JP2002226901A - Stainless-steel short fiber, and sintered porous body using it - Google Patents

Stainless-steel short fiber, and sintered porous body using it

Info

Publication number
JP2002226901A
JP2002226901A JP2001024005A JP2001024005A JP2002226901A JP 2002226901 A JP2002226901 A JP 2002226901A JP 2001024005 A JP2001024005 A JP 2001024005A JP 2001024005 A JP2001024005 A JP 2001024005A JP 2002226901 A JP2002226901 A JP 2002226901A
Authority
JP
Japan
Prior art keywords
fiber
stainless steel
aspect ratio
short fiber
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001024005A
Other languages
Japanese (ja)
Other versions
JP3559529B2 (en
Inventor
Hideomi Ishibe
英臣 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2001024005A priority Critical patent/JP3559529B2/en
Publication of JP2002226901A publication Critical patent/JP2002226901A/en
Application granted granted Critical
Publication of JP3559529B2 publication Critical patent/JP3559529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Filtering Materials (AREA)
  • Metal Extraction Processes (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stainless-steel short fiber in which the unevenness of an aspect ratio can be suppressed and to provide a sintered porous body in which the pore characteristics can be stabilized by using the short fibers. SOLUTION: The stainless-steel short fiber has a columnar shape free from round edge due to cutting at its ends, and fiber diameter (d) is made to <=10 μm and the average value of the aspect ratio between the diameter (d) and the length (L), L/d, is made to 2-20. The aspect ratio can be reduced by regulating the amount of N in the short fiber to 0.02-0.50 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アスペクト比のば
らつきを抑制しうるステンレス鋼短繊維,及びその短繊
維を用いることにより空孔特性を安定化しうる焼結多孔
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel short fiber capable of suppressing variation in aspect ratio, and a sintered porous body capable of stabilizing pore characteristics by using the short fiber.

【0002】[0002]

【従来の技術】ステンレス鋼短繊維は、例えばステンレ
ス鋼繊維を所定長さに切断することで得られ、その中で
も特にその径dに対する長さLの比(アスペクト比L/
d)を調整された範囲にした短繊維では、これを充填し
所定形状に成した場合に各短繊維をランダム方向に配向
させることができ、その内部には立体的な微細空孔が分
布形成された焼結多孔体にすることができる。かかる多
孔体は、高い空孔精度、空孔率を具えるとともに、その
内部には立体的な複雑流路が形成できることから、微細
空孔でありながらも圧力損失を低く抑えることが可能と
なる。したがってこのような多孔体を各種流体の濾過材
料、エアー緩衝用部材として用いた場合、低圧損、かつ
目詰まりなどを抑え長寿命のものとすることができる。
2. Description of the Related Art Stainless steel short fibers are obtained, for example, by cutting stainless steel fibers into a predetermined length. Among them, the ratio of length L to diameter d (aspect ratio L /
In the short fibers having the adjusted range of d), when the short fibers are filled and formed into a predetermined shape, each short fiber can be oriented in a random direction, and three-dimensional fine pores are formed and formed therein. A sintered porous body can be obtained. Such a porous body has high porosity accuracy and porosity, and a three-dimensional complicated flow path can be formed in the inside thereof, so that pressure loss can be suppressed even though it is a fine porosity. . Therefore, when such a porous body is used as a filtering material for various fluids or an air buffering member, low pressure loss, clogging and the like can be suppressed, and a long life can be achieved.

【0003】本出願人は、このような短繊維について特
公昭63−63645号公報によって、繊維径2〜20
μmのステンレス鋼の繊維材料(所謂トウ)を出発材料
として、この繊維材料に結晶粒調整化熱処理と粒界腐食
処理とを施すことによって所定長さのステンレス鋼短繊
維をうることを提案している。この提案のものでは,端
部に切断ダレがなく、かつアスペクト比も2〜50程度
の柱状の短繊維を生産しうる。
The applicant of the present invention has reported that such short fibers have a fiber diameter of 2 to 20 according to Japanese Patent Publication No. 63-63645.
It has been proposed that a stainless steel short fiber of a predetermined length be obtained by subjecting a fiber material of stainless steel having a diameter of μm (so-called tow) as a starting material to a heat treatment for grain conditioning and a grain boundary corrosion treatment. I have. With this proposal, it is possible to produce columnar short fibers having no cutting sagging at the ends and having an aspect ratio of about 2 to 50.

【0004】また前記提案のステンレス鋼短繊維を用い
てなる焼結多孔体について、本出願人は特公平3−33
370号公報によって、前記焼結多孔体により形成され
る濾過材を提案しているが、この濾過材は、空隙率が5
0%以上になし得る。
The applicant of the present invention has proposed a sintered porous body using the above-mentioned proposed stainless steel short fiber, as disclosed in Japanese Patent Publication No. 3-33.
Japanese Patent Publication No. 370 proposes a filter material formed of the sintered porous body. The filter material has a porosity of 5%.
It can be 0% or more.

【0005】[0005]

【発明が解決しようとする課題】ところで、前者公報に
よるステンレス鋼短繊維は、前記長尺の金属フィラメン
トの結晶を各粒界で分断することにより得られるもので
あり、前記結晶粒の調整化熱処理の条件制御によって結
晶の大きさを調整することで種々アスペクト比の短繊維
をうることができるとしている。しかしながら、金属フ
ィラメントが細径となるときは、その結晶粒の大きさに
基づく長さが大となるため、細径となるほどアスペクト
比が大きく、またそれにつれてばらつきも大きくなりや
すいという傾向があることが判明した。
Incidentally, the stainless steel short fiber according to the former publication is obtained by dividing the crystal of the long metal filament at each grain boundary. By adjusting the size of the crystals by controlling the conditions described above, short fibers having various aspect ratios can be obtained. However, when the diameter of the metal filament is small, the length based on the size of the crystal grains is large. Therefore, the aspect ratio is large as the diameter is small, and the variation tends to be large accordingly. There was found.

【0006】その理由としては、特に微細径のステンレ
ス鋼短繊維では、太径繊維に比べて熱の吸収が早く結晶
粒の成長も急激なものとなることから、わずかな処理条
件の違いでも得られる短繊維のアスペクト比には大きく
影響することによると推察される。
[0006] The reason for this is that, particularly in the case of fine stainless steel short fibers, heat absorption is faster and crystal grains grow more rapidly than in the case of large diameter fibers. It is presumed that it greatly affects the aspect ratio of the short fibers to be obtained.

【0007】ちなみに、前者提案のものも、その実施例
である繊維径12〜4μmの場合において、例えば12
μmのときにはアスペクト比が3程度、繊維径8μmで
は7程度、さらに4μmの微細繊維では同比9.5とア
スペクト比が徐々に大となることが記載されている。さ
らに、そのばらつきも約4倍程度に増大したものとなっ
ている。
By the way, the former proposal also has a fiber diameter of 12 to 4 μm, which
It is described that the aspect ratio is about 3 at the time of μm, about 7 at the fiber diameter of 8 μm, and the aspect ratio gradually increases to 9.5 at the fiber diameter of 4 μm. Further, the variation has increased about four times.

【0008】他方、近年の、例えば半導体製造ガス用で
求められる、0.05μm以下の超微粒子を99.99
99999%以上という高精度で効率よく除去する濾過
材をうるには、理論上、例えば繊維径2μm以下と極め
て細くすることが必要と推察されるが、このようなステ
ンレス鋼短繊維では、前述の点より、アスペクト比がさ
らに増大し、かつばらつきも増すことが想定され、前記
特性の濾過材をうるには細径化とともにアスペクト比、
そのばらつきを抑制することが求められる。
On the other hand, in recent years, ultrafine particles of 0.05 μm or less, which are required for, for example, semiconductor manufacturing gas, are used in 99.99.
In order to obtain a filter material that can be efficiently removed with a high accuracy of 99999% or more, it is theoretically considered that it is necessary to make the fiber extremely thin, for example, a fiber diameter of 2 μm or less. From the point of view, it is assumed that the aspect ratio further increases, and that the variation also increases.
It is required to suppress the variation.

【0009】すなわち、アスペクト比の大きいステンレ
ス鋼短繊維を焼結成形した焼結多孔体では、その内部で
各短繊維は比較的平面的にしか分布させることができ
ず、それに伴って内部空孔も平面的となって重なり合い
空孔率も低いものとなる。この為かかる濾過材は、圧損
が大きく寿命的にも満足なものとはなりえず、ゆえに、
前記用途に採用しうる濾過材としてふさわしいものとは
言い難い。
That is, in a sintered porous body formed by sintering stainless steel short fibers having a large aspect ratio, the short fibers can be distributed only relatively flat inside the porous body, and the internal pores are accordingly increased. Are also planar and overlap, resulting in a low porosity. For this reason, such a filter medium has a large pressure loss and cannot be satisfactory in terms of service life.
It is hard to say that it is suitable as a filtering material that can be used in the above-mentioned applications.

【0010】本発明は、ステンレス鋼短繊維のアスペク
ト比は、その繊維材料の結晶粒度と深い関係にあること
を知得し、その制御手段として繊維材料中の微細化元素
を調整することが有効であることを見出し完成したもの
であって、特に10μm以下と細径の短繊維でありなが
らも希望のアスペクト比のばらつきに抑制しうるステン
レス鋼短繊維,及びその短繊維を用いることにより空孔
特性の安定化を果たしうる焼結多孔体の提供を目的とし
ている。
According to the present invention, it is known that the aspect ratio of the stainless steel short fiber has a deep relationship with the crystal grain size of the fiber material, and it is effective to adjust the fine element in the fiber material as a control means. The stainless steel short fiber, which is a short fiber having a diameter as small as 10 μm or less and can be suppressed to a desired variation in the aspect ratio, and the use of the short fiber to form pores The purpose of the present invention is to provide a sintered porous body capable of stabilizing characteristics.

【0011】[0011]

【課題を解決するための手段】本願請求項1の発明は、
端部に切断ダレを有しない柱状、かつ繊維径(d)を1
0μm以下、しかもその径(d)と長さ(L)とのアス
ペクト比(L/d)の平均値が2〜20であるステンレ
ス鋼短繊維であって、該短繊維中におけるN量を0.0
2〜0.50wt%の範囲に調整することにより、前記
平均アスペクト比を前記所定範囲に抑制したことを特徴
としている。
Means for Solving the Problems The invention of claim 1 of the present application is
Column shape without cutting sagging at the end, and fiber diameter (d) of 1
A stainless steel short fiber having an average value of an aspect ratio (L / d) of a diameter (d) and a length (L) of 2 to 20 μm or less, wherein the N content in the short fiber is 0; .0
The average aspect ratio is suppressed to the predetermined range by adjusting the average aspect ratio to a range of 2 to 0.50 wt%.

【0012】請求項2の発明は、端部に切断ダレを有し
ない柱状の形態を持ち、かつ繊維径(d)を10μm以
下、しかもその径(d)と長さ(L)とのアスペクト比
(L/d)の平均値が2〜20であるステンレス鋼短繊
維であって、該短繊維中のTi,Nb,Zr,Bまたは
Vから選択される元素の少なくとも1種の量を0.00
5〜0.30wt%の範囲に調整することにより前記平
均アスペクト比を前記所定範囲に抑制したことを特徴と
する。
According to a second aspect of the present invention, the fiber has a columnar shape with no cutting sag at the end, and has a fiber diameter (d) of 10 μm or less, and an aspect ratio between the diameter (d) and the length (L). A stainless steel short fiber having an average value of (L / d) of 2 to 20, wherein the amount of at least one element selected from Ti, Nb, Zr, B or V in the short fiber is 0.1%. 00
The average aspect ratio is suppressed to the predetermined range by adjusting the average aspect ratio to a range of 5 to 0.30 wt%.

【0013】請求項3記載の発明は、前記短繊維の繊維
径(d)が、0.1〜5μmであることを特徴とし、か
つ請求項4記載の発明は、前記平均アスペクト比が5〜
12、かつそのばらつき(S)の変動係数が25%以下
であることを特徴としている。
The invention according to claim 3 is characterized in that the short fiber has a fiber diameter (d) of 0.1 to 5 μm, and the invention according to claim 4 is characterized in that the average aspect ratio is 5 to 5 μm.
12, and the variation coefficient of the variation (S) is 25% or less.

【0014】また請求項5の発明は、前記ステンレス鋼
短繊維が、オーステナイト系ステンレス鋼からなり、か
つ請求項6の発明は、このようなステンレス鋼短繊維を
ランダム方向に配向した多孔質構造体に加圧し焼結によ
って一体化した焼結多孔体であることを特徴としてい
る。
According to a fifth aspect of the present invention, there is provided a porous structure in which the stainless steel short fibers are made of austenitic stainless steel, and the stainless steel short fibers are randomly oriented. It is characterized by being a sintered porous body integrated by pressing and sintering.

【0015】[0015]

【発明の実施の形態】本発明のステンレス鋼短繊維1
は、図1に略示するように、端部aに切断ダレを有しな
い柱状形態をなし、特に繊維径(d)を10μm以下と
細くしたものでありながらも、その径(d)と長さ
(L)との比であるアスペクト比(L/d)の平均値を
2〜20とするものであって、請求項1の発明では、ス
テンレス鋼短繊維中におけるN量を0.02〜0.50
wt%の範囲に、請求項2の発明ではステンレス鋼短繊
維中のTi,Nb,Zr,BまたはVから選択される元
素の少なくとも1種の量を0.005〜0.30wt%
の範囲に調整することとし、それによって前記アスペク
ト比の調整を図ることとしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Stainless steel short fiber 1 of the present invention
As shown schematically in FIG. 1, the fiber has a columnar shape having no cut sag at the end a. In particular, although the fiber diameter (d) is as thin as 10 μm or less, the diameter (d) and the length are small. The average value of the aspect ratio (L / d), which is the ratio to the length (L), is 2 to 20. In the invention of claim 1, the N content in the stainless steel short fiber is 0.02 to 2.0. 0.50
The amount of at least one element selected from the group consisting of Ti, Nb, Zr, B and V in the stainless steel short fiber is 0.005 to 0.30 wt% in the range of wt%.
And the aspect ratio is adjusted accordingly.

【0016】ステンレス鋼短繊維1として、Ni系、C
r系など種々ステンレス鋼を使用しうるが、特にオース
テナイト系ステンレス鋼は熱処理での再結晶によって横
断角単一の結晶粒で形成することができ、容易に短繊維
化できるとともに、耐食性や機械的特性、耐熱特性に優
れ、濾過材などとして好適に利用しうるものであり、S
US304系,SUS316系などとともに、SUS2
01,SUS205,SUS302,SUS305、S
US310,SUS317などを用い得る。
As the stainless steel short fiber 1, Ni-based, C
Various stainless steels such as r-based stainless steel can be used. Particularly, austenitic stainless steel can be formed by single crystal grains having a single transverse angle by recrystallization in heat treatment, and can be easily made into a short fiber, and has corrosion resistance and mechanical properties. It has excellent properties and heat resistance, and can be suitably used as a filtering material.
SUS2 along with US304, SUS316, etc.
01, SUS205, SUS302, SUS305, S
US310, SUS317, etc. can be used.

【0017】またステンレス鋼短繊維1は、「端部に切
断ダレを形成しない柱状」とする。これにより、所定金
型内に充填する際に各短繊維同士の絡み合いを防いで自
由方向に配向させることができ、それによって微細空孔
で高い空孔率、幅の狭い孔径分布の多孔体にすることが
でき、かつ濾過性能を高め得る。又このように「端部に
切断ダレを形成しない柱状」を有する短繊維を得るに
は、例えば前記した提案、即ち特公昭63−63645
号公報が記載する熱処理による結晶粒界の長さを調整、
粒界腐食の工程を含む製造方法により生産できる。
The stainless steel short fiber 1 has a "column shape in which no cut sag is formed at the end". Thereby, when filling in a predetermined mold, it is possible to prevent entanglement of each short fiber and to orientate in a free direction, thereby forming a porous body having high porosity with fine pores and a narrow pore diameter distribution. And can enhance filtration performance. In order to obtain short fibers having "columnar shape in which no cut sag is formed at the end", for example, the above-mentioned proposal, that is, JP-B-63-63645, is used.
The length of the grain boundary by heat treatment described in
It can be produced by a production method including a step of intergranular corrosion.

【0018】本発明において繊維径(d)を10μm以
下とする理由は、それを越えるような太い短繊維につい
ては、前記従来技術での条件調整などの方法で好ましい
アスペクト比とばらつきを有するものにできることか
ら、本発明ではその上限を10μmとしており、好まし
くは5μm以下、さらに好ましくは2μm未満の細さの
ものを対象とする。また、その下限については特に限定
するものではないが、近年の集束伸線法によるステンレ
ス鋼繊維の製造技術によれば、例えば0.3μm程度の
細い繊維材料まで達成されており、そのような細いもの
であっても十分に適用可能である。
In the present invention, the reason why the fiber diameter (d) is set to 10 μm or less is that, for a thick short fiber exceeding the diameter, a fiber having a preferable aspect ratio and variation by a method such as condition adjustment in the prior art. For this reason, the present invention sets the upper limit to 10 μm, preferably 5 μm or less, more preferably less than 2 μm. The lower limit is not particularly limited. However, according to the recent technology for producing stainless steel fibers by the convergence drawing method, a fine fiber material of, for example, about 0.3 μm has been achieved. Even those that are fully applicable.

【0019】ところでこの繊維径について、短繊維が例
えば断面真円な円柱状のものの場合はその直径をもって
示すことができるが、前記集束伸線法などによる繊維材
料では微視的には断面真円ではなく、周面に微小凹凸を
持った不規則断面を有するものであることから、その測
定においてしばしば困難を伴う。しかしながら、本発明
が対象とするような微細繊維では、その凹凸程度は極め
て小さく実質的に無視できるものであり、またその測定
時においても、その一点のみを取り出して断面形状や平
均繊維径を求めることは容易ではない。さらに、この短
繊維は、通常の場合その一群として用いられるものであ
る。
In the meantime, the fiber diameter can be indicated by the diameter when the short fiber is, for example, a columnar shape having a perfect circular cross section. Rather, it has an irregular cross-section with fine irregularities on the peripheral surface, and therefore, its measurement often involves difficulties. However, in the case of fine fibers as the object of the present invention, the degree of irregularities is extremely small and can be substantially ignored, and even at the time of the measurement, only one point is taken out and the cross-sectional shape and the average fiber diameter are determined. It is not easy. Further, the short fibers are usually used as a group thereof.

【0020】こうしたことから、このような不定形断面
の短繊維の場合の繊維径については、各短繊維毎の個別
測定値ではなく、単一ロット内における複数の短繊維の
一群を平均化した平均繊維径を用いることができるもの
とし、例えば投影器測定面上にランダムに置かれた数点
の短繊維について実測した透過直径の平均値で示すこと
とする。このような平均法を用いても各短繊維が持って
いる最大径と最小径との差を相殺し平均化することがで
きる。
From the above, with respect to the fiber diameter in the case of such a short fiber having an irregular cross section, a group of a plurality of short fibers in a single lot was averaged, not an individual measurement value for each short fiber. The average fiber diameter can be used. For example, the average diameter of the transmission diameter measured for several short fibers randomly placed on the measurement surface of the projector is shown. Even by using such an averaging method, the difference between the maximum diameter and the minimum diameter of each short fiber can be canceled out and averaged.

【0021】またそのアスペクト比についても、全ての
短繊維が同一アスペクト比を有するように製造すること
は理想ではあるが、目視困難な大きさでもあり、ある程
度のばらつきが存在するものである。したがって、その
場合のアスペクト比についても、前記繊維径の場合と同
様に一群の平均値でもって代用することとし、その算出
方法は、各短繊維(例えば100点程度)についての実
測繊維長さ(L)を前記平均繊維径(d)で除したもの
をその短繊維のアスペクト比とし、本発明ではその平均
値を2〜20とするものである。
In terms of the aspect ratio, it is ideal that all the short fibers are manufactured so as to have the same aspect ratio. Therefore, as for the aspect ratio in that case, the average value of a group is used as a substitute for the fiber diameter as in the case of the fiber diameter, and the calculation method is based on the measured fiber length (for example, about 100 points) for each short fiber (for example, about 100 points). The value obtained by dividing L) by the average fiber diameter (d) is defined as the aspect ratio of the short fiber, and the average value is 2 to 20 in the present invention.

【0022】そして、その範囲を2〜20とする理由
は、その値が20を越える程大きい短繊維では、多孔体
とした場合に孔径分布の幅が大きくなるとともに押圧圧
力によって短繊維分布が平面的になりやすいことから高
精度濾材とはなりにくい。一方、その値が2を下回るも
のでは、その形状は一般的な粉末に近いものであること
から空孔率を高めることができないことによるものであ
って、好ましくは2〜15、さらに好ましくは5〜12
程度とする。
The reason for setting the range to 2 to 20 is that if the value of the short fiber is larger than 20, the width of the pore diameter distribution becomes large when the porous body is made into a porous body, and the short fiber distribution becomes flat due to the pressing pressure. It is difficult to become a high-precision filter medium because it is easy to become a target. On the other hand, when the value is less than 2, the porosity cannot be increased because the shape is close to a general powder, and preferably 2 to 15, more preferably 5 to 5. ~ 12
Degree.

【0023】またアスペクト比については前記したよう
に、一群の短繊維の中にはある程度のばらつきは許容で
きるものであり、その程度についても、用いる成形体と
しての用途や求められる特性、成形方法などによって種
々異なる。例えば、通常の濾過特性を得ようとする用途
では、ばらつきの変動係数(CV)として30%以下程
度にするのがよく、また、例えば前記半導体用ガスを濾
過処理するような精密さが求められる用途では、例えば
繊維径2μm未満で平均アスペクト比5〜12とし、さ
らにそのばらつきの変動係数を25%以下にするのがよ
い。
As described above, as for the aspect ratio, a certain degree of variation can be tolerated in a group of short fibers. It differs in various ways. For example, in applications in which ordinary filtration characteristics are to be obtained, the coefficient of variation (CV) of variation is preferably set to about 30% or less, and precision is required to filter the semiconductor gas, for example. For applications, for example, it is preferable that the average aspect ratio is 5 to 12 when the fiber diameter is less than 2 μm, and the variation coefficient of the variation is 25% or less.

【0024】なお、前記変動係数(CV)については、
次式による標準偏差(S)を試料数で除した係数でもっ
て求めることができる。 標準偏差(S)=√{(A1−A)2 +(A2−A)2 + … +(An−A)2 }/n 変動係数(CV)=S/n×100(%) ここで、A1,A2,Anは各短繊維毎のアスペクト比
の測定値であり、Aはその平均値、またnは測定試料数
であって、その大きさは例えば数十〜100点程度とす
る。
The coefficient of variation (CV) is
It can be obtained by a coefficient obtained by dividing the standard deviation (S) by the following equation by the number of samples. Standard deviation (S) = √ {(A1 -A) 2 + (A2-A) 2 + ... + (An-A) 2} / n coefficient of variation (CV) = S / n × 100 (%) where, A1, A2, and An are measured values of the aspect ratio of each short fiber, A is the average value, and n is the number of measurement samples, and the size is, for example, about several tens to 100 points.

【0025】本発明ではステンレス鋼短繊維1におけ
る、アスペクト比、及びそのばらつきを観測するため
に、請求項1の発明ではN量を、また請求項2記載の発
明では、Ti,Nb,Zr,BまたはVから選択される
元素の少なくとも1種の量を前記所定範囲になるように
調整することとしている。
In the present invention, in order to observe the aspect ratio and the variation thereof in the stainless steel short fiber 1, the amount of N in the invention of claim 1 and the amount of Ti, Nb, Zr, The amount of at least one element selected from B or V is adjusted so as to be within the above-mentioned predetermined range.

【0026】このような元素は、ステンレス鋼において
その結晶粒を微細にして、粒界腐食により切断される短
繊維としての長さを減じ、アスペクト比の比較的小さい
ステンレス鋼短繊維1をうることができるが、特にN
は、容易に結晶格子内に侵入でき、生地強化を図って結
晶粒をより微細にできるため、好適に利用できる。な
お、Ti,Nb,Zr,BまたはVも結晶の微細化につ
いてNと同様の働きを有する。
Such an element makes the crystal grains fine in stainless steel, reduces the length as short fibers cut by intergranular corrosion, and obtains stainless steel short fibers 1 having a relatively small aspect ratio. But especially N
Can be easily used because it can easily penetrate into the crystal lattice and strengthen the dough to make the crystal grains finer. It should be noted that Ti, Nb, Zr, B or V also has a function similar to that of N for making the crystal fine.

【0027】従って、このような微細元素を所定の比率
範囲で調整することにより、微細径の繊維であっても、
ステンレス鋼短繊維の長さ(L)を低減し、その結果、
アスペクト比(L/d)を小とするとともに、そのばら
つきを抑制しうる。
Therefore, by adjusting such a fine element in a predetermined ratio range, even if the fiber has a fine diameter,
The length (L) of stainless steel short fiber is reduced, and as a result,
The aspect ratio (L / d) can be reduced, and the variation can be suppressed.

【0028】このような作用を発揮させる為には、前記
Nでは少なくとも0.02%以上にする必要があり、一
方、通常組成のステンレス鋼で含有できる量は、多くと
も0.5%に留まり、それを越えると伸線加工性や繊維
製造段階における生産性を損なうなど新たな問題を生じ
させるため、N量を0.02〜0.50wt%の範囲、
より好ましくは0.05〜0.25wt%とするのがよ
い。なお熱処理炉を窒素、アルゴンの混合雰囲気とする
ときなどのように製造の過程で、Nが浸入して増加する
場合があり、かかる場合には、増加するN量を見込んで
前記値を設定するのがよい。
In order to exert such an effect, the content of N needs to be at least 0.02% or more. On the other hand, the amount that can be contained in stainless steel having a normal composition is at most 0.5%. Beyond that, N causes a new problem such as impairing the wire drawing processability and the productivity in the fiber production stage, so that the N content is in the range of 0.02 to 0.50 wt%.
More preferably, the content is 0.05 to 0.25 wt%. Note that N may infiltrate and increase during the manufacturing process, such as when the heat treatment furnace is set to a mixed atmosphere of nitrogen and argon. In such a case, the above value is set in consideration of the increasing amount of N. Is good.

【0029】例えば繊維径の0.5μm程度の短繊維の
平均アスペクト比を2〜8程度とする場合には、N量は
0.1〜0.3wt%とやや多くし、一方、アスペクト
比が8〜15程度の短繊維をうるには、例えば0.08
wt%以下程度とその量を減じるのがよい。しかしなが
ら、熱処理条件によっても結晶粒径は変化するため、前
記値は目安であって、本発明の範囲を限定するものでは
ない。
For example, when the average aspect ratio of a short fiber having a fiber diameter of about 0.5 μm is about 2 to 8, the N content is slightly increased to 0.1 to 0.3 wt%, while the aspect ratio is increased. To obtain about 8 to 15 short fibers, for example, 0.08
It is preferable to reduce the amount to about wt% or less. However, since the crystal grain size changes depending on the heat treatment conditions, the above values are only guidelines and do not limit the scope of the present invention.

【0030】また、Ti,Nb,Zr,B又はVについ
ても、基本的にはNの場合と同様と考え得るが、特にT
iやNbなどの元素は耐粒界腐食性を高める作用もある
ことから、粒界腐食方法によってステンレス鋼短繊維1
を得る場合には、粒界の切断性を損ない、その作業性を
低下させる可能性もあり、また他のZr、B、Vについ
ても多量添加させることは困難で生産並びにその特定を
させることからNの場合よりもやや少の0.005〜
0.30wt%、好ましくは0.02〜0.20wt%
の範囲としている。
Also, Ti, Nb, Zr, B or V can be basically considered the same as in the case of N.
Since elements such as i and Nb also have an effect of increasing intergranular corrosion resistance, stainless steel short fibers 1
In the case where is obtained, there is a possibility that the cutting properties of the grain boundaries may be impaired and the workability thereof may be reduced, and it is difficult to add a large amount of other Zr, B, and V, so that production and specification thereof are performed. Slightly less than 0.005
0.30 wt%, preferably 0.02 to 0.20 wt%
Of the range.

【0031】なおTi,Nbなどを用いる場合におい
て、粒界腐食をより促進させかつ効率的に短繊維化する
には、例えばその金属繊維材料としてSUS304やS
US302,SUS316,SUS201などの高C材
(0.05wt%以上)を用いることにより粒界におい
てCr−Cを析出させて分断を容易とすることもでき
る。
In the case of using Ti, Nb or the like, in order to promote intergranular corrosion more efficiently and to shorten the fiber efficiently, for example, SUS304 or S
By using a high C material (0.05 wt% or more) such as US302, SUS316, or SUS201, Cr—C can be precipitated at the grain boundary to facilitate the division.

【0032】また本発明では前記Ti,Nb,Zr,B
またはVから選択される元素の少なくとも1種の量を
0.005〜0.30wt%の範囲に調整するが、Nを
含めて前記Ti,Nb,Zr,BまたはVの複数のもの
を夫々前記各範囲として併用することもできる。
In the present invention, Ti, Nb, Zr, B
Alternatively, the amount of at least one element selected from V is adjusted to a range of 0.005 to 0.30 wt%, and a plurality of Ti, Nb, Zr, B or V including N are respectively added to the above. Each range can be used together.

【0033】一方、ステンレス鋼短繊維1を生産するた
めのフィラメント、即ち金属繊維材料には、例えば集束
複合線を伸線加工する方法(例えば特開昭47−263
67号公報)によるものが好ましく利用でき、目標径に
伸線加工して、最後に外装材のみを除去することにより
生産しうる。この方法において、伸線加工と熱処理とを
適宜調整しながら繰り返し行うことによって、例えば
0.1μm程度のステンレス鋼繊維のトウとすることも
できる。
On the other hand, the filament for producing the stainless steel short fiber 1, that is, the metal fiber material is, for example, a method of drawing a bundled composite wire (for example, JP-A-47-263).
No. 67) can be preferably used, and can be produced by drawing a wire to a target diameter and finally removing only the exterior material. In this method, for example, a tow of stainless steel fiber of about 0.1 μm can be obtained by repeatedly performing the wire drawing and the heat treatment while appropriately adjusting.

【0034】このような集束伸線法により得られた金属
繊維材料は、その加工方法に由来して非平滑、しかも断
面不規則形状の外表面bを備えるとともに、かかる金属
繊維材料を粒界腐食によって短繊維化するときには、各
短繊維の端部aには切断ダレなどを持たない柱状を有す
るものとすることができ、しかも前記のように、N、T
i,Nb,Zr,B又はV量の調整や、熱処理条件、伸
線条件などの設定により当業者は容易に所望のアスペク
ト比を持つステンレス鋼短繊維1を生産しうる。このよ
うな非平滑の外表面aを有する短繊維からなる多孔体を
焼結した焼結多孔体3は、多孔体内部において比表面積
が増加することにより粒子捕捉性能に優れる高精度の濾
過材とすることができる。
The metal fiber material obtained by such a convergence drawing method has a non-smooth outer surface b having an irregular cross-section due to the processing method, and the metal fiber material is subjected to intergranular corrosion. When the fibers are shortened, the ends a of each short fiber can have a columnar shape without cutting sagging or the like, and as described above, N, T
A person skilled in the art can easily produce the stainless steel short fiber 1 having a desired aspect ratio by adjusting the amount of i, Nb, Zr, B or V, setting heat treatment conditions, drawing conditions, and the like. The sintered porous body 3 obtained by sintering the porous body made of the short fibers having the non-smooth outer surface a has a high-precision filtering material having excellent particle trapping performance due to an increase in the specific surface area inside the porous body. can do.

【0035】なお前記熱処理については、用いるステン
レス鋼繊維の伸線加工歪を解消して、繊維横断面を単結
晶にするとともに結晶粒を所定大きさに成長させる為の
ものであって、例えば18Cr−8Niであるオーステ
ナイト系ステンレス鋼では、温度900〜1400℃、
時間0.5〜2時間程度とする非酸化雰囲気中(例えば
アルゴンガスなどの不活性雰囲気中)で実施され、一
方、Cr系ステンレス鋼についても前記オーステナイト
系の場合と同様に予め熱処理条件と結晶粒との関係付け
を行っておくことによりその最適条件を選択すべきであ
る。
The heat treatment is intended to eliminate the drawing strain of the stainless steel fiber used, to make the fiber cross section single crystal, and to grow the crystal grains to a predetermined size. For austenitic stainless steel of -8Ni, a temperature of 900 to 1400 ° C,
This is performed in a non-oxidizing atmosphere (for example, in an inert atmosphere such as argon gas) in which the time is about 0.5 to 2 hours. On the other hand, similarly to the case of the austenitic system, the Cr-based stainless steel is subjected to heat treatment conditions and crystallizing. The optimum conditions should be selected by making a connection with the grains.

【0036】また本発明では前記したように結晶粒の微
細化調整の為にN、Ti、Nbなどの前記微細化元素を
調整したステンレス鋼を用いているため、熱処理に伴う
急激な結晶成長を抑えることができ、したがってその処
理条件について厳密な管理の必要がなく、作業者の手間
を省いて負担軽減できるという利点もある。一方、その
後に行う粒界の選択腐食処理についても前記した公報が
開示するのと同様な方法で実施できる。使用する酸性溶
液としては、例えば硝酸や塩酸、フッ酸等の無機酸の
他、硫酸銅等の金属塩であっても、またこれらの混合溶
液であってもよく、フッ酸と硝酸との混合溶液は比較的
容易に用いられる。
Further, in the present invention, as described above, since stainless steel in which the above-mentioned refined elements such as N, Ti, and Nb are adjusted for the refinement of crystal grains is used, rapid crystal growth accompanying heat treatment is prevented. There is also the advantage that the processing conditions need not be strictly controlled, and the burden can be reduced by eliminating the labor of the operator. On the other hand, the subsequent selective corrosion treatment of the grain boundary can be carried out in the same manner as disclosed in the above-mentioned publication. The acidic solution used may be, for example, an inorganic acid such as nitric acid, hydrochloric acid, or hydrofluoric acid, or a metal salt such as copper sulfate, or a mixed solution thereof. The solution is relatively easy to use.

【0037】また処理条件としては、例えば液温20〜
50℃とした前記溶液中に浸漬し、5〜30分程度の処
理で行われ、こうして得られた短繊維は、用いた繊維材
料と実質的に同じ繊維径を有する単結晶粒子であり、腐
食に対して極めて安定した特性を有する。このようにし
て、ステンレス短繊維の繊維径(d)が、10μm以下
で、平均アスペクト比が2〜20、かつそのばらつき
(S)を抑制した短繊維にすることができる。
The processing conditions include, for example, a liquid temperature of 20 to
It is immersed in the above solution at 50 ° C., and the treatment is performed for about 5 to 30 minutes. The thus obtained short fibers are single crystal particles having substantially the same fiber diameter as the used fiber material, and are corroded. Has extremely stable characteristics with respect to In this way, it is possible to obtain a short fiber in which the fiber diameter (d) of the stainless short fiber is 10 μm or less, the average aspect ratio is 2 to 20, and the variation (S) thereof is suppressed.

【0038】図2は、前記短繊維による焼結多孔体3を
例示するものであって、ステンレス鋼短繊維1をランダ
ム方向に配向した多孔質構造体に加圧し、焼結すること
により一体化している。又アスペクト比の比較的小さい
各短繊維1が自由な方向に分布することによって立体的
な空孔4を形成していることが分かる。
FIG. 2 shows an example of the sintered porous body 3 made of the short fibers. The stainless steel short fibers 1 are pressed into a randomly oriented porous structure and sintered to be integrated. ing. It can also be seen that the short fibers 1 having a relatively small aspect ratio are distributed in a free direction to form three-dimensional voids 4.

【0039】また本発明では10μm以下というステン
レス鋼短繊維1を対象としているが、ステンレス鋼短繊
維1が細径化するに従い、アスペクト比が20を越える
程大きいものでは、このステンレス鋼短繊維1をランダ
ム方向に配向させようとしても所定圧力での加圧によっ
て方向性が変化したり押し曲げられ、濾過特性が当初予
想したものとは異なるものとなりやすい。そのため、そ
の上限を20以下としておりこのアスペクト比は、加圧
力や得られる空孔精度、空孔率などと相関させて選択す
ることにより、通常の試行により好ましい濾過特性を焼
結多孔体3を得ることができる。
In the present invention, the stainless steel short fiber 1 having a diameter of 10 μm or less is targeted. Even if an attempt is made to orient the particles in a random direction, the directionality is changed or pushed by pressurization at a predetermined pressure, and the filtration characteristics tend to be different from those initially expected. Therefore, the upper limit is set to 20 or less, and this aspect ratio is selected by correlating with the pressing force, the obtained porosity accuracy, the porosity, etc., so that the sintered porous body 3 can obtain the preferable filtration characteristics by ordinary trial. Obtainable.

【0040】なお、焼結多孔体3としては、ディスク形
状、ブロック形状、円柱形状などさまざまの形成にする
ことができその成形方法についてもその形状の型内に一
定量のステンレス鋼短繊維1を充填するとともに、押型
によって指定圧力で加圧し、さらに焼結処理するなど、
従来から製品に応じて種々提案されてきた方法が採用で
きる。
The sintered porous body 3 can be formed into various shapes such as a disk shape, a block shape, and a column shape. Regarding the forming method, a certain amount of the short stainless steel fiber 1 is placed in a mold having the shape. At the same time as filling, press at a specified pressure with a stamping die, further sintering etc.
Various methods conventionally proposed according to products can be adopted.

【0041】又焼結条件についても、ステンレス鋼短繊
維1を用いることから、例えば温度800〜1100℃
程度の不活性雰囲気中で、10分〜2時間程度の時間放
置することで処理され、その結果、各短繊維は相互に結
合し強固な焼結多孔体3となる。なおこの場合、該短繊
維以外に他の粉末や繊維などと混合させたり積層したも
のとすることができ、またその用途としては前記濾過材
とし、あるいは流速を減じる緩衝用、さらには断熱材な
ど巾広く用いることができるなど、本発明の思想を逸脱
しない範囲で種々展開できる。
As for the sintering conditions, since the stainless steel short fiber 1 is used, for example, the temperature is 800 to 1100 ° C.
The treatment is carried out by allowing the mixture to stand for about 10 minutes to 2 hours in an inert atmosphere at a low temperature. As a result, the short fibers are bonded to each other to form a strong sintered porous body 3. In this case, in addition to the short fibers, other powders or fibers may be mixed or laminated with other powders or fibers, and may be used as the filtering material, or as a buffer for reducing the flow rate, or as a heat insulating material. Various developments can be made without departing from the spirit of the present invention, for example, it can be used widely.

【0042】[0042]

【実施例1】表1に示す組成のステンレス鋼線(線径
0.12mm)の各々に外装材を覆せたた複数本を用意
し、それを集束外装材で被覆して複合線体となし、これ
を伸線加工と熱処理をくり返し行うことによって細径化
した。
Example 1 A plurality of stainless steel wires (wire diameter: 0.12 mm) each having the composition shown in Table 1 covered with an exterior material were prepared, and these were covered with a bundled exterior material to form a composite wire. The diameter was reduced by repeatedly performing wire drawing and heat treatment.

【0043】[0043]

【表1】 [Table 1]

【0044】この線体を弗硝酸で処理し500本の集束
繊維を得たが、その表面は非平滑で不定形状の横断面を
有するものであり、平均繊維径は約2〜2.5μmの細
さであった。
This linear body was treated with hydrofluoric acid to obtain 500 bundles of fibers, the surface of which was non-smooth and had an irregular cross section, and the average fiber diameter was about 2 to 2.5 μm. It was thin.

【0045】つぎに、この繊維を1100℃、1時間の
不活性ガス雰囲気中で熱処理したのち、3%の弗酸と、
20%の硝酸でなる弗硝酸溶液に浸漬して粒界腐食処理
を行った。その結果得られた短繊維粉末点数100ケに
ついて、平均アスペクト比とそのばらつきである変動係
数(CV)を求めた。結果は表2の通りであり、また試
料Bと試料Fの分布ヒストグラムを図3に示す。
Next, the fiber was heat-treated at 1100 ° C. for 1 hour in an inert gas atmosphere, and then 3% hydrofluoric acid was added.
Grain boundary corrosion treatment was performed by immersion in a hydrofluoric acid solution containing 20% nitric acid. The average aspect ratio and the variation coefficient (CV), which is the variation, were determined for 100 short fiber powders obtained as a result. The results are as shown in Table 2, and the distribution histograms of Sample B and Sample F are shown in FIG.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【実施例2】前記実施例1の試料A,C、Fの複合線体
について、さらに伸線加工と熱処理とを繰り返し行うこ
とで繊維径0.5μmの超極細繊維とし、この繊維材料
を温度1000℃の不活性雰囲気中に50分と100分
間にわたってセットし熱処理を行った。この処理によ
り、繊維の結晶はゆっくりと成長していき、前記実施例
1と同様の溶液で粒界腐食処理を行って次の短繊維を得
た。
Embodiment 2 With respect to the composite wire of Samples A, C, and F of the above-described Embodiment 1, the wire drawing and the heat treatment are repeatedly performed to obtain ultra-fine fibers having a fiber diameter of 0.5 μm. It was set in an inert atmosphere at 1000 ° C. for 50 minutes and 100 minutes to perform a heat treatment. By this treatment, the crystal of the fiber grew slowly, and the next short fiber was obtained by performing intergranular corrosion treatment with the same solution as in Example 1 above.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【実施例3】前記試料Dの短繊維粉末を、外径30m
m、厚さ2mmの成形型内に充填するとともに、次の条
件で焼結処理を行った。 焼結温度 1100℃ 焼結時間 1時間 雰囲気 アルゴンガスによる不活性雰囲気 加圧圧力 100N/cm2
Example 3 The short fiber powder of the sample D was used for an outer diameter of 30 m.
m and a mold having a thickness of 2 mm were filled, and sintering was performed under the following conditions. Sintering temperature 1100 ° C Sintering time 1 hour Atmosphere Inert atmosphere with argon gas Pressurized pressure 100N / cm 2

【0050】得られた焼結多孔体について、顕微鏡で観
察したところ、各短繊維はランダム方向に配向するとと
もに強固な結合をしており、またその空孔特性は次の通
りであった。
When the obtained sintered porous body was observed with a microscope, it was found that each short fiber was oriented in a random direction and had a strong bond, and the pore characteristics were as follows.

【0051】 試料No,D(繊維径:2μm) 空孔径 2.6μm 空孔率 63%Sample No. D (fiber diameter: 2 μm) Pore diameter 2.6 μm Porosity 63%

【0052】[0052]

【発明の効果】このように、請求項1の発明は、端部に
切断ダレを有しない柱状をなし、かつNの添加により、
繊維径(d)、アスペクト比、そのばらつきを調整して
いるため、空孔特性に優れた多孔体を生産しうる。また
結晶粒を微細化する働きをもつ調整元素を用いているた
め、その処理工程中での急激な結晶成長を抑えることが
でき、作業時の管理負担を軽減できる利点がある。
As described above, according to the first aspect of the present invention, a columnar shape having no cutting sag at an end portion is formed, and by adding N,
Since the fiber diameter (d), the aspect ratio, and the variation thereof are adjusted, a porous body having excellent pore characteristics can be produced. Further, since an adjusting element having a function of refining crystal grains is used, there is an advantage that rapid crystal growth during the processing step can be suppressed, and a management load during operation can be reduced.

【0053】請求項2の発明は、端部に切断ダレを有し
ない柱状をなし、かつTi,Nb,Zr,BまたはVか
ら選択される少なくとも1つの元素の添加により、繊維
径(d)、アスペクト比、そのばらつきを調整している
ため、その処理工程中での急激な結晶成長を抑えること
ができることから、細径でありながらもアスペクト比を
小さくでき、かつ作業時の管理負担を軽減できる利点が
ある。
According to a second aspect of the present invention, the fiber diameter (d) is reduced by adding at least one element selected from Ti, Nb, Zr, B or V to form a column without cutting sag at the end. Since the aspect ratio and its variation are adjusted, rapid crystal growth during the processing step can be suppressed, so that the aspect ratio can be reduced even though the diameter is small, and the management burden during work can be reduced. There are advantages.

【0054】請求項3,4の発明は、その構成の採用に
より、より均質化したステンレス鋼短繊維となり、濾過
特性がより向上した焼結多孔体を得ることができる。
According to the third and fourth aspects of the present invention, by adopting the structure, a more uniform stainless steel short fiber can be obtained, and a sintered porous body having more improved filtration characteristics can be obtained.

【0055】前記ステンレス鋼短繊維として、オーステ
ナイト系ステンレス鋼を用いるため、耐食性や機械的特
性、耐熱特性に優れ、濾過材などの多孔体として好適に
利用しうる
Since austenitic stainless steel is used as the stainless steel short fiber, it has excellent corrosion resistance, mechanical properties, and heat resistance, and can be suitably used as a porous material such as a filter material.

【0056】請求項6の焼結多孔体は、前記請求項1〜
5のいずれかに記載のステンレス鋼短繊維をランダム方
向に配向した多孔質構造体に加圧し、焼結によって形成
しているため、空孔特性に優れた焼結多孔体とすること
ができる。
The sintered porous material according to claim 6 is characterized in that:
Since the stainless steel short fibers according to any one of the above items 5 are formed by pressing the porous structure oriented in the random direction and sintering, a sintered porous body having excellent pore characteristics can be obtained.

【0057】また本発明では、前記したように調整元素
としていずれも結晶粒を微細化する働きをもつものを対
象としたことから、その処理工程中での急激な結晶成長
を抑えることができることから、作業時の管理負担を軽
減できる利点がある。
Further, in the present invention, as described above, all of the adjusting elements have the function of refining the crystal grains, so that rapid crystal growth during the processing step can be suppressed. In addition, there is an advantage that the management burden during work can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】短繊維の外観を示す平面図である。FIG. 1 is a plan view showing the appearance of a short fiber.

【図2】焼結多孔体を例示する斜視図である。FIG. 2 is a perspective view illustrating a sintered porous body.

【図3】本発明によるステンレス鋼短繊維のアスペクト
比のばらつきを示すヒストグラムである。
FIG. 3 is a histogram showing variation in aspect ratio of stainless steel short fibers according to the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス鋼短繊維 3 焼結多孔体 4 空孔 DESCRIPTION OF SYMBOLS 1 Short fiber of stainless steel 3 Sintered porous material 4 Void

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 5/10 B22F 5/10 C22C 33/02 C22C 33/02 C 38/00 302 38/00 302Z 38/14 38/14 // B21C 1/00 B21C 1/00 B D01F 9/08 D01F 9/08 D Fターム(参考) 4D019 AA01 AA03 BA02 BB07 BB13 BD01 CB06 DA01 DA03 4E096 EA03 EA13 4K018 AA33 BA17 BB02 CA14 GA07 4L037 AT02 AT05 CS13 FA02 FA05 FA12 FA20 PA29 PF56 UA15 UA20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B22F 5/10 B22F 5/10 C22C 33/02 C22C 33/02 C 38/00 302 38/00 302Z 38 / 14 38/14 // B21C 1/00 B21C 1/00 B D01F 9/08 D01F 9/08 DF term (reference) 4D019 AA01 AA03 BA02 BB07 BB13 BD01 CB06 DA01 DA03 4E096 EA03 EA13 4K018 AA33 BA17 BB02 CA14 GA07 4L037 AT07 AT05 CS13 FA02 FA05 FA12 FA20 PA29 PF56 UA15 UA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】端部に切断ダレを有しない柱状、かつ繊維
径(d)を10μm以下、しかもその径(d)と長さ
(L)とのアスペクト比(L/d)の平均値が2〜20
であるステンレス鋼短繊維であって、 該短繊維中におけるN量を0.02〜0.50wt%の
範囲に調整することにより、前記平均アスペクト比を前
記所定の範囲に抑制したことを特徴とするステンレス鋼
短繊維。
1. A fiber with no cut sag at the end and a fiber diameter (d) of 10 μm or less, and an average value of an aspect ratio (L / d) between the diameter (d) and the length (L). 2-20
The average aspect ratio is suppressed to the predetermined range by adjusting the N content in the short fibers to a range of 0.02 to 0.50 wt%. Stainless steel staple fiber.
【請求項2】端部に切断ダレを有しない柱状の形態を持
ち、かつ繊維径(d)を10μm以下、しかもその径
(d)と長さ(L)とのアスペクト比(L/d)の平均
値が2〜20であるステンレス鋼短繊維であって、 該短繊維中のTi,Nb,Zr,BまたはVから選択さ
れる元素の少なくとも1種の量を0.005〜0.30
wt%の範囲に調整することにより前記平均アスペクト
比を前記所定の範囲に抑制したことを特徴とするステン
レス鋼短繊維。
2. A fiber having a columnar shape having no cutting sag at an end and having a fiber diameter (d) of 10 μm or less, and an aspect ratio (L / d) between the diameter (d) and the length (L). Is a stainless steel short fiber having an average value of 2 to 20, wherein the amount of at least one element selected from Ti, Nb, Zr, B or V in the short fiber is 0.005 to 0.30.
The stainless steel short fiber, wherein the average aspect ratio is controlled to the predetermined range by adjusting the average aspect ratio to the range of wt%.
【請求項3】前記短繊維の繊維径(d)が、0.1〜
5.0μmであることを特徴とする請求項1、又は2に
記載のステンレス鋼短繊維。
3. The short fiber has a fiber diameter (d) of from 0.1 to 0.1.
The stainless steel short fiber according to claim 1 or 2, wherein the diameter is 5.0 µm.
【請求項4】前記平均アスペクト比が5〜12、かつそ
のばらつきの変動係数(CV)が25%以下であること
を特徴とする請求項1〜3のいずれかに記載のステンレ
ス鋼短繊維。
4. The stainless steel short fiber according to claim 1, wherein the average aspect ratio is 5 to 12, and a coefficient of variation (CV) of the variation is 25% or less.
【請求項5】前記ステンレス鋼短繊維は、オーステナイ
ト系ステンレス鋼からなることを特徴とする請求項1、
2、又は4に記載のステンレス鋼短繊維。
5. The stainless steel short fiber according to claim 1, wherein the stainless steel short fiber is made of austenitic stainless steel.
The stainless steel short fiber according to 2 or 4.
【請求項6】前記請求項1〜5のいずれかに記載のステ
ンレス鋼短繊維をランダム方向に配向した多孔質構造体
に加圧し、かつ焼結によって一体化したことを特徴とす
る焼結多孔体。
6. A sintered porous material, wherein the stainless steel short fibers according to any one of claims 1 to 5 are pressed into a porous structure oriented in a random direction and integrated by sintering. body.
JP2001024005A 2001-01-31 2001-01-31 Stainless steel short fiber and sintered porous body using the same Expired - Lifetime JP3559529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001024005A JP3559529B2 (en) 2001-01-31 2001-01-31 Stainless steel short fiber and sintered porous body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024005A JP3559529B2 (en) 2001-01-31 2001-01-31 Stainless steel short fiber and sintered porous body using the same

Publications (2)

Publication Number Publication Date
JP2002226901A true JP2002226901A (en) 2002-08-14
JP3559529B2 JP3559529B2 (en) 2004-09-02

Family

ID=18889213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024005A Expired - Lifetime JP3559529B2 (en) 2001-01-31 2001-01-31 Stainless steel short fiber and sintered porous body using the same

Country Status (1)

Country Link
JP (1) JP3559529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654299A (en) * 2016-11-14 2017-05-10 南京晓庄学院 Metastable nanocrystal and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654299A (en) * 2016-11-14 2017-05-10 南京晓庄学院 Metastable nanocrystal and preparation method and application thereof

Also Published As

Publication number Publication date
JP3559529B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP0226826B1 (en) Method for making titanium-nickel alloys
DE3780136T2 (en) Sintered composite body with great hardness.
EP2974812B1 (en) Method for the manufacture of a component from a metal alloy with an amorphous phase
EP3308882A1 (en) Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member
CN111556902B (en) Aluminum alloy wire and method for manufacturing aluminum alloy wire
EP1568486B1 (en) Method for manufacturing of workpieces or semifinished products containing titanium aluminide alloys and products made thereby
DE102020116865A1 (en) Nickel-based alloy for powders and a process for producing a powder
JP2002012926A (en) Platinum material of oxide dispersion-enforced type and its production method
EP4257715A1 (en) Formed part with high-temperature persistence and low anisotropy, forming method and forming powder
CN104032274B (en) A kind of CoCrPt based alloy sputtering target material and thin film and preparation method thereof
EP4027358B1 (en) Soft magnetic alloy and method for producing a soft magnetic alloy
JP2009506512A (en) Superconducting wire substrate, manufacturing method thereof, and superconducting wire
JP5325201B2 (en) Metal wire made of iridium-containing alloy
DE102009039344B4 (en) Composite material and method of manufacture
EP3467141B1 (en) Gold sputtering target
DE19716330C2 (en) Process for producing a coating on a grinding tool and use of the process
JPH10226839A (en) High strength aluminum alloy wire-coil spring and its production
JP2002226901A (en) Stainless-steel short fiber, and sintered porous body using it
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
EP0043094B1 (en) Stainless steel short fiber and process for preparing the same
EP4249616A1 (en) Formed article having low stretching anisotropy, forming method, and forming powder therefor
JPS6082648A (en) Process for forming material having high strength and difficult processability
EP3722455A1 (en) Gold sputtering target and method for producing same
JPS6363645B2 (en)
TW201510244A (en) Method for preparing platinum-rhodium-oxide based alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3559529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term