JP2002221101A - Fuel emulsifying device using light fuel as fuel for internal combustion engine - Google Patents

Fuel emulsifying device using light fuel as fuel for internal combustion engine

Info

Publication number
JP2002221101A
JP2002221101A JP2001019397A JP2001019397A JP2002221101A JP 2002221101 A JP2002221101 A JP 2002221101A JP 2001019397 A JP2001019397 A JP 2001019397A JP 2001019397 A JP2001019397 A JP 2001019397A JP 2002221101 A JP2002221101 A JP 2002221101A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
water
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001019397A
Other languages
Japanese (ja)
Inventor
Takahiro Suzuki
荘大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SG KK
Original Assignee
SG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SG KK filed Critical SG KK
Priority to JP2001019397A priority Critical patent/JP2002221101A/en
Publication of JP2002221101A publication Critical patent/JP2002221101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To more idealistically emulsify a diesel fuel and avoid a bad influence of water separation at the time of stopping a diesel engine, as to the improvement of the diesel engine of a fuel supply type. SOLUTION: In an emulsifying device 15 for fuel to the diesel engine, a fuel emulsifying means is equipped with a series of mutually meshed gears 24, 26, and 28 eccentrically disposed relative to the circumference of a housing 16, and a circumferential gap the interval of which changes in the direction of the circumference is formed between the mutually eccentric gears 24, 26, and 28 and the inner periphery of the housing in order to structure a fuel emulsifying passage. The flow of fluid in the passage is formed into two layers of flow having opposite directions, one running along the outer periphery of the gears and another running along the inner periphery of the housing because there is a part where the gap of the fuel emulsifying passage is narrow, water drops are crushed by the collision of the two layers of the flow, high emulsification is achieved, and the flow is injected from a fuel injection valve 9 through a fuel injection pump 10. Before stopping the engine, the fuel emulsifying means is made inoperative, and an operation is continued for a while with a water-free fuel supplied to the engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は乳化された燃料を
供給する型のディーゼル機関の改良に関するものであ
り、従来方式と比較して燃焼効率を格段に向上し、クリ
ーンな排気ガスとしうるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a diesel engine for supplying emulsified fuel, which can significantly improve combustion efficiency as compared with a conventional system and can provide clean exhaust gas. is there.

【0002】[0002]

【従来の技術】ディーゼル機関における燃焼改善技術と
して燃料としての軽油に添加水を混合することにより乳
化することは従来より各種試みられている。即ち、燃料
の乳化により燃料粒子の細分化を図り、空気との接触面
積の増加により燃焼の改善を意図としている。即ち、乳
化により燃料油滴中に多数の添加水滴が混入せしめら
れ、このように油滴中に混入された添加水滴は燃焼時に
爆発的膨張を行い油滴は極微細に破砕を受け、燃焼用空
気と接触しながら拡散するため殆どガス燃焼様の燃焼作
動が期待され、これにより燃焼性の改善を図ろうという
ものである。
2. Description of the Related Art Various attempts have been made to emulsify diesel oil as a fuel by mixing it with added water as a technique for improving combustion in diesel engines. That is, it is intended to improve the combustion by emulsifying the fuel to make the fuel particles fine, and increasing the contact area with the air. That is, a large number of added water droplets are mixed into fuel oil droplets by emulsification, and the added water droplets thus mixed in the oil droplets explosively expand during combustion, and the oil droplets are extremely finely crushed and used for combustion. Since it diffuses while being in contact with air, almost gas-combustion-like combustion operation is expected, and it is intended to improve flammability.

【0003】[0003]

【発明が解決しようとする課題】界面活性剤を用いた乳
化は燃焼後の有害ガスの発生のおそれがあることからデ
ィーゼル用燃料には適していない。そのため、ベンチュ
リなどにおける高速流や混合室の利用によって水滴の細
分化を行う手法をとるものが普通であった。しかしなが
ら、従来手法では粒子の細分化効果が十分でないため、
添加水滴の粒径が十分小さくなっていないためエマルジ
ョン燃焼による所期の効果が得られないことが多く、デ
ィーゼル機関ではエマルジョン燃焼方式はあまり実用に
供されてはいなかった。
The emulsification using a surfactant is not suitable for diesel fuel because of the risk of generating harmful gases after combustion. For this reason, a method of subdividing water droplets by using a high-speed flow in a venturi or the like and a mixing chamber has been generally used. However, since the fragmentation effect of the particles is not sufficient in the conventional method,
Because the added water droplets are not sufficiently small in particle size, the desired effect of emulsion combustion cannot be obtained in many cases, and the emulsion combustion method has not been practically used in diesel engines.

【0004】この発明は以上の問題点に鑑みてなされた
ものであり、ディーゼル燃料の乳化をより理想的に行う
ことができるため、燃焼室での理想的な燃焼を実現し、
ディーゼル機関からの有害排気ガスの飛躍的削減を実現
することを目的としたものである。また、水添加にかか
わらず機関停止後の分離水による燃料系部品への悪影響
を回避せしめるようにすることを目的とする。
[0004] The present invention has been made in view of the above problems, and since the diesel fuel can be emulsified more ideally, ideal combustion in a combustion chamber is realized.
The purpose is to achieve a dramatic reduction of harmful exhaust gas from diesel engines. It is another object of the present invention to prevent adverse effects on fuel system components due to separated water after engine stoppage regardless of water addition.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明に
よれば、内燃機関に供給される燃料に水添加することに
よりその乳化を行う燃料乳化手段を備え、前記燃料乳化
手段はハウジングと、一連に噛合いしそれぞれがハウジ
ングの円周面に対して対向配置された複数のギヤと、該
ギヤの回転駆動手段とから構成され、各ギヤ外周面とハ
ウジング円周面との間に円周方向において間隔が変化す
る円周方向間隙が形成され、これら円周方向間隙は一連
に連接され燃料乳化通路をなし、燃料及び添加水は前記
乳化通路にその一端側より供給され、乳化された燃料は
前記乳化通路の他端側から取り出されて内燃機関に供給
されるようにされ、更に、機関の停止に先だって燃料乳
化手段の作動を無効とし、水無添加燃料を機関に供給し
た状態での運転を暫時継続せしめる機関停止時制御手段
を備えた内燃機関の燃料供給装置が提供される。
According to the first aspect of the present invention, there is provided a fuel emulsifying means for emulsifying a fuel supplied to an internal combustion engine by adding water thereto, wherein the fuel emulsifying means comprises a housing and a fuel emulsifying means. , A plurality of gears meshed in series, each of which is arranged to face the circumferential surface of the housing, and rotation driving means for the gears. Circumferential gaps whose intervals vary in the direction are formed, and these circumferential gaps are connected in series to form a fuel emulsification passage. Fuel and added water are supplied to the emulsification passage from one end thereof, and the emulsified fuel is formed. Is taken out from the other end of the emulsification passage and supplied to the internal combustion engine.Furthermore, prior to the stop of the engine, the operation of the fuel emulsification means is invalidated, and the water-free fuel is supplied to the engine. Driving Fuel supply apparatus is provided for an internal combustion engine having a engine stop control means allowed to continue at.

【0006】請求項1の発明の作用・効果を説明する
と、内燃機関の通常の運転中においては以下に説明する
ごとき燃料乳化手段の動作によって内燃機関に乳化燃料
が供給される。即ち、一連に噛合いする各ギヤは対応の
ハウジング内周面に対向され、ハウジング内周とギヤ外
周との間には円周方向に沿って間隔が変化する円周方向
間隙が形成され、この円周方向間隙が連接されることに
より燃料乳化通路となる。そのため、燃料乳化通路に導
入された燃料+添加添加水は各円周方向間隙の狭めらた
部位での自由な流れは拘束され、その結果、円周方向間
隙においては回転するギヤの歯面に沿ったギヤ回転方向
の流れ(順方向流)と、静止したハウジング内周に沿っ
たその反対方向との流れ(逆方向流)とが共存する。歯
面に沿った順方向流中には比重の大きい水が残される
が、このような大きな水滴は、回転するギヤの遠心力に
より外方に飛び出そうとしたとき、円周方向間隙におけ
る前記狭小部位において高速化された逆方向流によるせ
ん断を受け、破砕作用を受ける。そして、このような水
滴破砕作用は逆流によって何度も繰り返され、その結果
水滴の高度の微粒化が達成され、30〜130ミクロン
の程度の径の1個の油滴中に1〜5ミクロン程度の径の
水滴が数百個混入された高度の乳化燃料が得られる。そ
して、このようにして高度に微粒化された乳化燃料は燃
料噴射ポンプを介して燃料噴射弁より燃焼室に噴射さ
れ、そのため、この発明により燃焼効率の著しい改善を
得ることができる。
The operation and effect of the first aspect of the present invention will be described. During the normal operation of the internal combustion engine, the emulsified fuel is supplied to the internal combustion engine by the operation of the fuel emulsifying means as described below. That is, the gears meshing in series are opposed to the corresponding inner peripheral surface of the housing, and a circumferential gap is formed between the inner circumference of the housing and the outer circumference of the gear, the interval of which varies along the circumferential direction. The circumferential gap is connected to form a fuel emulsification passage. Therefore, the free flow of the fuel + additive water introduced into the fuel emulsification passage in the narrowed portion of each circumferential gap is restricted, and as a result, the tooth surface of the rotating gear is confined in the circumferential gap. The flow in the direction of gear rotation (forward flow) and the flow in the opposite direction along the inner periphery of the stationary housing (reverse flow) coexist. Water having a large specific gravity is left in the forward flow along the tooth surface, but such large water droplets, when trying to fly outward due to the centrifugal force of the rotating gear, have a small diameter in the circumferential gap. The part is sheared by the accelerated reverse flow at the site and undergoes crushing action. Such a water droplet crushing action is repeated many times by backflow, and as a result, a high degree of atomization of water droplets is achieved, and one oil droplet having a diameter of about 30 to 130 microns is about 1 to 5 microns. A high degree of emulsified fuel into which several hundred water droplets having the same diameter are mixed can be obtained. The highly atomized emulsified fuel is injected into the combustion chamber from the fuel injection valve via the fuel injection pump. Therefore, the present invention can significantly improve the combustion efficiency.

【0007】また、機関停止時制御手段は機関の停止に
先だって燃料乳化手段の作動を無効とする。即ち、ディ
ーゼルエンジンの実際の停止に先立ち、燃料に水を添加
しない状態での運転が暫時継続されるため、燃料噴射系
に残留していた乳化燃料は通常燃料に完全に置換される
ため、水分は燃料噴射系に残留しないため、内燃機関の
停止後比較的短時間のうちに生ずる水分の分離により燃
料噴射系に生じうる悪影響を未然に完全排除することが
できる効果がある。
Further, the engine stop time control means invalidates the operation of the fuel emulsification means prior to the stop of the engine. That is, prior to the actual stoppage of the diesel engine, the operation without adding water to the fuel is continued for a while, and the emulsified fuel remaining in the fuel injection system is completely replaced by the normal fuel. Since the gas does not remain in the fuel injection system, there is an effect that it is possible to completely eliminate the adverse effect that may occur in the fuel injection system due to the separation of water that occurs within a relatively short time after the internal combustion engine is stopped.

【0008】請求項2に記載の発明によれば、請求項1
に記載の発明において、機関停止時制御手段は乳化燃料
の吐出圧力自体により乳化燃料供給と水無添加燃料供給
との自動的切替を行うことを特徴とする内燃機関の燃料
供給装置が提供される。
According to the invention described in claim 2, according to claim 1
The invention provides a fuel supply device for an internal combustion engine, characterized in that the engine stop-time control means automatically switches between emulsified fuel supply and water-free fuel supply by the emulsified fuel discharge pressure itself. .

【0009】請求項2の発明の作用・効果を説明する
と、通常運転時には乳化燃料の吐出圧力は高いため乳化
燃料が内燃機関に供給され、機関停止時には乳化燃料の
吐出圧力が下がるため水無添加燃料供給への自動切替が
行われる。そのため、切替弁などの設置の必要がないた
めコスト的に有利となる。
The operation and effect of the second aspect of the present invention will be described. During normal operation, the emulsified fuel is supplied to the internal combustion engine because the discharge pressure of the emulsified fuel is high, and when the engine is stopped, the discharge pressure of the emulsified fuel is reduced. Automatic switching to fuel supply is performed. Therefore, there is no need to install a switching valve or the like, which is advantageous in cost.

【0010】請求項3に記載の発明によれば、請求項1
に記載の発明において、内燃機関はディーゼル機関であ
ることを特徴とする内燃機関の燃料乳化装置が提供され
る。
[0010] According to the third aspect of the present invention, the first aspect is provided.
In the invention described in (1), there is provided a fuel emulsification device for an internal combustion engine, wherein the internal combustion engine is a diesel engine.

【0011】請求項3の発明の作用・効果を説明する
と、高度に乳化された乳化燃料がディーゼル機関に供給
されるため、燃焼室での完全燃焼を行うことができ、公
害対策から近年その規制が緊急課題となっている排気ガ
スの浄化、特に、ディーゼル機関排気ガス中のパティキ
ュレートの削減を図ることができる。
The operation and effect of the third aspect of the invention will be described. Since highly emulsified emulsified fuel is supplied to a diesel engine, complete combustion can be performed in a combustion chamber. It is possible to purify exhaust gas, which is an urgent issue, and in particular, to reduce particulates in diesel engine exhaust gas.

【0012】請求項4に記載の発明によれば、請求項1
に記載の発明において、前記ギヤは縦置きに配置され、
供給側が排出側に対して下方に位置したことを特徴とす
る内燃機関用の燃料乳化装置が提供される。
According to the invention described in claim 4, according to claim 1,
In the invention described in 5, the gear is arranged vertically,
A fuel emulsification device for an internal combustion engine is provided, wherein the supply side is located below the discharge side.

【0013】請求項4の発明の作用・効果を説明する
と、一連のギヤを縦置きにし、その供給側を下方に位置
されることにより、内燃機関の停止時に乳化燃料の分離
があっても、重量の大きい水は比重の関係より下側に集
中的に溜まるが、次回の始動時ギヤの回転により再び乳
化され、内燃機関に供給することができる。
[0013] The operation and effect of the invention of claim 4 will be described. By arranging a series of gears vertically and positioning the supply side downward, even if the emulsified fuel is separated when the internal combustion engine is stopped, The heavy water is concentrated on the lower side of the relationship of the specific gravity, but is emulsified again by the rotation of the gear at the next start, and can be supplied to the internal combustion engine.

【0014】請求項5に記載の発明によれば、請求項4
に記載の発明において、ハウジングの底部にドレン水の
強制的排出手段を設置したことを特徴とする内燃機関用
の燃料乳化装置が提供される。
According to the invention described in claim 5, according to claim 4,
The present invention provides a fuel emulsification apparatus for an internal combustion engine, wherein a forced drainage means for drain water is provided at the bottom of the housing.

【0015】請求項5の発明の作用・効果を説明する
と、機関停止時などに水と油との分離によってハウジン
グ底部に水が堆積することは回避できないが、ドレン水
の強制的排出手段によってドレン水の効率的排出を図る
ことができる。
According to the fifth aspect of the present invention, it is unavoidable that water is deposited on the bottom of the housing due to the separation of water and oil when the engine is stopped, but the drain water is forcibly discharged by drain means. Water can be efficiently discharged.

【0016】請求項6に記載の発明によれば、請求項1
に記載の発明において、燃料の流量変化に追随して水添
加を制御する電動式ポンプを備えたことを特徴とする内
燃機関用の燃料乳化装置が提供される。
According to the invention of claim 6, according to claim 1,
In the invention described in (1), there is provided a fuel emulsification apparatus for an internal combustion engine, comprising an electric pump for controlling water addition following a change in fuel flow rate.

【0017】請求項6の発明の作用・効果を説明する
と、電動式ポンプは燃料の流量に追随して水添加料を制
御しているため、内燃機関の運転条件による燃料流量の
変化に追随していつも最適な量の水添加を行うことがで
きる。
The operation and effect of the sixth aspect of the present invention will be described. Since the electric pump controls the water additive following the flow rate of the fuel, it follows the change in the fuel flow rate due to the operating conditions of the internal combustion engine. The optimum amount of water can always be added.

【0018】[0018]

【発明の実施の形態】図1において、8はディーゼル機
関の本体、9は機関本体の各燃焼室に燃料噴射を行う燃
料噴射弁、10は周知の列型の燃料噴射ポンプであり、
低圧燃料の入口ポート11と高圧燃料の吐出ポート12
とを備える。吐出ポート12は周知のように気筒数分直
列に設けられ、各吐出ポート12はそれぞれの気筒の燃
料噴射弁9に接続されている。低圧燃料の入口ポート1
1はディーゼル燃料供給通路13に接続され、通路13
はその上流側は図示しない低圧燃料ポンプ(クランク軸
駆動)を介して同じく図示しないディーゼル燃料タンク
に接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 8 denotes a diesel engine main body, 9 denotes a fuel injection valve for injecting fuel into each combustion chamber of the engine main body, 10 denotes a well-known row type fuel injection pump,
Low pressure fuel inlet port 11 and high pressure fuel discharge port 12
And As is well known, the discharge ports 12 are provided in series by the number of cylinders, and each discharge port 12 is connected to the fuel injection valve 9 of each cylinder. Low pressure fuel inlet port 1
1 is connected to the diesel fuel supply passage 13,
Is connected to a diesel fuel tank (not shown) via a low-pressure fuel pump (crankshaft drive) not shown.

【0019】次ぎに、図1において15はこの発明にな
る燃料乳化装置の全体をあらわしている。図2により燃
料乳化装置15の構成について説明すると、ハウジング
16には部分的に重複された一連の円形断面よりなる筒
状凹部18, 20, 22が形成され、この筒状凹部18, 20, 22
に歯車24, 26, 28がそれぞれ偏心して配置されている。
Next, in FIG. 1, reference numeral 15 indicates the whole fuel emulsifying apparatus according to the present invention. Referring to FIG. 2, the configuration of the fuel emulsifying device 15 will be described. The housing 16 is formed with a series of cylindrical recesses 18, 20, and 22 having a series of partially circular cross sections.
Gears 24, 26, 28 are eccentrically arranged.

【0020】図2に示すように歯車24, 26, 28(それぞ
れ軸24A, 26A, 28Aによりハウジング16に軸支され
る)は直列に噛合いしている。即ち、入力側の第1歯車
24が中間の第2歯車26に噛合いし、第2歯車26は
出口側の第3歯車28に噛合いしている。中間の第2歯
車26が駆動歯車であり、その中心軸は図示しない駆動
源に連結され、駆動源によって回転される中間歯車の回
転運動は噛合い部を介して第1歯車24及び第3歯車2
8に伝達される。その回転方向は図中矢印A, B,Cにてそ
れぞれ示している。駆動歯車26の駆動源としては内燃
機関のクランク軸によってベルト駆動するようにしても
よいし、専用の電動モータ若しくは油圧モータを設置す
るようにしてもよい。
As shown in FIG. 2, gears 24, 26, and 28 (supported by housing 16 by shafts 24A, 26A, and 28A, respectively) mesh in series. That is, the first gear 24 on the input side meshes with the intermediate second gear 26, and the second gear 26 meshes with the third gear 28 on the outlet side. The intermediate second gear 26 is a drive gear, and its central axis is connected to a drive source (not shown). The rotational movement of the intermediate gear rotated by the drive source is performed by the first gear 24 and the third gear via a meshing portion. 2
8 is transmitted. The direction of rotation is indicated by arrows A, B, and C in the figure. As a drive source of the drive gear 26, a belt drive may be performed by a crankshaft of the internal combustion engine, or a dedicated electric motor or hydraulic motor may be provided.

【0021】筒状凹部18, 20, 22に対するそれぞれの歯
車24, 26, 28の偏心配置によって、歯車外周とハウジン
グ内周との間にそれぞれ間隙30, 32, 34が形成される。
これらの間隙30, 32, 34は噛合い点側は狭くその間にお
いては広くなるように配置されている。図1においては
この間隙は相当に誇張して描かれているが、最大でも0.
5mm程度である。筒状凹部18, 20, 22の内周と歯車24, 2
6, 28の外周との間の前記間隙30, 32, 34は直列に接続
されており、間隙30, 32, 34の直列接続はこの発明にお
ける燃料乳化通路を構成する。
The eccentric arrangement of the respective gears 24, 26, 28 with respect to the cylindrical recesses 18, 20, 22 forms gaps 30, 32, 34 between the outer circumference of the gears and the inner circumference of the housing, respectively.
These gaps 30, 32, 34 are arranged so that the mesh point side is narrow and wide between them. In FIG. 1, this gap is considerably exaggerated, but at most 0.
It is about 5mm. Inner circumference of cylindrical recesses 18, 20, 22 and gears 24, 2
The gaps 30, 32, 34 between the outer circumferences of 6, 6 and 28 are connected in series, and the series connection of the gaps 30, 32, 34 constitutes a fuel emulsification passage in the present invention.

【0022】図1に示すようにディーゼル燃料導入ポー
ト36は一端(上流側)はディーゼル燃料分流通路37
の一端に接続される。ディーゼル燃料分流通路37の他
端は燃料供給通路13に接続される。ディーゼル燃料導
入ポート36は他端(下流側)は図2に示すように第2
ギヤ26との噛合い部に近接した第1ギヤ24の回転方
向の下流側(乳化通路の入口側)において間隙30に開
口している。
As shown in FIG. 1, one end (upstream side) of the diesel fuel introduction port 36 has a diesel fuel distribution passage 37.
To one end. The other end of the diesel fuel distribution passage 37 is connected to the fuel supply passage 13. The other end (downstream side) of the diesel fuel introduction port 36 is the second port as shown in FIG.
The first gear 24 is open to the gap 30 on the downstream side (inlet side of the emulsification passage) in the rotation direction of the first gear 24 close to the meshing portion with the gear 26.

【0023】図2においてディーゼル燃料導入ポート3
6に近接して第1ギヤ24の回転方向の上流側に添加水
導入ポート38が開口している。添加水導入ポート38
は図1に示すように添加水供給通路40に接続され、添
加水供給通路40に給水ポンプ42が設けられ開閉弁4
3を介して給水タンク44に接続される。45は給水ポ
ンプ42の制御回路である。ディーゼル燃料導入ポート
36から燃料噴射ポンプ10まで燃料供給配管と添加水
導入ポート38から給水ポンプ42までの添加水配管と
の有効径比は所定の水添加率が得られるように適宜決定
すべき適合因子である。
In FIG. 2, the diesel fuel introduction port 3
6, an additional water introduction port 38 is opened upstream of the first gear 24 in the rotation direction. Additive water introduction port 38
Is connected to the additive water supply passage 40 as shown in FIG.
3 and connected to a water supply tank 44. 45 is a control circuit of the water supply pump 42. The effective diameter ratio between the fuel supply pipe from the diesel fuel introduction port 36 to the fuel injection pump 10 and the addition water pipe from the addition water introduction port 38 to the water supply pump 42 should be determined appropriately so as to obtain a predetermined water addition rate. Is a factor.

【0024】図2に示すように乳化燃料取出ポート46
は第2ギヤ26に対する第3ギヤ28の噛合い点に近接
して第3ギヤ28の回転方向における上流側において間
隙34(乳化通路の出口側)に開口される。図1に示す
ように乳化燃料取出ポート46は乳化燃料供給通路47
によって燃料噴射ポンプ10の入口ポート11に近接し
た部位において通路13に接続される。
As shown in FIG. 2, the emulsified fuel outlet port 46
Is opened in the gap 34 (the outlet side of the emulsification passage) on the upstream side in the rotation direction of the third gear 28 in the vicinity of the meshing point of the third gear 28 with the second gear 26. As shown in FIG. 1, the emulsified fuel take-out port 46 is
Thus, the fuel injection pump 10 is connected to the passage 13 at a position close to the inlet port 11 of the fuel injection pump 10.

【0025】乳化燃料取出ポート46にアジャストスク
リュ59が設けられ、アジャストスクリュ59の調節に
よって乳化燃料供給通路47への乳化燃料流量を適宜調
節することができる。
An adjusting screw 59 is provided at the emulsified fuel outlet port 46, and the flow rate of the emulsified fuel to the emulsified fuel supply passage 47 can be appropriately adjusted by adjusting the adjusting screw 59.

【0026】また、分流通路37との接続箇所と乳化燃
料通路47との合流箇所との間におけるメイン燃料供給
通路13に絞り61が設置され、この絞り61の大きさ
を適宜設定することにより通常運転時においてはディー
ゼル燃料は全量が分流通路37に分流されて乳化装置1
5に導かれ、乳化燃料通路47からの乳化燃料のみディ
ーゼル機関に供給することができ、かつ余計な乳化燃料
は通路37に逆流させ、乳化燃料通路47で再度の乳化
を行わせることができる。
A throttle 61 is provided in the main fuel supply passage 13 between the junction with the branch passage 37 and the junction with the emulsified fuel passage 47, and the size of the throttle 61 is appropriately set. During normal operation, the entire amount of diesel fuel is diverted to the diversion passage 37 and the emulsifier 1
5, only the emulsified fuel from the emulsified fuel passage 47 can be supplied to the diesel engine, and excess emulsified fuel can be returned to the passage 37 to be emulsified again in the emulsified fuel passage 47.

【0027】図1に示すように乳化燃料取出ポート46
にはリターン通路60も設けられ、リターン通路には圧
力制御弁62が設置される。圧力制御弁62は燃料圧が
設定圧を超えると燃料を供給側にリリーフするように構
成される。即ち、圧力制御弁62はハウジング62-1と、
弁体62-2と、スプリング62-3と、セットスクリュ62-4と
から構成され、セットスクリュ62-4の調節によってスプ
リング62-3のばね荷重が変化され、ばね荷重によって弁
体62-2が開弁する際の乳化燃料圧力が変化する。即ち、
乳化燃料圧力をセットスクリュ62-4の操作によって適宜
アジャストすることができる。
As shown in FIG. 1, the emulsified fuel outlet port 46
Is also provided with a return passage 60, and a pressure control valve 62 is provided in the return passage. The pressure control valve 62 is configured to relieve fuel to the supply side when the fuel pressure exceeds a set pressure. That is, the pressure control valve 62 includes the housing 62-1 and
It is composed of a valve element 62-2, a spring 62-3, and a set screw 62-4. The spring load of the spring 62-3 is changed by adjusting the set screw 62-4, and the valve element 62-2 is changed by the spring load. When the valve opens, the emulsified fuel pressure changes. That is,
The emulsified fuel pressure can be appropriately adjusted by operating the set screw 62-4.

【0028】この発明において、ハウジング16は縦置
きにされ、最下部に第1ギヤ24が位置され、中間に第
2ギヤ26、最上部に第3ギヤ28が位置している。こ
の位置関係はエンジンの停止時にエンジンからの分離水
はハウジング16の底部に溜められ、他の部分には行か
ないため、燃料噴射ポンプ10や燃料噴射弁9などの残
留水分に弱い燃料噴射系におけるパーツの保護の観点か
ら重要である。
In the present invention, the housing 16 is placed vertically, the first gear 24 is located at the lowermost position, the second gear 26 is located at the middle, and the third gear 28 is located at the uppermost position. This positional relationship is such that when the engine is stopped, the separated water from the engine is stored at the bottom of the housing 16 and does not go to other parts, so that the fuel injection system such as the fuel injection pump 10 and the fuel injection valve 9 is vulnerable to residual moisture. It is important from the viewpoint of protection of parts.

【0029】次ぎに、この発明のエンジン形成機構の動
作を説明すると、内燃機関の通常作動時(キースイッチ
ON時)、乳化装置15の乳化燃料吐出ポート46にお
ける吐出圧力P1は0.6kg/cm2程度でありディーゼル燃料
タンクに接続された低圧ポンプ(図示しない)主燃料通
路13へのディーゼル燃料圧力P2(例えば0.5kg/cm2
より高く(P1>P2)設定されている。また、通路47と
の合流部位より上流側において主燃料通路13には絞り
61が設置され、ここの流路径が適当に絞られている。
そのため、乳化装置からの乳化燃料のみが燃料噴射ポン
プ10に導かれ、低圧燃料ポンプからのディーゼル燃料
(水無添加燃料)は直接燃料噴射ポンプ10には向かわ
ない。即ち、低圧燃料ポンプ(図示しない)からのディ
ーゼル燃料(矢印4)はメイン通路13より全て分流通
路37に入り、燃料導入ポート36より矢印a(図2)
のように乳化装置15に導入され、添加水導入ポート3
8には矢印bのように添加水が導入される。ディーゼル
燃料及び添加水導入ポート38における添加水は矢印A
方向に回転する第1ギヤ24の歯谷によって矢印cのよ
うに回転方向に運ばれる。第1ギヤ24上のディーゼル
燃料+添加水は第2ギヤ26との噛合い点の付近の位置
P1に来るとハウジング16の内周との間隙30が狭小
になるため、そのうちの一部分は第2ギヤ26とハウジ
ング16の内周との間隙32に向かうも殆どは行き止ま
りとなり、矢印dのように歯車24の回転方向とは反対
の方向にハウジング内周に沿って逆流する。ハウジング
に対するギヤ24の偏心配置によってハウジング16の
内周と第1ギヤ24の外周との間隙30は一旦は広がる
も再び狭まってゆき、そのときの流速は高くなる。図2
及び図3において矢印d´は高速になったハウジング内
周に沿った逆流を表す。他方、燃料+水の混合物は歯車
の回転方向(矢印c方向(順方向))に運ばれている
が、そのうちの高比重の水は歯谷に取り残され矢印A方
向に回転する第1ギヤ24の遠心力によって図3のFに
よって示すように外方に飛散される。このように飛散さ
れた水Fは高速となって矢印d´のように逆流する流体
による強烈なせん断作用を受ける。そして、第1歯車2
4の外周とハウジング内周との間の位置P2で隙間30
が狭くなることから行き場がなくなり、再び方向を転
じ、矢印cのように内周側を第1歯車24の回転方向A
(順方向)に運ばれて行く。このような内周側の順方向
流と外周側の逆方向流の出会いによるせん断作用の繰り
返しにより極微細水滴への粉砕作用が達成され、第2ギ
ヤ26とハウジング16との間の間隙32に流出されて
きた流体は高度の乳化作用を受けることができる。
Next, the operation of the engine forming mechanism of the present invention will be described. During normal operation of the internal combustion engine (when the key switch is ON), the discharge pressure P 1 at the emulsified fuel discharge port 46 of the emulsifier 15 is 0.6 kg / cm. connected low-pressure pump is a diesel fuel tank 2 about (not shown) diesel fuel pressure P 2 to the main fuel passage 13 (e.g., 0.5 kg / cm 2)
It is set higher (P 1 > P 2 ). A throttle 61 is provided in the main fuel passage 13 on the upstream side of the junction with the passage 47, and the diameter of the passage is appropriately reduced.
Therefore, only the emulsified fuel from the emulsifying device is guided to the fuel injection pump 10, and the diesel fuel (water-free fuel) from the low-pressure fuel pump does not go directly to the fuel injection pump 10. That is, all the diesel fuel (arrow 4) from the low-pressure fuel pump (not shown) enters the branch passage 37 from the main passage 13 and enters the arrow a (FIG. 2) from the fuel introduction port 36.
Is introduced into the emulsifying device 15 as shown in FIG.
8, additional water is introduced as indicated by arrow b. The arrow A indicates the additive water at the diesel fuel and additive water introduction port 38.
The gears 24 are carried in the rotational direction as shown by the arrow c by the tooth valleys of the first gear 24 rotating in the direction. When the diesel fuel + added water on the first gear 24 comes to a position P1 near the meshing point with the second gear 26, the gap 30 with the inner circumference of the housing 16 becomes narrower, and a part of the gap 30 becomes the second gear. Almost all dead ends also go toward the gap 32 between the gear 26 and the inner periphery of the housing 16, and flow backward along the inner periphery of the housing in a direction opposite to the rotation direction of the gear 24 as shown by an arrow d. Due to the eccentric arrangement of the gear 24 with respect to the housing, the gap 30 between the inner circumference of the housing 16 and the outer circumference of the first gear 24 once expands but narrows again, and the flow velocity at that time increases. FIG.
And in FIG. 3, the arrow d 'indicates the backflow along the inner circumference of the housing at a high speed. On the other hand, the mixture of fuel and water is carried in the direction of rotation of the gears (direction of arrow c (forward direction)). Among them, the water of high specific gravity is left in the tooth valley and the first gear 24 which rotates in the direction of arrow A. Is scattered outward as indicated by F in FIG. The water F thus scattered at high speed is subjected to an intense shearing action by the fluid flowing backward as indicated by arrow d '. And the first gear 2
At a position P2 between the outer periphery of the housing 4 and the inner periphery of the housing.
Becomes narrower, so there is no place to go, and the direction changes again.
(Forward). By the repetition of the shearing action due to the encounter of the forward flow on the inner peripheral side and the reverse flow on the outer peripheral side, the pulverizing action to the extremely fine water droplets is achieved, and the gap 32 between the second gear 26 and the housing 16 is formed. The discharged fluid can be subjected to a high degree of emulsification.

【0030】第2ギヤ26とハウジング16との間の間
隙32に流入してきた乳化燃料は、両端に行き所が限ら
れていることから、同様な繰り返し的な流れ方向の反転
を受ける。即ち、内層側(歯谷側)では第2ギヤの回転
方向Bに応じた順方向eに流れ、外層側(ハウジング内
周側)では反対方向fに流れ、第1ギヤ24におけると
同様の水滴の極微細化が行われる。そして、第3ギヤ2
8においても歯谷における歯車回転方向(矢印C)に順
じた内層流(矢印g)とハウジング16の内周における
は外層流(矢印h)が得られ、繰り返し的な2流の出会
いせん断による水滴細分化が更に進行される。このよう
な多段(この実施形態では3段)配置により各段におけ
る繰返し的微粒化作用が行われるため、燃料噴射ポンプ
10の入口ポート11に向けて最終的に燃料取出ポート
46から矢印iのように取り出されるときにおいては理
想的といいうる燃料の乳化は実現されている。
The emulsified fuel that has flowed into the gap 32 between the second gear 26 and the housing 16 is subjected to the same repeated reversal of the flow direction due to the limited locations at both ends. That is, water flows in the forward direction e according to the rotation direction B of the second gear on the inner layer side (tooth valley side), and flows in the opposite direction f on the outer layer side (the inner peripheral side of the housing). Is extremely miniaturized. And the third gear 2
In FIG. 8, an inner laminar flow (arrow g) following the gear rotation direction (arrow C) at the tooth valley and an outer laminar flow (arrow h) at the inner periphery of the housing 16 are obtained. Water droplet subdivision is further advanced. With such a multi-stage (three-stage in this embodiment) arrangement, repetitive atomization is performed in each stage, so that the fuel is finally discharged from the fuel outlet port 46 toward the inlet port 11 of the fuel injection pump 10 as shown by an arrow i. The fuel emulsification which can be said to be ideal when the fuel is taken out is realized.

【0031】そしてこのように理想的な乳化が行われた
乳化燃料は図1において通路47より通路13を経て吸
入ポート11より燃料噴射ポンプ10の吸入に導入さ
れ、吐出ポート12より各気筒の燃料噴射弁9に送ら
れ、燃料噴射タイミングにおいて各燃料噴射弁9よりそ
れぞれの気筒燃焼室に噴射される。
The emulsified fuel thus ideally emulsified is introduced into the intake port of the fuel injection pump 10 from the intake port 11 through the passage 13 through the passage 47 in FIG. The fuel is sent to the injection valves 9 and is injected from the fuel injection valves 9 into the respective cylinder combustion chambers at the fuel injection timing.

【0032】そしてこのように理想的な乳化が行われた
乳化燃料は図1において通路47より通路13を経て吸
入ポート11より燃料噴射ポンプ10の吸入に導入さ
れ、吐出ポート12より各気筒の燃料噴射弁9に送ら
れ、燃料噴射タイミングにおいて各燃料噴射弁よりそれ
ぞれの気筒燃焼室に噴射される。
The idealized emulsified fuel is introduced into the fuel injection pump 10 from the suction port 11 through the passage 47 through the passage 13 in FIG. The fuel is sent to the injection valve 9 and is injected into each cylinder combustion chamber from each fuel injection valve at a fuel injection timing.

【0033】以上述べたこの発明の乳化動作のため、ギ
ヤ24, 26, 28の相互噛合構造及びギヤ24, 26, 28の外周
とハウジング16の内周との位置関係において肝要なポ
イントを説明すると、先ず、第1ギヤ24とハウジング
16との位置関係において、回転方向(矢印A)におい
てポート36, 38の手前のP3の位置での第1ギヤ24の
外周とハウジング内周との気密性が重要である。即ち、
このような気密性により第1ギヤ24の回転は歯谷の部
位に負圧を惹起させ、これに対向したポート36, 38から
のディーゼル燃料、添加水の吸引を惹起させることがで
きる。また、第1ギヤ24と第2ギヤとの噛合い点P4
における密封性及び第2間隙32と対向した位置P5に
おける第2ギヤ26とハウジング16内周との気密性も
重要である。このような気密性により第1間隙30から
の流体を第2間隙32で反復的流を形成することによる
乳化を良好に行うことができる。
For the emulsification operation of the present invention described above, important points will be described with respect to the intermeshing structure of the gears 24, 26, 28 and the positional relationship between the outer periphery of the gears 24, 26, 28 and the inner periphery of the housing 16. First, in the positional relationship between the first gear 24 and the housing 16, the airtightness between the outer circumference of the first gear 24 and the inner circumference of the housing at the position P3 before the ports 36 and 38 in the rotation direction (arrow A). is important. That is,
Due to such airtightness, the rotation of the first gear 24 causes a negative pressure to occur at the tooth valley portion, and can cause the suction of the diesel fuel and the additional water from the ports 36 and 38 opposed thereto. Further, a meshing point P4 between the first gear 24 and the second gear
The airtightness between the second gear 26 and the inner periphery of the housing 16 at the position P5 facing the second gap 32 is also important. Such airtightness enables good emulsification by forming a repetitive flow of the fluid from the first gap 30 in the second gap 32.

【0034】水添加制御用の給水ポンプ42は電磁式な
どの電動式ポンプとし、制御回路45は燃料の流量変化
に追随して水添加を制御するように給水ポンプ42を制
御し、内燃機関の運転条件による燃料流量の変化に追随
していつも最適な量の水添加を行うことができる。
The water supply pump 42 for controlling water addition is an electric pump such as an electromagnetic type, and the control circuit 45 controls the water supply pump 42 so as to control the water addition following a change in the flow rate of the fuel. An optimal amount of water can always be added following a change in fuel flow rate due to operating conditions.

【0035】エンジンの停止時(キーオフ時)は乳化装
置の駆動用のモータは即座に停止されるため、乳化燃料
吐出ポート46の圧力は即座に下がり、低圧燃料ポンプ
からの純ディーゼル燃料(添加水が無添加)が通路13
(絞り61)を介して吸入ポート11より直接燃料噴射
ポンプ10に導入される。このような、添加水が全然加
わっていない通常のディーゼル燃料により暫時(数分
間)の運転が継続される。すなわちキーオフ操作に対し
て燃料乳化装置15の駆動モータの作動は即座に停止さ
せるがディーゼル機関の停止を数分間遅延させる適当な
手段を設ける。例えば、キーオフに対してディーゼル燃
料タンクからの燃料供給の実際の停止を遅延させる遅延
回路(このような遅延回路自体は公知である)の如きも
のを設置する。そのため、燃料噴射ポンプ10から燃料
噴射弁9への燃料配管系に残存していた乳化された燃料
は通常燃料に完全に置きかえられる。そのため、水分が
残留していたとすると生じうる乳化された燃料からの水
分離及びマヨネーズ化現象による悪影響を完全に排除す
ることができる。
When the engine is stopped (at key-off), the motor for driving the emulsifying device is immediately stopped, so that the pressure at the emulsified fuel discharge port 46 is immediately reduced, and pure diesel fuel (added water) is supplied from the low-pressure fuel pump. Is not added) is the passage 13
It is directly introduced into the fuel injection pump 10 from the suction port 11 via the (throttle 61). The operation for a while (several minutes) is continued by such a normal diesel fuel to which no added water is added. That is, the operation of the drive motor of the fuel emulsification device 15 is immediately stopped in response to the key-off operation, but appropriate means is provided for delaying the stop of the diesel engine for several minutes. For example, a delay circuit (such a delay circuit itself is known) that delays the actual stoppage of the fuel supply from the diesel fuel tank in response to a key-off is provided. Therefore, the emulsified fuel remaining in the fuel piping system from the fuel injection pump 10 to the fuel injection valve 9 is completely replaced with the normal fuel. Therefore, it is possible to completely eliminate the adverse effects caused by the water separation from the emulsified fuel and the mayonnaise phenomenon that may occur if moisture remains.

【0036】ディーゼル機関が停止されたときハウジン
グ16内には乳化された燃料が充満するが、軽油などの
場合は比較的短時間の内に燃料と水とは分離し、水は相
対的に重いことから下に溜まる。この発明の実施形態で
はハウジング16内のギヤ24, 26, 28は縦置きであり、
入口側の第1ギヤ24は最下部に位置しているため、分
離水がハウジング16の底に溜まるだけであり、このハ
ウジング底に溜まった水は時間の経過と共に粘性を増
し、マヨネーズ状になりうるが、次回にエンジンが回さ
れるときるに間隙30, 32, 34を通過するとき再び受ける
繰り返し的なせん断作用により高度に破砕されるため、
再び良好に乳化された燃料として燃焼室に供給すること
ができる。必要あれば、図1に示すようにハウジング1
6の底部にドレイン通路93を設け、ドレイン通路93
に開閉弁94を設け、開閉弁94は通常は閉鎖している
が、必要時に開放させることによりハウジング16に溜
まった水を電動ポンプにより排出することができる。
When the diesel engine is stopped, the housing 16 is filled with the emulsified fuel, but in the case of light oil or the like, the fuel and water separate in a relatively short time, and the water is relatively heavy. It collects from the bottom. In the embodiment of the present invention, the gears 24, 26, 28 in the housing 16 are set vertically,
Since the first gear 24 on the inlet side is located at the lowermost position, the separated water only accumulates at the bottom of the housing 16, and the water accumulated at the bottom of the housing increases in viscosity with time and becomes mayonnaise. Yes, but the next time the engine is run, it will be highly crushed by the repetitive shearing action that it receives again when passing through gaps 30, 32, 34,
It can again be supplied to the combustion chamber as well emulsified fuel. If necessary, as shown in FIG.
6, a drain passage 93 is provided at the bottom of the drain passage 93.
An opening / closing valve 94 is provided in the housing 16 and the opening / closing valve 94 is normally closed. However, by opening the opening and closing when necessary, water accumulated in the housing 16 can be discharged by an electric pump.

【0037】図1においてハウジングの筒状内周面にお
いて適宜凹凸100, 102を設けることができ、凹凸100, 1
02により流れに渦などの乱れが発生し、水滴の細分化に
寄与させることができる。
In FIG. 1, irregularities 100 and 102 can be appropriately provided on the cylindrical inner peripheral surface of the housing.
Due to 02, turbulence such as a vortex occurs in the flow, which can contribute to the fragmentation of water droplets.

【0038】以上の実施形態において、燃料噴射ポンプ
10は図示しないが燃料タンクへのリターン回路を有し
ているが、このリターン回路からの燃料を乳化器の吸入
側に戻す切替手段(3方弁など)を設置することができ
る。
In the above embodiment, although the fuel injection pump 10 has a return circuit (not shown) for returning to the fuel tank, a switching means (a three-way valve) for returning the fuel from the return circuit to the suction side of the emulsifier. Etc.) can be installed.

【0039】以上の説明は燃料噴射ポンプ10は列型と
して説明した。列型のポンプは燃料溜めの容積が相対的
に小さいため、エンジン停止時の水無添加燃料への置換
にようする時間が短縮することから好ましい。また、デ
ィーゼルの排気ガス規制が大型トラックに向けられてお
り、大型トラックでは列型が主流であることからも好ま
しい。しかしながら、分配型燃料噴射ポンプでこの発明
を実施することももとより可能である。
In the above description, the fuel injection pump 10 has been described as a row type. The row type pump is preferable because the capacity of the fuel reservoir is relatively small, so that the time required to replace the fuel with water-free fuel when the engine is stopped is reduced. Further, diesel exhaust gas regulations are being applied to large trucks, and row trucks are mainly used for large trucks, which is preferable. However, it is naturally possible to implement the present invention with a distribution type fuel injection pump.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明になる燃料乳化装置を備えたデ
ィーゼル機関用の燃料供給系の概略図である。
FIG. 1 is a schematic diagram of a fuel supply system for a diesel engine equipped with a fuel emulsification device according to the present invention.

【図2】図2は図1の燃料乳化装置の拡大図である。FIG. 2 is an enlarged view of the fuel emulsification device of FIG. 1;

【図3】図3は図2の燃料乳化装置の部分拡大図であ
り、この発明による水滴の破砕原理を説明している。
FIG. 3 is a partially enlarged view of the fuel emulsifying device of FIG. 2, illustrating the principle of crushing water droplets according to the present invention.

【符号の説明】[Explanation of symbols]

8…ディーゼル機関の本体 9…燃料噴射弁 10…燃料噴射ポンプ 11…入口ポート 12…吐出ポート 15…燃料乳化装置 16…ハウジング 18, 20, 22…筒状凹部 24, 26, 28…歯車 30, 32, 34…乳化燃料通路を形成する間隙 36…ディーゼル燃料導入ポート 38…添加水供給通路 46…乳化燃料取出ポート 47…乳化燃料供給通路 59…アジャストスクリュ 60…リターン通路 61…絞り 62…圧力制御弁 8: Diesel engine body 9: Fuel injection valve 10: Fuel injection pump 11: Inlet port 12: Discharge port 15: Fuel emulsifier 16: Housing 18, 20, 22 ... Cylindrical recess 24, 26, 28 ... Gear 30, 32, 34: gap forming an emulsified fuel passage 36 ... diesel fuel introduction port 38 ... additive water supply passage 46 ... emulsified fuel takeout port 47 ... emulsified fuel supply passage 59 ... adjust screw 60 ... return passage 61 ... throttle 62 ... pressure control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 43/00 F02M 55/00 D 55/00 F04C 11/00 F F04C 11/00 15/00 G 15/00 F02M 25/02 K A T Fターム(参考) 3G066 AA07 AB02 AB06 AB08 AC02 AC06 AD12 BA23 BA28 CB16 DB19 3G092 AA02 AA06 AA08 AB03 AB04 AB15 BB10 BB20 CA01 CB05 CB06 CB07 CB08 DF03 DF06 EA11 EA12 EA14 EA16 EA28 EA29 3G301 HA02 HA04 HA24 JA24 JA25 JA26 KA28 LB07 LB13 MA00 NE22 PF16Z 3H044 AA02 BB02 CC00 CC19 DD03 DD05 DD07 DD15 DD16 DD19──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02M 43/00 F02M 55/00 D 55/00 F04C 11/00 F F04C 11/00 15/00 G 15 / 00 F02M 25/02 K ATF term (reference) 3G066 AA07 AB02 AB06 AB08 AC02 AC06 AD12 BA23 BA28 CB16 DB19 3G092 AA02 AA06 AA08 AB03 AB04 AB15 BB10 BB20 CA01 CB05 CB06 CB07 CB08 EA03 EA12 EA03 EA03 HA24 JA24 JA25 JA26 KA28 LB07 LB13 MA00 NE22 PF16Z 3H044 AA02 BB02 CC00 CC19 DD03 DD05 DD07 DD15 DD16 DD19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関に供給される燃料に水添加する
ことによりその乳化を行う燃料乳化手段を備え、前記燃
料乳化手段はハウジングと、一連に噛合いしそれぞれが
ハウジングの円周面に対して対向配置された複数のギヤ
と、該ギヤの回転駆動手段とから構成され、各ギヤ外周
面とハウジング円周面との間に円周方向において間隔が
変化する円周方向間隙が形成され、これら円周方向間隙
は一連に連接され燃料乳化通路をなし、燃料及び添加水
は前記乳化通路にその一端側より供給され、乳化された
燃料は前記乳化通路の他端側から取り出されて内燃機関
に供給されるようにされ、更に、機関の停止に先だって
前記燃料乳化手段の作動を無効とし、水無添加燃料を機
関に供給した状態での運転を暫時継続せしめる機関停止
時制御手段を備えた内燃機関の燃料供給装置。
1. A fuel emulsifying means for emulsifying a fuel supplied to an internal combustion engine by adding water thereto, wherein said fuel emulsifying means is engaged with a housing in a series and each of the fuel emulsifying means is in contact with a circumferential surface of the housing. A plurality of gears arranged opposite to each other, and a rotation driving means for the gears are formed, and a circumferential gap is formed between the outer peripheral surface of each gear and the circumferential surface of the housing, the circumferential gap varying in the circumferential direction. The circumferential gap is connected in series to form a fuel emulsification passage, fuel and added water are supplied to the emulsification passage from one end thereof, and the emulsified fuel is taken out from the other end of the emulsification passage to the internal combustion engine. And an engine stop-time control unit for invalidating the operation of the fuel emulsification unit prior to the stop of the engine and continuing the operation in a state where the water-free fuel is supplied to the engine for a while. Fuel supply device for internal combustion engine.
【請求項2】 請求項1に記載の発明において、機関停
止時制御手段は乳化燃料の吐出圧力自体により乳化燃料
供給と水無添加燃料供給との自動的切替を行うことを特
徴とする内燃機関の燃料供給装置。
2. The internal combustion engine according to claim 1, wherein the engine stop time control means automatically switches between the emulsified fuel supply and the water-free fuel supply based on the emulsified fuel discharge pressure itself. Fuel supply system.
【請求項3】 請求項1に記載の発明において、内燃機
関はディーゼル機関であることを特徴とする内燃機関の
燃料乳化装置。
3. The fuel emulsification device for an internal combustion engine according to claim 1, wherein the internal combustion engine is a diesel engine.
【請求項4】 請求項1に記載の発明において、前記ギ
ヤは縦置きに配置され、供給側が排出側に対して下方に
位置したことを特徴とする内燃機関用の燃料乳化装置。
4. The fuel emulsification device for an internal combustion engine according to claim 1, wherein the gear is disposed vertically and a supply side is located below a discharge side.
【請求項5】 請求項4に記載の発明において、ハウジ
ングの底部にドレン水の強制的排出手段を設置したこと
を特徴とする内燃機関用の燃料乳化装置。
5. A fuel emulsification device for an internal combustion engine according to claim 4, wherein a forced drainage means for drain water is provided at a bottom of the housing.
【請求項6】 請求項1に記載の発明において、燃料の
流量変化に追随して水添加を制御する電動式ポンプを備
えたことを特徴とする内燃機関用の燃料乳化装置。
6. A fuel emulsification apparatus for an internal combustion engine according to claim 1, further comprising an electric pump for controlling water addition following a change in fuel flow rate.
【請求項7】 請求項1に記載の発明において、燃料噴
射ポンプから燃料タンクにリターンする回路に燃料を乳
化器の吸入側に戻す切替手段を設置したことを特徴とす
る内燃機関用の燃料乳化装置。
7. The fuel emulsification for an internal combustion engine according to claim 1, wherein a switching means for returning the fuel to the suction side of the emulsifier is provided in a circuit returning from the fuel injection pump to the fuel tank. apparatus.
JP2001019397A 2001-01-29 2001-01-29 Fuel emulsifying device using light fuel as fuel for internal combustion engine Pending JP2002221101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019397A JP2002221101A (en) 2001-01-29 2001-01-29 Fuel emulsifying device using light fuel as fuel for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019397A JP2002221101A (en) 2001-01-29 2001-01-29 Fuel emulsifying device using light fuel as fuel for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002221101A true JP2002221101A (en) 2002-08-09

Family

ID=18885280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019397A Pending JP2002221101A (en) 2001-01-29 2001-01-29 Fuel emulsifying device using light fuel as fuel for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002221101A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125428A (en) * 2004-10-26 2006-05-18 Sankyo Mfg Co Ltd Driving source mounting structure
KR101470210B1 (en) * 2013-09-23 2014-12-05 현대자동차주식회사 Fuel pump system
US20160010593A1 (en) * 2013-03-01 2016-01-14 Roman TANIEL Method and device for operating a diesel engine with emulsion fuels of variable composition
JP2018096354A (en) * 2016-12-16 2018-06-21 株式会社アンレット Root pump
CN109958563A (en) * 2019-04-22 2019-07-02 浙江康松动力科技有限公司 A kind of novel gear type electric fuel punp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349237A (en) * 1986-08-14 1988-03-02 Daido Kogyo Co Ltd Emulsion device
JPH02133533U (en) * 1989-04-10 1990-11-06
JP2000161095A (en) * 1998-11-25 2000-06-13 Daihatsu Diesel Mfg Co Ltd Stop control device for diesel engine
JP2001012309A (en) * 1999-06-29 2001-01-16 Nabco Ltd Emulsion fuel feeding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349237A (en) * 1986-08-14 1988-03-02 Daido Kogyo Co Ltd Emulsion device
JPH02133533U (en) * 1989-04-10 1990-11-06
JP2000161095A (en) * 1998-11-25 2000-06-13 Daihatsu Diesel Mfg Co Ltd Stop control device for diesel engine
JP2001012309A (en) * 1999-06-29 2001-01-16 Nabco Ltd Emulsion fuel feeding device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125428A (en) * 2004-10-26 2006-05-18 Sankyo Mfg Co Ltd Driving source mounting structure
US20160010593A1 (en) * 2013-03-01 2016-01-14 Roman TANIEL Method and device for operating a diesel engine with emulsion fuels of variable composition
US9890742B2 (en) * 2013-03-01 2018-02-13 Roman TANIEL Method and device for operating a diesel engine with emulsion fuels of variable composition
KR101470210B1 (en) * 2013-09-23 2014-12-05 현대자동차주식회사 Fuel pump system
JP2018096354A (en) * 2016-12-16 2018-06-21 株式会社アンレット Root pump
CN109958563A (en) * 2019-04-22 2019-07-02 浙江康松动力科技有限公司 A kind of novel gear type electric fuel punp

Similar Documents

Publication Publication Date Title
CN101210529B (en) Fuel feed apparatus and accumulator fuel injection system having the same
CN87106928A (en) Water-in-oil emulsion production method and device thereof
US7448361B1 (en) Direct injection fuel system utilizing water hammer effect
CN101182826A (en) Improvement to a fuel-injection system for an internal-combustion engine
EP0665767A4 (en) Mechanical oil/water emulsifier.
CN1252383C (en) Dual-fuel internal cobustion engine using gas fuel at the same time
JP2002221101A (en) Fuel emulsifying device using light fuel as fuel for internal combustion engine
EP1607601A1 (en) Engine with primary and secondary intake passages
CN1313463A (en) Four stroke IC engine
JP4667262B2 (en) EGR device
US5904121A (en) Water/fuel mixing system for a diesel engine
JPS63230955A (en) Device for injecting combustible emulsion into internal combustion engine
JP2009148761A (en) Mixer
JP4444269B2 (en) Emulsion fuel supply device
JP4510798B2 (en) Emulsion fuel supply device
US20150122216A1 (en) Method and system to improve atomization and combustion of heavy fuel oils
DE102007039209A1 (en) Internal-combustion engine i.e. petrol engine, operating method for motor vehicle, involves opening bypassing channel during load requirement to internal-combustion engine for preset time duration in no-load operation of engine
JPH06147019A (en) Substituting-mixing type emulsion fuel production system
DE2913864A1 (en) GAS-OPERATED INTERNAL COMBUSTION ENGINE
RU2300658C2 (en) Method of and system to prepare and deliver fuel-water emulsion into internal combustion engines and remove of non-used fuel-water emulsion from standard fuel system
JP4510799B2 (en) Emulsion fuel supply device
CN215719166U (en) Fuel supply system and fuel supply assembly thereof
JP4252735B2 (en) Emulsion fuel supply system and combustion apparatus equipped with the system
DE2928332A1 (en) Fuel saving system for IC engine - has secondary throttle flap in by=pass to reduce fuel during braking and downhill travel
RU45468U1 (en) SYSTEM OF CLEANING AND RECIRCULATION OF EXHAUST GASES OF THE DIESEL ENGINE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727