JP2002228978A - Stereoscopic image display device - Google Patents

Stereoscopic image display device

Info

Publication number
JP2002228978A
JP2002228978A JP2001026945A JP2001026945A JP2002228978A JP 2002228978 A JP2002228978 A JP 2002228978A JP 2001026945 A JP2001026945 A JP 2001026945A JP 2001026945 A JP2001026945 A JP 2001026945A JP 2002228978 A JP2002228978 A JP 2002228978A
Authority
JP
Japan
Prior art keywords
observer
pupil
display device
stereoscopic
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001026945A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sudo
敏行 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mixed Reality Systems Laboratory Inc
Original Assignee
Mixed Reality Systems Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mixed Reality Systems Laboratory Inc filed Critical Mixed Reality Systems Laboratory Inc
Priority to JP2001026945A priority Critical patent/JP2002228978A/en
Publication of JP2002228978A publication Critical patent/JP2002228978A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a stereoscopic image display device which makes images stereoscopically visible in a natural state by utilizing a monocular parallax effect. SOLUTION: The stereoscopic image display device which performs observation of a stereoscopic view by successively making rays having parallax image information on the plural regions of the pupil of the single eye of an observer has control means for controlling the incident regions of the rays in the regions on the pupil surface where the two adjacent regions are displaced in a horizontal direction and are displaced in a perpendicular direction as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は立体画像を観察者の
目の負担を軽減し、疲れずに、自然の状態で良好に観察
することができる立体画像表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional image display apparatus capable of reducing a burden on an observer's eyes and allowing a three-dimensional image to be properly viewed in a natural state without fatigue.

【0002】[0002]

【従来の技術】従来より、立体(立体物、3次元物体)
を再生する方法として様々な方式が試みられている。こ
れらのうち両眼視差を用いて観察者に立体視を行わせる
方法(偏光メガネ方式、レンチキュラ方式など)は従来
より広く利用されている。しかしながら、これらの方法
は眼の調節機能による立体認識と両眼視差による立体認
識との間に矛盾が生じるため、観察者は疲労や違和感を
覚えることが少なくない。そこで両眼視差のみに頼ら
ず、眼のその他の立体認識機能を満足する3次元像再生
の方法がいくつか試みられている。
2. Description of the Related Art Conventionally, three-dimensional objects (three-dimensional objects, three-dimensional objects)
Various methods have been tried as a method of reproducing a. Of these methods, methods of causing the observer to perform stereoscopic vision using binocular parallax (polarized glasses system, lenticular system, etc.) have been widely used conventionally. However, in these methods, since a contradiction arises between the stereoscopic recognition based on the accommodation function of the eyes and the stereoscopic recognition based on the binocular parallax, the observer often feels tired or uncomfortable. Therefore, several methods of three-dimensional image reproduction satisfying other three-dimensional recognition functions of the eye without relying only on binocular parallax have been attempted.

【0003】平成9年に通信・放送機構出版が発行した
刊行物「高度立体動画像通信プロジェクト最終成果報告
書」の第3章8節「超多眼領域の立体視覚に関する研
究」によれば、単眼の瞳孔に複数の視差画像が入射する
程度に視差の刻み角が細かい多視点画像を表示する「超
多眼領域」の立体表示方法下においては、観察者の眼の
焦点調節が両眼視差によって誘導される擬似的な立体像
の近傍に導かれ、観察者の疲労や違和感が軽減される、
とされている。
[0003] According to Chapter 3, Section 8 "Study on stereoscopic vision in super multi-view area" of the publication "Advanced Stereoscopic Video Communication Project Final Result Report" published by the Telecommunications and Broadcasting Corporation in 1997, Under the stereoscopic display method of the "super multi-view area" in which a multi-viewpoint image in which the parallax is finely divided so that a plurality of parallax images enter the pupil of a single eye, the focus adjustment of the observer's eye is performed by binocular parallax. Is guided in the vicinity of the pseudo three-dimensional image induced by the, reducing the fatigue and discomfort of the observer,
It has been.

【0004】つまり、従来から行われている2視点から
の視差画像を両眼に対して呈示する立体表示方法を、n
視点からの視差画像をn視点に対して呈示する方法に拡
張し、なおかつn個の視点の隣り合う2点間距離を観察
者の瞳孔よりも小さくした場合、「単眼視差効果」によ
り目が疲れにくい立体表示となる、という見解が示され
ている。
[0004] That is, a conventional stereoscopic display method for presenting parallax images from two viewpoints to both eyes is described as follows.
If the method of presenting the parallax image from the viewpoint to the n viewpoints is extended and the distance between two adjacent points of the n viewpoints is made smaller than the pupil of the observer, the eyes become tired due to the “monocular parallax effect”. There is a view that it will be difficult to display in three dimensions.

【0005】さらに同報告書第3章6節「集束化光源列
(FLA)による多眼立体ディスプレイの研究開発」では上
記理論を実践する具体例が示されている。図21はこの
具体例の構成図である。図21中のFLAは集束化光源列
(Focused Light Array)の略語であり、図22に示すよ
うな構成を有する。FLAは図22(a)のように半導体
レーザーなどの光源(Light Source)の光を光学系(Beam
Shaping Optics)により細い光束に整形したものを、図
22(b)のように円弧状に並べてすべての光束を円の
中心に集光させたものである。こうして形成された焦点
(Focal Point)は光学系(Objective lens,Imaging lens)
により垂直拡散板(Vertical Diffuser)に再結像し、走
査系(Vertical Scanner,Horizontal Scanner)により2
次元的に高速走査され、2次元的な画像を形成する。走
査の周期が観察者の眼の残像許容時間内(約1/50秒
以内)であればフリッカーのない画像観察が可能とな
る。ある瞬間における焦点は2次元画像の個々の画素を
構成しており、各画素は元の光源の数だけ異なる方向に
光線を出射する輝点と考えられる。どの方向に光線を出
射させるかは、発光させる光源を選択することで決定す
ることができる。この光線の出射方向は非常に小さな角
度だけ異なっているので、観察位置では観察者の瞳に2
本以上の異なる光線が入射するような条件になってい
る。つまり、上記構成によれば観察者の単眼に複数の視
差像が入射する「超多眼領域」の立体表示が可能とな
り、観察者の眼の焦点調節が立体像近傍に導かれ観察者
の疲労や違和感が軽減される。
[0005] Further, in the same report, Chapter 3, Section 6, "Focused Light Source Array"
In (R & D of multi-view stereoscopic display by (FLA)), a concrete example of practicing the above theory is shown. FIG. 21 is a configuration diagram of this specific example. FLA in FIG. 21 is a focused light source array
(Focused Light Array), which has a configuration as shown in FIG. The FLA converts light of a light source (Light Source) such as a semiconductor laser into an optical system (Beam
Shaping optics is used to form a thin light beam, and the light beam is arranged in an arc shape as shown in FIG. 22B and all the light beams are collected at the center of the circle. Focus formed in this way
(Focal Point) is an optical system (Objective lens, Imaging lens)
Re-images on the vertical diffuser (Vertical Diffuser) by the scanning system (Vertical Scanner, Horizontal Scanner).
A two-dimensional image is formed by high-speed scanning in two dimensions. If the scanning cycle is within the permissible afterimage time of the observer's eyes (within about 1/50 second), image observation without flicker becomes possible. The focal point at a certain moment constitutes an individual pixel of the two-dimensional image, and each pixel is considered as a luminescent spot that emits light rays in different directions by the number of original light sources. The direction in which the light beam is emitted can be determined by selecting the light source to emit light. Since the exit directions of the light beams differ by a very small angle, the pupil of the observer at the observation position is 2
The condition is such that more than two different light beams are incident. In other words, according to the above configuration, stereoscopic display of a “super multi-view area” in which a plurality of parallax images are incident on a single eye of the observer becomes possible, and focus adjustment of the observer's eyes is guided to the vicinity of the stereoscopic image, resulting in fatigue of observer And discomfort is reduced.

【0006】[0006]

【発明が解決しようとする課題】図21に示す従来の立
体画像観察には次のような問題点が存在する。
The conventional stereoscopic image observation shown in FIG. 21 has the following problems.

【0007】「超多眼領域」の立体表示において最も特
徴的なのは「単眼視差効果」により観察者の眼の焦点調
節が立体像近傍に導かれ観察者の疲労や違和感が軽減さ
れる、という点である。「単眼視差効果」を発生させる
には単眼内に複数の視差画像を呈示する必要がある。つ
まり、あらかじめきわめて微小な間隔の視点からの視差
画像を複数用意しておく必要がある。この場合、画像の
総情報量が必然的に増大するので立体知覚への影響の大
きい水平方向の視差画像のみを呈示し、鉛直方向の視差
情報については破棄して情報量の低減化を図るという方
法がしばしば採用される。上記従来例もこの方法で立体
像の再生を行っている。
The most distinctive feature of the "super multi-view area" stereoscopic display is that the "monocular parallax effect" guides the observer's eyes to the vicinity of the stereoscopic image, thereby reducing the fatigue and discomfort of the observer. It is. In order to generate the “monocular parallax effect”, it is necessary to present a plurality of parallax images in a single eye. That is, it is necessary to prepare a plurality of parallax images from viewpoints at extremely small intervals in advance. In this case, since the total information amount of the image is inevitably increased, only a horizontal parallax image having a large effect on stereoscopic perception is presented, and the vertical parallax information is discarded to reduce the information amount. Methods are often employed. The above conventional example also reproduces a three-dimensional image by this method.

【0008】しかし、このような方法をとると「単眼視
差効果」がアンバランスな状態下に置かれることにな
る。「単眼視差効果」により観察者の眼の水平方向の焦
点調節が立体像近傍に導かれても、鉛直方向の焦点調節
は別の位置に合ったままとなるため、観察者は非点収差
が発生した像を観察し続けることになってしまう。
However, when such a method is employed, the "monocular parallax effect" is placed in an unbalanced state. Even if the horizontal focus adjustment of the observer's eye is guided to the vicinity of the stereoscopic image by the “monocular parallax effect”, the focus adjustment in the vertical direction remains at another position, so that the observer experiences astigmatism. Observation of the generated image will be continued.

【0009】このことはせっかくの「単眼視差効果」を
低減させてしまうとともに観察者視覚系に負担をかける
ことにもなりかねない。
[0009] This may reduce the "monocular parallax effect" and put a burden on the observer's visual system.

【0010】本発明は単眼視差効果を利用して、立体画
像を観察するとき情報量の増大を防止しつつ、観察者が
疲労せずに良好に立体画像を観察することができる立体
画像表示装置の提供を目的とする。
The present invention utilizes a monocular parallax effect to prevent an increase in the amount of information when observing a stereoscopic image, and to allow the observer to observe the stereoscopic image satisfactorily without fatigue. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】請求項1の発明の立体画
像表示装置は、観察者の単眼の瞳孔の複数領域に対し
て、視差画像情報を有した光線を入射させて立体視の観
察を行う立体画像表示装置において、該瞳孔面上の隣接
する2つの領域が、水平方向に変位するとともに鉛直方
向にも変位する領域に該光線の入射領域を制御する制御
手段を有することを特徴としている。
According to a first aspect of the present invention, there is provided a stereoscopic image display apparatus in which a light beam having parallax image information is made incident on a plurality of regions of a pupil of a single eye of an observer to perform stereoscopic observation. In the stereoscopic image display apparatus to be performed, two adjacent areas on the pupil plane have control means for controlling an incident area of the light beam in an area which is displaced in the horizontal direction and also displaced in the vertical direction. .

【0012】請求項2の発明の立体画像表示装置は、観
察者の単眼の瞳孔に対して画像情報を有した複数の光線
を入射させ、該光線同士の交点位置に観察者の眼の調節
を合焦せしめて立体視を行う立体画像表示装置におい
て、観察者の瞳孔に入射する光線の中心を光線入射位置
中心と定めるとき、少なくとも1つの光線入射位置中心
の鉛直成分が他の光線入射位置中心の鉛直成分と異なっ
ていることを特徴としている。
According to a second aspect of the present invention, there is provided a three-dimensional image display device in which a plurality of light beams having image information are made incident on a pupil of a single eye of an observer, and the observer's eyes are adjusted at the intersection of the light beams. In a stereoscopic image display apparatus that performs stereoscopic vision by focusing, when a center of a light beam incident on a pupil of an observer is determined as a light incident position center, a vertical component of at least one light incident position center is different from another light incident position center. It is characterized by being different from the vertical component.

【0013】請求項3の発明は請求項2の発明におい
て、前記観察者の単眼に対して入射する複数の光線は、
光線入射位置中心を含む光束の鉛直成分の数と水平成分
の数とが同数であることを特徴としている。
According to a third aspect of the present invention, in the second aspect, the plurality of light rays incident on the monocular of the observer are:
It is characterized in that the number of vertical components and the number of horizontal components of the light beam including the center of the light incident position are the same.

【0014】請求項4の発明は請求項2の発明におい
て、前記複数の光線は光線入射位置中心の水平成分同
士、鉛直成分同士がすべて異なっていることを特徴とし
ている。
A fourth aspect of the present invention is characterized in that, in the second aspect of the invention, the plurality of light beams have different horizontal components and vertical components at the center of the light incident position.

【0015】請求項5の発明の立体画像表示装置は、観
察者の瞳孔の複数領域の各領域に対して異なった方向か
ら光線を入射させ、該光線同士の交点位置に観察者の眼
の調節を合焦せしめて立体視を行う立体画像表示装置に
おいて、該複数領域は該瞳孔を水平方向と垂直方向に対
して所定の間隔をあけて又はあけないで各々3以上の領
域に分けたとき、水平方向と垂直方向に対して1つおき
の領域であることを特徴としている。
According to a fifth aspect of the present invention, there is provided a three-dimensional image display device in which light rays are incident on the plurality of regions of the pupil of the observer from different directions, and the eye of the observer is adjusted at the intersection of the light beams. In a stereoscopic image display device that performs stereoscopic vision by focusing on, when the plurality of regions are divided into three or more regions each with or without a predetermined interval in the horizontal and vertical directions, It is characterized by being every other area in the horizontal and vertical directions.

【0016】請求項6の発明は請求項5の発明におい
て、前記複数領域は前記瞳孔を水平方向と垂直方向に同
数の領域に分けたとき、水平方向と垂直方向に対して1
つおきの領域であることを特徴としている。
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, when the pupil is divided into the same number of regions in the horizontal direction and the vertical direction, the plurality of regions are one for the horizontal direction and the vertical direction.
It is characterized by being every other area.

【0017】請求項7の発明は請求項5の発明におい
て、前記複数領域は前記瞳孔を水平方向と垂直方向に等
しい面積で3以上の領域に分けたとき、水平方向と垂直
方向に対して1つおきの領域であることを特徴としてい
る。
According to a seventh aspect of the present invention, when the pupil is divided into three or more areas with the same area in the horizontal direction and the vertical direction, the plurality of areas are one in the horizontal direction and the vertical direction. It is characterized by being every other area.

【0018】請求項8の発明の立体画像表示装置は、観
察者の瞳孔の複数領域の各領域に対して異なった方向か
ら光線を順次入射させ、該光線同士の交点位置に観察者
の眼の調節を合焦せしめて立体視を行う立体画像表示装
置において、観察者の瞳孔に入射する光線の中心を光線
入射位置中心とするとき、光線入射位置中心を結ぶ線分
は3角形状となっていることを特徴としている。
In the stereoscopic image display apparatus according to the present invention, light beams are sequentially incident from different directions on each of a plurality of regions of the observer's pupil, and the observer's eye is positioned at the intersection of the light beams. In a stereoscopic image display apparatus that performs stereoscopic vision by focusing adjustment, when the center of a light beam incident on a pupil of an observer is set as a light incident position center, a line segment connecting the light incident position center has a triangular shape. It is characterized by having.

【0019】[0019]

【発明の実施の形態】はじめに本発明の立体画像表示装
置(立体表示装置)の適用が可能な技術分野について説
明する。本発明の立体画像表示装置は観察者の単眼に対
して複数の視差画像を呈示し、単眼に入射する複数の光
線の交点で立体の奥行きを表現するタイプの立体表示装
置に適用可能である。例えば単眼の瞳孔の複数領域に対
して、視差画像情報を有した光線を順次に又は同時に入
射させて立体視を行う装置に適用可能である。まずは、
このタイプの立体表示装置について原理を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a technical field to which a stereoscopic image display device (stereoscopic display device) of the present invention can be applied will be described. INDUSTRIAL APPLICABILITY The stereoscopic image display device of the present invention is applicable to a stereoscopic display device of a type that presents a plurality of parallax images to a single eye of an observer and expresses the depth of a three-dimensional image by an intersection of a plurality of light rays incident on the single eye. For example, the present invention can be applied to an apparatus that performs stereoscopic viewing by sequentially or simultaneously causing light beams having parallax image information to enter a plurality of regions of a pupil of a single eye. First,
The principle of this type of stereoscopic display device will be described.

【0020】従来の多くの立体表示装置は両眼視差を用
いて立体視を表現する。これは人間が立体を両眼で観察
するときに、右眼の網膜像と左眼の網膜像に視差が生じ
ており、立体知覚においてこの視差を大いに利用してい
ることから、逆にこうした視差を持つ2枚の画像を左右
眼に独立に呈示すれば、立体認識が可能になるという原
理である。
Many conventional stereoscopic display devices express stereoscopic vision using binocular parallax. This is because when a human observes a three-dimensional object with both eyes, there is a parallax between the retinal image of the right eye and the retinal image of the left eye. The principle is that stereoscopic recognition becomes possible if two images having the following are independently presented to the left and right eyes.

【0021】図1はこの立体認識の原理の説明図であ
る。図は立体(物体)2上の点1の奥行きを、両眼視差
を用いて認識している状態を示している。3は画像表示
面である。画像表示面3上に点1Rを表示してこれを右
眼のみに呈示し、画像表示面3上に点1Lを表示してこ
れを左眼のみに呈示すると、眼の輻輳が点1の位置に合
い、人間の視覚認識系は点1Rと右眼を結ぶ直線と、点
1Lと左眼を結ぶ直線の交点位置に点1を立体的に認識
することができる。
FIG. 1 is an explanatory diagram of the principle of the three-dimensional recognition. The figure shows a state in which the depth of the point 1 on the solid (object) 2 is recognized using binocular parallax. Reference numeral 3 denotes an image display surface. When the point 1R is displayed on the image display surface 3 and presented to only the right eye, and the point 1L is displayed on the image display surface 3 and presented only to the left eye, the convergence of the eye becomes the position of point 1. Therefore, the human visual recognition system can three-dimensionally recognize the point 1 at the intersection of the straight line connecting the point 1R and the right eye and the straight line connecting the point 1L and the left eye.

【0022】ただし、このとき眼の水晶体の調節が点1
に合うわけではなく、眼の調節と輻輳との間に乖離が発
生する。この乖離が大きい場合、視覚認識系に無理な負
担がかかり、観察時に疲労や違和感の原因となる可能性
があると言われている。
However, at this time, the adjustment of the lens of the eye is point 1
However, there is a divergence between accommodation and convergence of the eye. It is said that if the deviation is large, an excessive load is imposed on the visual recognition system, which may cause fatigue and discomfort during observation.

【0023】これに対して、従来例に示したように視差
を単眼内で発生させるタイプの立体表示装置が登場して
いる。図2はこの立体認識の原理の説明図である。図2
は上記同様立体物2上の点1の奥行きを、単眼5内の視
差を用いて認識している状態を示している。3’は画像
表示面である必要はなく、立体を表現する光線が最も細
くなっている光線焦点面と考えることができる。(光線
焦点面では光線の径が最小となっており、そこから光が
発散しているように見えるので、焦点位置での光線断面
をここでは「光源」と呼ぶことにする)。単眼5内で視
差を発生させるためには図示したように複数の光線が眼
の水晶体(瞳孔)4の異なる位置に異なる角度で独立に
入射することが必要である。
On the other hand, a stereoscopic display device of the type that generates parallax within a single eye as shown in the conventional example has appeared. FIG. 2 is an explanatory diagram of the principle of the three-dimensional recognition. FIG.
Indicates a state in which the depth of the point 1 on the three-dimensional object 2 is recognized using the parallax in the monocular 5 in the same manner as described above. Reference numeral 3 'does not need to be an image display surface, and can be considered as a light beam focal plane where light beams representing a three-dimensional object are the thinnest. (Because the diameter of the light beam is the smallest at the light beam focal plane, and the light seems to diverge therefrom, the light beam cross-section at the focal position is referred to herein as the "light source.") In order to generate parallax in the monocular 5, it is necessary that a plurality of light beams be independently incident on different positions of the crystalline lens (pupil) 4 of the eye at different angles as shown.

【0024】図2では眼の水晶体4の領域4L、4Rの
位置に入射する光線がそれぞれ分離しており、かつ点1
で交わっている。このような状況下では、人間の視覚認
識系は光線の交点1を光線の発散点と認識し、点1に眼
のピントが合うよう水晶体4の調節を行って、眼底に点
1の像点1Eを形成することが可能となる。したがっ
て、このようなタイプの立体表示装置においては従来の
両眼視差方式の立体表示装置とは異なり、観察者の眼の
調節を立体像近傍に誘導することができる。
In FIG. 2, the rays incident on the positions of the regions 4L and 4R of the crystalline lens 4 of the eye are separated, and
Are in a meeting. Under such circumstances, the human visual recognition system recognizes the intersection 1 of the light beam as the divergence point of the light beam, adjusts the crystalline lens 4 so that the eye is in focus on the point 1, and places the image point of the point 1 on the fundus. 1E can be formed. Therefore, in a stereoscopic display device of this type, unlike a conventional binocular parallax stereoscopic display device, adjustment of the observer's eyes can be guided to the vicinity of a stereoscopic image.

【0025】一般に単眼に対して複数の視差画像を呈示
することは情報量が増大してくる。情報量を低減化する
ために例えば鉛直方向視差を破棄する方法を採用する
と、観察者の眼の焦点調節は非点収差を含むアンバラン
スな状態下に置かれることになる。
Generally, presenting a plurality of parallax images to a single eye increases the amount of information. If, for example, a method of discarding vertical parallax is adopted to reduce the amount of information, the focusing of the observer's eye is placed under an unbalanced condition including astigmatism.

【0026】次に図3〜図8を用いてこれらの問題点に
ついて説明する。まず情報量の増大化について説明す
る。図3および図4は、単眼5内に水平方向3×鉛直方
向3の合計9つの視差画像を呈示する立体像表示の状態
の平面図と側面図である。
Next, these problems will be described with reference to FIGS. First, an increase in the amount of information will be described. FIG. 3 and FIG. 4 are a plan view and a side view in a stereoscopic image display state in which a total of nine parallax images in the horizontal direction 3 × the vertical direction 3 are presented in the monocular 5.

【0027】このとき3次元像1を表現する光線LIは
すべて異なる角度で単眼5に入射しているために、眼の
水晶体4が機能して点1の像1Eが眼底に結像してい
る。このとき3次元像1の水平方向の結像面PHと鉛直
方向の結像面PVは一致している。
At this time, since the rays LI expressing the three-dimensional image 1 are all incident on the monocular 5 at different angles, the crystalline lens 4 of the eye functions and the image 1E of the point 1 is formed on the fundus. . At this time, the horizontal imaging plane PH of the three-dimensional image 1 and the vertical imaging plane PV coincide with each other.

【0028】図5は眼孔4に入射する光線LIの様子を
眼の正面から見た図である。点線は瞳孔面4aによる9
本の光線の断面を示している。(この場合光線の断面を
方形と仮定しているが、断面の形状はその他の形状でも
かまわない)この立体像表示方法の場合、3次元像1の
水平方向の結像面PHと鉛直方向の結像面PVが一致し
ているために、眼の調節はより3次元像1に合いやすく
なる。しかし、入射角の異なる9本の光線即ち9つの視
差画像情報 を単眼に対して呈示する必要があるため、
扱う情報量は通常の両眼視差方式の立体表示の9倍とな
ってしまう。つまり単眼に対して複数の視差画像を呈示
することは観察者の眼の調節を立体像近傍に導くことを
可能とするが、それと引き替えに情報量の増大という結
果を生む。
FIG. 5 is a view of the state of the light beam LI entering the eye hole 4 as viewed from the front of the eye. Dotted line is 9 due to pupil plane 4a
2 shows a cross section of a light beam of a book. (In this case, the cross section of the light beam is assumed to be a square, but the cross section may have any other shape.) In this stereoscopic image display method, the horizontal imaging plane PH of the three-dimensional image 1 and the vertical Since the imaging planes PV coincide with each other, the accommodation of the eye becomes easier to match the three-dimensional image 1. However, since it is necessary to present nine rays having different incident angles, that is, nine pieces of parallax image information to a single eye,
The amount of information to be handled is nine times that of the normal binocular parallax stereoscopic display. In other words, presenting a plurality of parallax images to a single eye can guide the adjustment of the observer's eyes to the vicinity of the stereoscopic image, but at the cost of increasing the amount of information.

【0029】一方、上記情報量を低減化するために鉛直
方向視差を破棄する方法を採用した場合について考慮し
てみる。図6は、単眼5内の水平方向に3つの視差画像
を呈示し、鉛直方向の光線焦点面PVを鉛直方向拡散光
学素子6の位置とする立体像表示状態の側面図、図7
は、単眼5内に水平方向に3つの視差画像を呈示し、鉛
直方向の光線焦点面PVを無限遠とする立体像表示状態
の側面図を示している。いずれの場合も平面図は図3と
同様になるが、眼に入射する光線の様子を眼の正面から
見ると図8のようになる。点線は瞳孔面4aによる3本
の光線LIの断面を示している。上記の方法を採用した
場合、用意すべき視差画像情報が3つで済むため、扱う
情報量が通常の両眼視差方式の立体表示の3倍で済むと
いう利点がある。
On the other hand, consider a case where a method of discarding vertical parallax is adopted to reduce the amount of information. FIG. 6 is a side view of a stereoscopic image display state in which three parallax images are presented in the horizontal direction in the monocular 5 and the vertical ray focal plane PV is the position of the vertical diffusion optical element 6.
Shows a side view of a stereoscopic image display state in which three parallax images are presented in the horizontal direction in the monocular 5 and the light ray focal plane PV in the vertical direction is set at infinity. In each case, the plan view is the same as that of FIG. 3, but the state of the light beam incident on the eye is as shown in FIG. 8 when viewed from the front of the eye. Dotted lines show cross sections of three rays LI by the pupil plane 4a. When the above method is adopted, only three pieces of parallax image information need to be prepared, so that there is an advantage that the amount of information to be handled is only three times that of a normal binocular parallax method stereoscopic display.

【0030】しかし、3次元像1の水平方向の結像面P
Hと鉛直方向の結像面PVが異なっているために非点収
差が発生し、観察者の眼の調節機構がアンバランスな状
態となって眼の調節が3次元像1に合いづらくなる可能
性がある。
However, the horizontal imaging plane P of the three-dimensional image 1
Astigmatism occurs due to the difference between H and the vertical imaging plane PV, and the adjustment mechanism of the observer's eyes becomes unbalanced, and it becomes difficult for the eyes to adjust to the three-dimensional image 1. There is.

【0031】本実施例では上記2種類の方法の問題点
(情報量の増大と眼の調節が合いずらくなる)を同時に
解決する手段を採用している。図9は本発明を採用した
立体像表示方法の眼4の正面図である。本実施例におい
て特徴的なのは、図中のように光線LIが眼の瞳孔面4
aの入射する位置を互い違いに配置した「千鳥配置」と
した点にある。
The present embodiment employs means for simultaneously solving the problems of the above two methods (increase in the amount of information and difficulty in adjusting the eyes). FIG. 9 is a front view of the eye 4 in the stereoscopic image display method employing the present invention. What is characteristic in this embodiment is that the light beam LI is emitted from the pupil plane 4 of the eye as shown in FIG.
The point "a" is "staggered arrangement" in which the incident positions are alternately arranged.

【0032】ここでは図9に示すように瞳孔面上の隣接
する2つの領域4a1、4a2が水平方向に変位すると
ともに鉛直方向(垂直方向)にも変位するように光線の
入射領域を制御手段(不図示)で制御している。
Here, as shown in FIG. 9, the control unit controls the incident area of the light beam so that two adjacent areas 4 a 1 and 4 a 2 on the pupil plane are displaced in the horizontal direction and also in the vertical direction (vertical direction). (Not shown).

【0033】つまり、本実施例においては光線LIの瞳
孔4a入射する領域が水平方向に3分割、鉛直方向に3
分割の計9つの領域に分割されているのに対して、光線
は決して水平方向、鉛直方向に連続した領域には入射し
ない。
That is, in this embodiment, the area of the light LI where the pupil 4a is incident is divided into three parts in the horizontal direction and three parts in the vertical direction.
While the light beam is divided into a total of nine regions, the light beam never enters a region that is continuous in the horizontal and vertical directions.

【0034】この工夫により単眼に呈示すべき視差画像
数は4つに抑えている。しかしながら、本実施例の平面
図および側面図は9つの視差画像を呈示した場合の平面
図3および側面図4と同様であるため、3次元像1の水
平方向の結像面PHと鉛直方向の結像面PVは一致し、
観察者の眼の調節は3次元像1に合わせやすい状態とな
る。
With this arrangement, the number of parallax images to be presented to a single eye is suppressed to four. However, since the plan view and the side view of the present embodiment are the same as the plan view 3 and the side view 4 in the case of presenting nine parallax images, the horizontal imaging plane PH of the three-dimensional image 1 and the vertical imaging plane PH are different. The imaging planes PV coincide,
The adjustment of the observer's eyes is in a state where it is easy to adjust to the three-dimensional image 1.

【0035】さらに、本発明の原理を適用して単眼に呈
示すべき視差画像数を3つに抑えた実施例を以下に示
す。図10は本実施例の眼4の正面図である。本実施例
では光線LIが眼の瞳孔4aに入射する位置を水平線に
対して45度傾け複数個ここでは3つ配置した。図23
では5つ配置した。この工夫により単眼4に呈示すべき
視差画像数は3つに抑えている。しかしながら、本実施
例においても平面図、側面図は9つの視差画像を呈示し
た場合の平面図3および側面図4と同様であるため、3
次元像1の水平方向の結像面PHと鉛直方向の結像面P
Vは一致し、観察者の眼の調節は3次元像1に合わせや
すい状態となる。
An embodiment in which the number of parallax images to be presented to a single eye is reduced to three by applying the principle of the present invention will be described below. FIG. 10 is a front view of the eye 4 of the present embodiment. In this embodiment, the position where the light beam LI enters the pupil 4a of the eye is inclined by 45 degrees with respect to the horizontal line, and a plurality of positions, here three, are arranged. FIG.
Then, five were arranged. With this ingenuity, the number of parallax images to be presented to the monocular 4 is reduced to three. However, also in this embodiment, the plan view and the side view are the same as the plan view 3 and the side view 4 when nine parallax images are presented.
The horizontal image plane PH and the vertical image plane P of the two-dimensional image 1
V coincides, and the adjustment of the observer's eyes is in a state of being easily adjusted to the three-dimensional image 1.

【0036】以上のように本実施形態では観察者の瞳孔
に入射する光線の中心を光線入射位置中心と定めると
き、少なくとも1つの光線入射位置中心の鉛直成分が他
の光線入射位置中心の鉛直成分と異なっているようにし
て、少ない情報量で良好なる立体視を行っている。
As described above, in this embodiment, when the center of the light beam entering the pupil of the observer is determined as the center of the light incident position, the vertical component of at least one light incident position center is the vertical component of the other light incident position center. Thus, good stereoscopic vision is performed with a small amount of information.

【0037】このほか眼に入射する光線位置の対称性を
考慮し、図11〜図13のように光線入射位置中心LI
aが三角状になる配置にすることもできる。図24に示
すように該光線同士の交点位置に観察者の眼の調節を合
焦せしめて立体視を行う立体画像表示装置において、該
複数領域は該瞳孔を水平方向と垂直方向に対して所定の
間隔をあけて又はあけないで各々3以上の領域に分けた
とき、水平方向と垂直方向に対して1つおきの領域にし
ても良い。
In addition, considering the symmetry of the position of the light ray entering the eye, as shown in FIGS.
a may be arranged in a triangular shape. As shown in FIG. 24, in a stereoscopic image display device that performs stereoscopic vision by focusing the adjustment of the observer's eye on the intersection point of the light beams, the plurality of regions define the pupil with respect to the horizontal direction and the vertical direction. When each is divided into three or more areas with or without an interval, every other area in the horizontal direction and the vertical direction may be set.

【0038】このように本実施形態では瞳孔4を複数領
域に分割するとき、該光線同士の交点位置に観察者の眼
の調節を合焦せしめて立体視を行う立体画像表示装置に
おいて、該複数領域は該瞳孔を水平方向と垂直方向に対
して所定の間隔をあけて又はあけないで各々3以上の領
域に分けたとき、水平方向と垂直方向に対して1つおき
の領域であるようにして、少ない情報量で良好なる立体
視を行っている。
As described above, in the present embodiment, when the pupil 4 is divided into a plurality of regions, in the stereoscopic image display device which performs stereoscopic vision by focusing the adjustment of the observer's eye at the intersection of the light beams. When the pupil is divided into three or more regions at predetermined intervals in the horizontal direction and the vertical direction, or at intervals, the regions are alternately arranged in the horizontal and vertical directions. Thus, good stereoscopic vision is performed with a small amount of information.

【0039】次に、上記のような光線の入射状態を実現
する制御手段について説明する。従来例において集束化
光源列(FLA)の焦点(Focal Point)は光学系(Objective l
ens,Imaging lens)により垂直拡散板(Vertical Diffuse
r)に再結像し、走査系(Vertical Scanner,Horizontal S
canner)により2次元的に高速走査されていた。本実施
例では上記垂直拡散板を除去し、FLAの並べ方を工夫
している。図14、図15にそれぞれ本実施例の平面
図、側面図を示す。垂直拡散板を除去した場合、垂直方
向の光線指向性が維持されるので、FLAの射出瞳の分
布がそのまま焦点を結んだ後の光線の指向性に反映され
る。例えば図16のようにFLAを縦横に組み合わせる
と、焦点を結んだ後の光線の射出瞳は図中の点線で示し
たようになり、これが観察者の瞳に入射する光線の位置
に反映される。したがって、観察者が任意の焦点を観察
すると図14に示したように観察者の瞳4に4〜5本の
光線が入射する。(図中点線は瞳位置での光線断面)。こ
れは前述の図9と同様の光線入射状態を実現している。
走査光学系が焦点を水平走査すれば瞳もまた走査される
ので、観察者は両眼で焦点を観察することができる。こ
のとき両眼視差だけでなく、単眼に対して入射する複数
の光線に単眼内視差情報を持たせれば、観察者は単眼視
差効果により立体像再生位置に眼の調節を合わせること
ができる。
Next, control means for realizing the above-described light beam incident state will be described. In the conventional example, the focal point of the focused light source array (FLA) is an optical system (Objective l).
ens, Imaging lens)
r), and the image is scanned by the scanning system (Vertical Scanner, Horizontal S
scan was performed two-dimensionally at high speed. In this embodiment, the vertical diffusion plate is removed, and the way of arranging the FLAs is devised. 14 and 15 show a plan view and a side view of the present embodiment, respectively. When the vertical diffuser is removed, the beam directivity in the vertical direction is maintained, so that the distribution of the exit pupil of the FLA is directly reflected on the beam directivity after focusing. For example, when FLAs are combined vertically and horizontally as shown in FIG. 16, the exit pupil of the light beam after focusing is as shown by a dotted line in the figure, and this is reflected on the position of the light beam entering the pupil of the observer. . Therefore, when the observer observes an arbitrary focus, four to five light rays enter the pupil 4 of the observer as shown in FIG. (The dotted line in the figure is the ray cross section at the pupil position). This realizes the same light incident state as in FIG. 9 described above.
If the scanning optical system scans the focal point horizontally, the pupil is also scanned, so that the observer can observe the focal point with both eyes. At this time, if not only binocular parallax but also a plurality of light rays incident on the monocular have monocular parallax information, the observer can adjust his eyes to the stereoscopic image reproduction position by the monocular parallax effect.

【0040】次に、前記の光線入射状態を実現する第二
の手段について説明する。本発明では「超多眼領域」の
立体表示を、液晶シャッターメガネを用いて実現してい
る。図17は本発明の立体画像表示装置システムの構成
ブロック図である。
Next, the second means for realizing the above-mentioned light incident state will be described. In the present invention, stereoscopic display of the “super multi-view area” is realized using liquid crystal shutter glasses. FIG. 17 is a configuration block diagram of the stereoscopic image display device system of the present invention.

【0041】図中100は画像分離手段としての立体観
察眼鏡、200は視差画像を高速に切り替え表示する表
示手段としてのモニタ、300は視差画像の切り替えや
立体観察眼鏡100のスリット開口を制御するコントロ
ーラ(制御手段)であり、映像ソースとのインターフェ
ース機能も備えている。コントローラ300はモニタの
駆動回路301、立体観察眼鏡100のスリットをする
眼鏡駆動回路302、モニタ200に表示する視差画像
情報と立体眼鏡のスリット形成の同期をとるための同期
回路303を有している。図18は本発明の立体観察眼
鏡の要部斜視図である。図中101L、101Rは観察
者が開口部を通して観察できる観察手段としての観察
枠、101L、102Rは観察枠101L、101Rの
中で光が遮断されている遮光部、A2L、A2Rは光が
透過可能な方形の開口であり、TSは開口A2L、A2
Rの幅を示している。開口は順次に高速にスキャンさ
れ、開口の位置に対応した視差画像が同期してモニタ2
00上に表示される。開口の幅TSが観察者の瞳孔より
も十分小さいとすれば、観察者の瞳孔よりも小さい視点
間隔の視差画像を呈示することになり、「単眼視差効
果」が発生する。つまり、本発明の構成で「超多眼領
域」の立体視が可能となる。
In the figure, 100 is stereoscopic observation glasses as image separation means, 200 is a monitor as display means for switching and displaying parallax images at high speed, and 300 is a controller for switching parallax images and controlling the slit opening of the stereoscopic observation glasses 100. (Control means), and also has an interface function with a video source. The controller 300 has a monitor driving circuit 301, a spectacle driving circuit 302 for slitting the stereoscopic observation glasses 100, and a synchronization circuit 303 for synchronizing parallax image information displayed on the monitor 200 and slit formation of the stereoscopic glasses. . FIG. 18 is a perspective view of a main part of the stereoscopic observation glasses of the present invention. In the figure, 101L and 101R are observation frames as observation means that an observer can observe through the opening, 101L and 102R are light-shielding portions where light is blocked in the observation frames 101L and 101R, and A2L and A2R are light-transmittable. TS are openings A2L, A2
The width of R is shown. The openings are sequentially scanned at a high speed, and the parallax images corresponding to the positions of the openings are synchronized with each other on the monitor 2.
Displayed above 00. If the width TS of the opening is sufficiently smaller than the pupil of the observer, a parallax image with a viewpoint interval smaller than the pupil of the observer will be presented, and the “monocular parallax effect” will occur. That is, the configuration of the present invention enables stereoscopic viewing of the “super multi-view area”.

【0042】本構成では鉛直方向の視差情報が存在する
ようにし、観察できる3次元像に非点収差が発生して観
察者の目に対して不自然な像を表示しないようにしてい
る。即ち、本実施形態の構成例は情報量の低減化と非点
収差のない再生像結像を同時に実現している。
In this configuration, the parallax information in the vertical direction is present, and astigmatism is generated in the observable three-dimensional image so that an unnatural image is not displayed to the observer's eyes. That is, the configuration example of the present embodiment simultaneously reduces the amount of information and forms a reproduced image without astigmatism.

【0043】図19、20は本実施形態による3次元像
再生の様子の説明図である。図19の方形開口A1〜A
8は図中の点線のように単眼あたり4つ、計8つ設けて
いる。(図中一点鎖線は観察者の目の配置を示してい
る)。これら8つの開口A1〜A8は、ある瞬間におい
ては必ず1つだけ光学的に透過状態で、その他の7つは
光学的に遮蔽状態となっている。これらの開口を制御す
るシャッター信号およびこれに同期してモニタ200上
に表示される視差画像信号のタイミングチャートを図2
0に示す。画像信号S1〜S8はそれぞれ 開口A1〜
A8位置から観察される視差画像信号を意味する。図1
9の例では開口A2が透過となっており、この時モニタ
上には視差画像S2が表示されている。開口A2が遮蔽
されると続いて開口A3が透過となり、モニタ上には視
差画像S3が表示される。他の開口の開閉に関しても同
様の所作が繰り返され、その結果観察者は非点収差のな
い単眼視差を含有した自然な立体像を観察することがで
きる。
FIGS. 19 and 20 are explanatory views of a state of three-dimensional image reproduction according to the present embodiment. Square openings A1 to A in FIG.
8 are provided for each monocular, as indicated by the dotted line in the figure, for a total of eight. (The dashed line in the figure indicates the arrangement of the observer's eyes). At any given moment, one of the eight openings A1 to A8 is always in an optically transmissive state, and the other seven are in an optically shielded state. FIG. 2 is a timing chart of a shutter signal for controlling these apertures and a parallax image signal displayed on the monitor 200 in synchronization with the shutter signal.
0 is shown. The image signals S1 to S8 have apertures A1 to
It means a parallax image signal observed from the position A8. Figure 1
In the example of No. 9, the aperture A2 is transparent, and at this time, the parallax image S2 is displayed on the monitor. When the opening A2 is blocked, the opening A3 subsequently becomes transparent, and the parallax image S3 is displayed on the monitor. The same operation is repeated for opening and closing the other apertures. As a result, the observer can observe a natural stereoscopic image containing monocular parallax without astigmatism.

【0044】[0044]

【発明の効果】本発明によれば単眼視差効果を利用し
て、立体画像を観察するとき情報量の増大を防止しつ
つ、観察者が疲労せずに良好に立体画像を観察すること
ができる立体画像表示装置を達成することができる。
According to the present invention, it is possible to observe a stereoscopic image favorably without fatigue by observing an increase in the amount of information when observing the stereoscopic image by utilizing the monocular parallax effect. A stereoscopic image display device can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 立体認識の原理の説明図FIG. 1 is an explanatory diagram of the principle of three-dimensional recognition.

【図2】 単眼視差効果の立体認識の説明図FIG. 2 is an explanatory diagram of stereoscopic recognition of a monocular parallax effect.

【図3】 本発明に係る単眼視差効果の説明図FIG. 3 is an explanatory diagram of a monocular parallax effect according to the present invention.

【図4】 本発明に係る単眼視差効果の説明図FIG. 4 is an explanatory diagram of a monocular parallax effect according to the present invention.

【図5】 単眼視差効果の立体認識の説明図FIG. 5 is an explanatory diagram of stereoscopic recognition of a monocular parallax effect.

【図6】 従来の単眼視差効果の説明図FIG. 6 is an explanatory diagram of a conventional monocular parallax effect.

【図7】 従来の単眼視差効果の説明図FIG. 7 is an explanatory diagram of a conventional monocular parallax effect.

【図8】 従来の単眼視差効果の説明図FIG. 8 is an explanatory view of a conventional monocular parallax effect.

【図9】 本発明に係る単眼視差効果を用いたときの眼
球の正面図
FIG. 9 is a front view of an eyeball when the monocular parallax effect according to the present invention is used.

【図10】 本発明に係る単眼視差効果を用いたときの
眼球の正面図
FIG. 10 is a front view of an eyeball when the monocular parallax effect according to the present invention is used.

【図11】 本発明に係る単眼視差効果を用いたときの
眼球の正面図
FIG. 11 is a front view of an eyeball when the monocular parallax effect according to the present invention is used.

【図12】 本発明に係る単眼視差効果を用いたときの
眼球の正面図
FIG. 12 is a front view of an eyeball when the monocular parallax effect according to the present invention is used.

【図13】 本発明に係る単眼視差効果を用いたときの
眼球の正面図
FIG. 13 is a front view of an eyeball when the monocular parallax effect according to the present invention is used.

【図14】 本発明に係る単眼視差効果を得る為の制御
手段の説明図
FIG. 14 is an explanatory diagram of control means for obtaining a monocular parallax effect according to the present invention.

【図15】 本発明に係る単眼視差効果を得る為の制御
手段の説明図
FIG. 15 is an explanatory diagram of a control unit for obtaining a monocular parallax effect according to the present invention.

【図16】 本発明に係る単眼視差効果を得る為の光源
手段の説明図
FIG. 16 is an explanatory diagram of light source means for obtaining a monocular parallax effect according to the present invention.

【図17】 本発明の実施形態の要部ブロック図FIG. 17 is a main block diagram of an embodiment of the present invention.

【図18】 本発明に係る超多眼領域を形成する装置の
説明図
FIG. 18 is an explanatory view of an apparatus for forming a super multi-view area according to the present invention.

【図19】 本発明に係る3次元像再生の説明図FIG. 19 is an explanatory diagram of three-dimensional image reproduction according to the present invention.

【図20】 本発明に係る3次元像再生の説明図FIG. 20 is an explanatory diagram of three-dimensional image reproduction according to the present invention.

【図21】 従来の立体画像表示装置の説明図FIG. 21 is an explanatory diagram of a conventional stereoscopic image display device.

【図22】 従来の立体画像表示装置の説明図FIG. 22 is an explanatory diagram of a conventional stereoscopic image display device.

【図23】 本発明に係る単眼視差効果を用いたときの
眼球の平面図
FIG. 23 is a plan view of an eyeball when the monocular parallax effect according to the present invention is used.

【図24】 本発明に係る単眼視差効果を用いたときの
眼球の平面図
FIG. 24 is a plan view of an eyeball when the monocular parallax effect according to the present invention is used.

【符号の説明】[Explanation of symbols]

1 立体物体上の一点 2 立体(物体) 3 画像表示面 4 瞳孔 5 単眼 PH,PV 結像面 1E 眼底 Reference Signs List 1 1 point on 3D object 2 3D (object) 3 Image display surface 4 Pupil 5 Monocular PH, PV imaging surface 1E Fundus

【手続補正書】[Procedure amendment]

【提出日】平成13年4月13日(2001.4.1
3)
[Submission Date] April 13, 2001 (2001.4.1
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】図5は瞳孔4に入射する光線LIの様子を
眼の正面から見た図である。点線は瞳孔面4aによる9
本の光線の断面を示している。(この場合光線の断面を
方形と仮定しているが、断面の形状はその他の形状でも
かまわない)この立体像表示方法の場合、3次元像1の
水平方向の結像面PHと鉛直方向の結像面PVが一致し
ているために、眼の調節はより3次元像1に合いやすく
なる。しかし、入射角の異なる9本の光線即ち9つの視
差画像情報 を単眼に対して呈示する必要があるため、
扱う情報量は通常の両眼視差方式の立体表示の9倍とな
ってしまう。つまり単眼に対して複数の視差画像を呈示
することは観察者の眼の調節を立体像近傍に導くことを
可能とするが、それと引き替えに情報量の増大という結
果を生む。
FIG. 5 is a diagram showing the state of the light beam LI entering the pupil 4 as viewed from the front of the eye. Dotted line is 9 due to pupil plane 4a
2 shows a cross section of a light beam of a book. (In this case, the cross section of the light beam is assumed to be a square, but the cross section may have any other shape.) In this stereoscopic image display method, the horizontal imaging plane PH of the three-dimensional image 1 and the vertical Since the imaging planes PV coincide with each other, the accommodation of the eye becomes easier to match the three-dimensional image 1. However, since it is necessary to present nine rays having different incident angles, that is, nine pieces of parallax image information to a single eye,
The amount of information to be handled is nine times that of the normal binocular parallax stereoscopic display. In other words, presenting a plurality of parallax images to a single eye can guide the adjustment of the observer's eyes to the vicinity of the stereoscopic image, but at the cost of increasing the amount of information.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0031】本実施例では上記2種類の方法の問題点
(情報量の増大と眼の調節が合いずらくなる)を同時に
解決する手段を採用している。図9は本発明を採用した
立体像表示方法の水晶体4の正面図である。本実施例に
おいて特徴的なのは、図中のように光線LIが眼の瞳孔
面4aの入射する位置を互い違いに配置した「千鳥配
置」とした点にある。
The present embodiment employs means for simultaneously solving the problems of the above two methods (increase in the amount of information and difficulty in adjusting the eyes). FIG. 9 is a front view of the crystalline lens 4 in the stereoscopic image display method employing the present invention. What is characteristic in this embodiment is that the positions where the light rays LI enter the pupil plane 4a of the eye are arranged in a staggered manner as shown in the figure.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0035】さらに、本発明の原理を適用して単眼に呈
示すべき視差画像数を3つに抑えた実施例を以下に示
す。図10は本実施例の水晶体4の正面図である。本実
施例では光線LIが眼の瞳孔4aに入射する位置を水平
線に対して45度傾け複数個ここでは3つ配置した。図
23では5つ配置した。この工夫により単眼5に呈示す
べき視差画像数は3つに抑えている。しかしながら、本
実施例においても平面図、側面図は9つの視差画像を呈
示した場合の平面図3および側面図4と同様であるた
め、3次元像1の水平方向の結像面PHと鉛直方向の結
像面PVは一致し、観察者の眼の調節は3次元像1に合
わせやすい状態となる。
An embodiment in which the number of parallax images to be presented to a single eye is reduced to three by applying the principle of the present invention will be described below. FIG. 10 is a front view of the crystalline lens 4 of the present embodiment. In this embodiment, the position where the light beam LI enters the pupil 4a of the eye is inclined by 45 degrees with respect to the horizontal line, and a plurality of positions, here three, are arranged. In FIG. 23, five are arranged. With this ingenuity, the number of parallax images to be presented to the monocular 5 is reduced to three. However, also in this embodiment, the plan view and the side view are the same as the plan view 3 and the side view 4 in the case where nine parallax images are presented, so that the horizontal imaging plane PH of the three-dimensional image 1 and the vertical direction Are in agreement, and the adjustment of the eyes of the observer is easily adjusted to the three-dimensional image 1.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】観察者の単眼の瞳孔の複数領域に対して、
視差画像情報を有した光線を入射させて立体視の観察を
行う立体画像表示装置において、該瞳孔面上の隣接する
2つの領域が、水平方向に変位するとともに鉛直方向に
も変位する領域に該光線の入射領域を制御する制御手段
を有することを特徴とする立体画像表示装置。
The present invention relates to a plurality of regions of a pupil of a single eye of an observer.
In a stereoscopic image display device that performs stereoscopic observation by irradiating light rays having parallax image information, two adjacent areas on the pupil plane are displaced in the horizontal direction and displaced in the vertical direction. A stereoscopic image display device comprising a control unit for controlling a light incident area.
【請求項2】観察者の単眼の瞳孔に対して画像情報を有
した複数の光線を入射させ、該光線同士の交点位置に観
察者の眼の調節を合焦せしめて立体視を行う立体画像表
示装置において、観察者の瞳孔に入射する光線の中心を
光線入射位置中心と定めるとき、少なくとも1つの光線
入射位置中心の鉛直成分が他の光線入射位置中心の鉛直
成分と異なっていることを特徴とする立体画像装置。
2. A stereoscopic image in which a plurality of light beams having image information are made incident on a monocular pupil of an observer, and adjustment of the observer's eye is focused on an intersection of the light beams to perform stereoscopic vision. In the display device, when the center of the light beam incident on the pupil of the observer is defined as the light incident position center, a vertical component of at least one light incident position center is different from a vertical component of another light incident position center. Stereoscopic image device.
【請求項3】前記観察者の単眼に対して入射する複数の
光線は、光線入射位置中心を含む光束の鉛直成分の数と
水平成分の数とが同数であることを特徴とする請求項2
の立体画像表示装置。
3. A light beam incident on a single eye of the observer, wherein the number of vertical components and the number of horizontal components of the light beam including the center of the light incident position are the same.
Stereoscopic image display device.
【請求項4】前記複数の光線は光線入射位置中心の水平
成分同士、鉛直成分同士がすべて異なっていることを特
徴とする請求項2の立体画像表示装置。
4. The three-dimensional image display device according to claim 2, wherein said plurality of light beams have different horizontal components and vertical components at the center of the light incident position.
【請求項5】観察者の瞳孔の複数領域の各領域に対して
異なった方向から光線を入射させ、該光線同士の交点位
置に観察者の眼の調節を合焦せしめて立体視を行う立体
画像表示装置において、該複数領域は該瞳孔を水平方向
と垂直方向に対して所定の間隔をあけて又はあけないで
各々3以上の領域に分けたとき、水平方向と垂直方向に
対して1つおきの領域であることを特徴とする立体画像
表示装置。
5. A stereoscopic system in which light beams are incident from different directions on each of a plurality of regions of a pupil of an observer, and the observer's eyes are focused on the intersections of the light beams to perform stereoscopic vision. In the image display device, when the pupil is divided into three or more regions with or without a predetermined interval in the horizontal direction and the vertical direction, the plurality of regions are one in the horizontal direction and the vertical direction. A three-dimensional image display device, characterized in that the region is every other region.
【請求項6】前記複数領域は前記瞳孔を水平方向と垂直
方向に同数の領域に分けたとき、水平方向と垂直方向に
対して1つおきの領域であることを特徴とする請求項5
の立体画像表示装置。
6. The apparatus according to claim 5, wherein, when the pupil is divided into the same number of areas in the horizontal and vertical directions, the plurality of areas are every other area in the horizontal and vertical directions.
Stereoscopic image display device.
【請求項7】前記複数領域は前記瞳孔を水平方向と垂直
方向に等しい面積で3以上の領域に分けたとき、水平方
向と垂直方向に対して1つおきの領域であることを特徴
とする請求項5の立体画像表示装置。
7. The method according to claim 1, wherein the pupil is divided into three or more regions having the same area in the horizontal direction and the vertical direction, and the plurality of regions are every other region in the horizontal direction and the vertical direction. The stereoscopic image display device according to claim 5.
【請求項8】観察者の瞳孔の複数領域の各領域に対して
異なった方向から光線を順次入射させ、該光線同士の交
点位置に観察者の眼の調節を合焦せしめて立体視を行う
立体画像表示装置において、観察者の瞳孔に入射する光
線の中心を光線入射位置中心とするとき、光線入射位置
中心を結ぶ線分は3角形状となっていることを特徴とす
る立体画像表示装置。
8. A light beam is sequentially incident on each of a plurality of regions of the pupil of the observer from different directions, and the adjustment of the observer's eye is focused on the intersection of the light beams to perform stereoscopic vision. In the stereoscopic image display device, when the center of the light beam incident on the pupil of the observer is set as the light incident position center, a line segment connecting the light incident position centers has a triangular shape. .
JP2001026945A 2001-02-02 2001-02-02 Stereoscopic image display device Pending JP2002228978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026945A JP2002228978A (en) 2001-02-02 2001-02-02 Stereoscopic image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026945A JP2002228978A (en) 2001-02-02 2001-02-02 Stereoscopic image display device

Publications (1)

Publication Number Publication Date
JP2002228978A true JP2002228978A (en) 2002-08-14

Family

ID=18891680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026945A Pending JP2002228978A (en) 2001-02-02 2001-02-02 Stereoscopic image display device

Country Status (1)

Country Link
JP (1) JP2002228978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235315A (en) * 2005-02-25 2006-09-07 Casio Comput Co Ltd Liquid crystal display device
US8400696B2 (en) 2004-01-06 2013-03-19 Hamamatsu Photonics K.K. Three-dimensional image display and three-dimensional image displaying method
WO2018075968A1 (en) 2016-10-21 2018-04-26 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
US11815688B2 (en) 2019-02-28 2023-11-14 Magic Leap, Inc. Display system and method for providing variable accommodation cues using multiple intra-pupil parallax views formed by light emitter arrays

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400696B2 (en) 2004-01-06 2013-03-19 Hamamatsu Photonics K.K. Three-dimensional image display and three-dimensional image displaying method
JP2006235315A (en) * 2005-02-25 2006-09-07 Casio Comput Co Ltd Liquid crystal display device
JP4617924B2 (en) * 2005-02-25 2011-01-26 カシオ計算機株式会社 Liquid crystal display device
WO2018075968A1 (en) 2016-10-21 2018-04-26 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
JP2020504319A (en) * 2016-10-21 2020-02-06 マジック リープ, インコーポレイテッドMagic Leap,Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil suggestive views
EP3529653A4 (en) * 2016-10-21 2020-07-01 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
JP7128179B2 (en) 2016-10-21 2022-08-30 マジック リープ, インコーポレイテッド Systems and methods for presenting image content on multiple depth planes by providing multiple intra-pupillary suggestive views
US11614628B2 (en) 2016-10-21 2023-03-28 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
US11835724B2 (en) 2016-10-21 2023-12-05 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
US11815688B2 (en) 2019-02-28 2023-11-14 Magic Leap, Inc. Display system and method for providing variable accommodation cues using multiple intra-pupil parallax views formed by light emitter arrays

Similar Documents

Publication Publication Date Title
JP3492251B2 (en) Image input device and image display device
US8836769B2 (en) 3D model display apparatus with array modulator
US8547422B2 (en) Multi-user autostereoscopic display
JPH09105885A (en) Head mount type stereoscopic image display device
US11606472B2 (en) Projection device and spatial imaging method
JP3368204B2 (en) Image recording device and image reproducing device
JP2013068886A6 (en) Video display device
CN110035274A (en) 3 D displaying method based on grating
JP2010224129A (en) Stereoscopic image display device
Honda et al. Three-dimensional display technologies satisfying" super multiview condition"
JP4871540B2 (en) 3D image display device
US20210314553A1 (en) Three-dimensional display method based on spatial superposition of sub-pixels' emitted beams
JP2001215441A (en) Image observation device
JP3403048B2 (en) Three-dimensional image reproducing device and three-dimensional subject information input device
JPH08334730A (en) Stereoscopic picture reproducing device
JP2002228978A (en) Stereoscopic image display device
JP2003307709A (en) Three-dimensional display device and three-dimensional display system
US20060158731A1 (en) FOCUS fixation
JP2001264691A (en) Stereoscopic image display device and method
KR101638412B1 (en) A three-dimensional image display apparatus using projection optical system of laser beam scanning type
US10931937B2 (en) Display apparatus and a method thereof
JP2001197522A (en) Image display device
JP2021064834A (en) Stereoscopic image display system
JP2002156599A (en) Image observation apparatus and image observation system using the same
JP3782773B2 (en) Stereoscopic image display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081120