴とする燃料電池用電
極触媒。1. An electrode catalyst for a fuel cell, comprising a ruthenium particle and a platinum layer covering a part of its surface.
ニウムコロイド粒子を生成させる工程、前記ルテニウム
コロイド粒子を分散している分散液に水素をバブリング
して前記コロイド粒子に水素を吸着させる工程、および
白金塩の溶液を前記分散液に加えてルテニウムを核とし
てその表面に白金を含むルテニウム−白金二元コロイド
粒子を生成させる工程を有することを特徴とする燃料電
池用電極触媒の製造方法。2. A step of adding a reducing agent to a ruthenium salt solution to generate ruthenium colloid particles, a step of bubbling hydrogen into a dispersion in which the ruthenium colloid particles are dispersed, and causing the colloid particles to adsorb hydrogen. A method for producing an electrode catalyst for a fuel cell, comprising a step of adding a solution of a platinum salt to the dispersion to generate ruthenium-platinum binary colloid particles containing platinum on the surface of the dispersion with ruthenium as a nucleus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001021946A JP2002231257A (en) | 2001-01-30 | 2001-01-30 | Electrode catalyst for fuel cell and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001021946A JP2002231257A (en) | 2001-01-30 | 2001-01-30 | Electrode catalyst for fuel cell and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002231257A true JP2002231257A (en) | 2002-08-16 |
Family
ID=18887424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001021946A Pending JP2002231257A (en) | 2001-01-30 | 2001-01-30 | Electrode catalyst for fuel cell and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002231257A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004102704A1 (en) * | 2003-05-14 | 2004-11-25 | Matsushita Electric Industrial Co., Ltd. | Solid oxide fuel cell and method for producing same |
EP1653535A1 (en) * | 2004-10-28 | 2006-05-03 | Samsung SDI Co., Ltd. | Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising the same |
WO2007029607A1 (en) * | 2005-09-08 | 2007-03-15 | Nippon Sheet Glass Company, Limited | Noble metal microparticle and method for production thereof |
WO2007055229A1 (en) * | 2005-11-09 | 2007-05-18 | Shin-Etsu Chemical Co., Ltd. | Electrode catalyst for fuel cell and method for producing same |
JP2008080322A (en) * | 2006-09-25 | 2008-04-10 | Hyundai Motor Co Ltd | Method for preparing platinum supported catalyst |
JP2008173524A (en) * | 2007-01-16 | 2008-07-31 | Sharp Corp | Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby |
WO2008105484A1 (en) * | 2007-03-01 | 2008-09-04 | Shin-Etsu Chemical Co., Ltd. | Method for production of electrode catalyst for fuel cell |
WO2008120515A1 (en) * | 2007-03-29 | 2008-10-09 | Shin-Etsu Chemical Co., Ltd. | Process for producing electrode catalyst for fuel cell |
JP2010075857A (en) * | 2008-09-26 | 2010-04-08 | Nippon Paint Co Ltd | Metal-supported porous body, method of manufacturing the same, and catalyst for fuel cell electrode containing metal-supported porous body |
WO2010050550A1 (en) | 2008-10-30 | 2010-05-06 | ソニー株式会社 | Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device |
WO2010140506A1 (en) * | 2009-06-01 | 2010-12-09 | ソニー株式会社 | Platinum-containing catalyst and fuel cell using same |
US8361924B2 (en) | 2010-08-17 | 2013-01-29 | Sony Corporation | Fine particles of core-shell structure and functional device incorporated therewith |
US8618019B2 (en) | 2008-06-26 | 2013-12-31 | Aisin Seiki Kabushiki Kaisha | Method for producing platinum nanoparticles |
JP2014018796A (en) * | 2012-07-17 | 2014-02-03 | Hyundai Motor Company Co Ltd | Method for manufacturing palladium-platinum core shell catalyst for fuel cell |
WO2021161929A1 (en) * | 2020-02-10 | 2021-08-19 | 国立大学法人山梨大学 | Supported metal catalyst, method for producing same, and method for producing carrier |
-
2001
- 2001-01-30 JP JP2001021946A patent/JP2002231257A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004102704A1 (en) * | 2003-05-14 | 2004-11-25 | Matsushita Electric Industrial Co., Ltd. | Solid oxide fuel cell and method for producing same |
EP1653535A1 (en) * | 2004-10-28 | 2006-05-03 | Samsung SDI Co., Ltd. | Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising the same |
US9120087B2 (en) | 2004-10-28 | 2015-09-01 | Samsung Sdi Co., Ltd. | Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising same |
US7754644B2 (en) | 2005-09-08 | 2010-07-13 | Nippon Sheet Glass Company, Limited | Noble metal particle and process of producing the same |
WO2007029607A1 (en) * | 2005-09-08 | 2007-03-15 | Nippon Sheet Glass Company, Limited | Noble metal microparticle and method for production thereof |
WO2007055229A1 (en) * | 2005-11-09 | 2007-05-18 | Shin-Etsu Chemical Co., Ltd. | Electrode catalyst for fuel cell and method for producing same |
JP2008080322A (en) * | 2006-09-25 | 2008-04-10 | Hyundai Motor Co Ltd | Method for preparing platinum supported catalyst |
JP2008173524A (en) * | 2007-01-16 | 2008-07-31 | Sharp Corp | Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby |
WO2008105484A1 (en) * | 2007-03-01 | 2008-09-04 | Shin-Etsu Chemical Co., Ltd. | Method for production of electrode catalyst for fuel cell |
WO2008120515A1 (en) * | 2007-03-29 | 2008-10-09 | Shin-Etsu Chemical Co., Ltd. | Process for producing electrode catalyst for fuel cell |
US8748334B2 (en) | 2007-03-29 | 2014-06-10 | Shin-Etsu Chemical Co., Ltd. | Process for producing electrode catalyst for fuel cell |
US8618019B2 (en) | 2008-06-26 | 2013-12-31 | Aisin Seiki Kabushiki Kaisha | Method for producing platinum nanoparticles |
JP2010075857A (en) * | 2008-09-26 | 2010-04-08 | Nippon Paint Co Ltd | Metal-supported porous body, method of manufacturing the same, and catalyst for fuel cell electrode containing metal-supported porous body |
US8871672B2 (en) | 2008-10-30 | 2014-10-28 | Sony Corporation | Platinum-containing catalyst and method of producing the same, electrode and electrochemical device |
JP2011072981A (en) * | 2008-10-30 | 2011-04-14 | Sony Corp | Platinum-containing catalyst and process for producing the platinum-containing catalyst, and electrode, and electrochemical device |
WO2010050550A1 (en) | 2008-10-30 | 2010-05-06 | ソニー株式会社 | Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device |
WO2010140506A1 (en) * | 2009-06-01 | 2010-12-09 | ソニー株式会社 | Platinum-containing catalyst and fuel cell using same |
US8361924B2 (en) | 2010-08-17 | 2013-01-29 | Sony Corporation | Fine particles of core-shell structure and functional device incorporated therewith |
JP2014018796A (en) * | 2012-07-17 | 2014-02-03 | Hyundai Motor Company Co Ltd | Method for manufacturing palladium-platinum core shell catalyst for fuel cell |
WO2021161929A1 (en) * | 2020-02-10 | 2021-08-19 | 国立大学法人山梨大学 | Supported metal catalyst, method for producing same, and method for producing carrier |
JPWO2021161929A1 (en) * | 2020-02-10 | 2021-08-19 | ||
JP7201892B2 (en) | 2020-02-10 | 2023-01-11 | 国立大学法人山梨大学 | Supported metal catalyst, method for producing the same, method for producing carrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5270098B2 (en) | Improved electrode | |
JP5166842B2 (en) | ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST | |
JP4721539B2 (en) | Fuel cell electrode catalyst and method for producing the same | |
US9825307B2 (en) | Anode-side catalyst composition for fuel cells, and membrane electrode assembly (MEA) for solid polymer fuel cells which comprises same | |
JP3353518B2 (en) | Polymer electrolyte fuel cell | |
JP2002231257A (en) | Electrode catalyst for fuel cell and method of manufacturing the same | |
JP2004006306A (en) | Fuel cell, electrode for fuel cell and manufacturing method of these | |
JP2006260909A (en) | Membrane electrode assembly and polymer electrolyte fuel cell using the same | |
JP2007273340A (en) | High-durability electrode catalyst for fuel cell, and fuel cell using the same | |
EP1022795B1 (en) | Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell | |
JP4859124B2 (en) | Membrane electrode unit, manufacturing method thereof, and direct methanol fuel cell | |
JP2003007308A (en) | Anode for fuel cell and fuel cell | |
US20080090128A1 (en) | Electrode Catalyst for Fuel Cell and Fuel Cell | |
JP2002305001A (en) | Electrode catalyst for fuel cell and its manufacturing method | |
JP2001093531A (en) | Solid polymer fuel cell and method for manufacturing electrode catalyst | |
JP3649061B2 (en) | Fuel cell electrode and manufacturing method thereof | |
EP0899348B1 (en) | Co-tolerant platinum-zinc alloy suitable for use in a fuel cell electrode | |
JP2006127979A (en) | Fuel cell and electrode catalyst therefor | |
JP2005353408A (en) | Fuel cell | |
JP2002343403A (en) | Operation method of fuel cell | |
JP4311070B2 (en) | Cathode for fuel cell and polymer electrolyte fuel cell having the same | |
JP4679815B2 (en) | Direct fuel cell | |
JP3844022B2 (en) | Direct methanol fuel cell with solid polymer electrolyte | |
JP2001126738A (en) | Method for preparing electrode for fuel cell and direct methanol fuel cell using the same | |
JP2002358971A (en) | Fuel cell electrode and its manufacturing method and fuel cell using the same |