JP2002216765A - Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same - Google Patents

Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Info

Publication number
JP2002216765A
JP2002216765A JP2001013769A JP2001013769A JP2002216765A JP 2002216765 A JP2002216765 A JP 2002216765A JP 2001013769 A JP2001013769 A JP 2001013769A JP 2001013769 A JP2001013769 A JP 2001013769A JP 2002216765 A JP2002216765 A JP 2002216765A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
mmol
same manner
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001013769A
Other languages
Japanese (ja)
Inventor
Junko Shigehara
淳孝 重原
Yoshihiro Asai
美博 浅井
Masaru Onishi
賢 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001013769A priority Critical patent/JP2002216765A/en
Publication of JP2002216765A publication Critical patent/JP2002216765A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel lithium secondary battery and a novel lithium ion secondary battery capable of providing high capacity and high energy density, of a long life and superior in repeated charging and discharging characteristics. SOLUTION: This invention relates to positive electrode material composed of oligomer above dimer or two-dimensional polymer of poly(cyano(metal) phthalocyanine) or poly(cyano(metal)pyrazinocyanine), and the lithium secondary battery and lithium ion secondary battery including the same material as a positive electrode member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム(イオ
ン)二次電池に関する。さらに詳しくは、金属リチウ
ム、リチウム/アルミニウム合金、グラファイトリチウ
ム(以下、Li・Gpと略)などをアノードとし、ヘキサフ
ロロリン酸リチウム有機溶媒溶液ないしそれをポリマー
ゲルに含浸させたフィルムなどを電解質とするリチウム
(イオン)二次電池、およびそのカソード部材として使
用される材料に関する。
The present invention relates to a lithium (ion) secondary battery. More specifically, lithium metal, lithium / aluminum alloy, lithium graphite (hereinafter abbreviated as Li-Gp) or the like is used as an anode, and a lithium hexafluorophosphate organic solvent solution or a film in which the polymer gel is impregnated with a polymer gel is used as an electrolyte. And a material used as a cathode member thereof.

【0002】[0002]

【従来の技術】従来の技術によるリチウム(イオン)二
次電池は、[金属リチウム/電解質/ポリアニリン]、あ
るいは[Li・Gp/電解質/コバルト酸リチウム]などの構
成になっており、出力は3〜4.2Vであるが、電池容量・
エネルギー密度はカソード部材の低い能力によって制限
され、電池容量150mAh/g、エネルギー密度550Wh/kg程度
でしかない。
2. Description of the Related Art A lithium (ion) secondary battery according to a conventional technique has a configuration of [metal lithium / electrolyte / polyaniline] or [Li · Gp / electrolyte / lithium cobalt oxide], and has an output of 3%. ~ 4.2V, but the battery capacity
The energy density is limited by the low capacity of the cathode member, and the battery capacity is only 150 mAh / g and the energy density is about 550 Wh / kg.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、上記
従来の状況に鑑み、より高容量・高エネルギー密度を得
ることができ、長寿命かつ繰り返し充放電特性に優れた
新規なリチウム(イオン)二次電池を提供することを目
的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a novel lithium (ion) capable of obtaining a higher capacity and a higher energy density, having a long life and excellent repetitive charge / discharge characteristics. It is intended to provide a secondary battery.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、請求項1の(化1)に示すような、ポリ
[シアノ(金属)フタロシアニン]ないしポリ[シアノ
(金属)ピラジノシアニン]の、二量体以上のオリゴマ
ーまたは二次元ポリマーからなるカソード用材料を提供
する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention relates to a poly-method as defined in claim 1 (formula 1).
Provided is a cathode material comprising a dimer or higher oligomer or a two-dimensional polymer of [cyano (metal) phthalocyanine] or poly [cyano (metal) pyrazinocyanine].

【0005】また、請求項2および3は、請求項1記載
の材料をカソード部材に含むことを特徴とするリチウム
二次電池およびリチウムイオン二次電池である。なお、
ここでリチウムイオン二次電池とは、アノードとしてLi
・Gpなどの非金属リチウムを用いたものをいう。
[0005] Claims 2 and 3 are lithium secondary batteries and lithium ion secondary batteries comprising the material described in claim 1 in a cathode member. In addition,
Here, a lithium-ion secondary battery refers to Li
-A material using non-metallic lithium such as Gp.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のカソード用材料は、上記(化1)に示すよう
な、ポリ[シアノ(金属)フタロシアニン]ないしポリ
[シアノ(金属)ピラジノシアニン]の、二量体以上のオ
リゴマーまたは二次元ポリマー(以下、二次元ポリマー
と略)から構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The cathode material of the present invention comprises a poly [cyano (metal) phthalocyanine] or a poly [cyano (metal) phthalocyanine]
It is composed of a dimer or higher oligomer or a two-dimensional polymer (hereinafter abbreviated as a two-dimensional polymer) of [cyano (metal) pyrazinocyanine].

【0007】ただし、上記(化1)において、M=H2また
は周期律表において第4〜12族の遷移金属イオンであ
り、M’はMと同様に定義され、M’=MまたはM’≠Mであ
り、X=CまたはNであり、X’はXと同様に定義され、X’=
XまたはX’≠Xであり、L=無しまたは酸素原子であり、
L’はLと同様に定義され、L’=LまたはL’≠Lである。
また、上記二次元ポリマーの重合度は、特に限定される
ものではないが、電解液への溶解性低下の観点から、重
合度nがn≧2であることが必要とされ、また、ポリマー
が不溶性であってnが8を超えるポリマーが合成しにくい
場合があること、さらにnの増加に伴ってシアノ基の相
対的な含量すなわち[シアノ基の数/分子量]が減じられ
てポリマーのアクセプター性が減ってカソード半電池反
応の電位が卑な方向に移動する(電池の出力が減少する
方向に移動する)ことを考え合わせ、n=3〜6が最も好ま
しい。なお、重合度nは、上記(化1)において一つの
フタロシアニンまたはピラジノシアニン環骨格と一つの
二座配位子Lからなる単位構造の「繰り返し構造数」で
あり、最も簡単にはn=[ポリマーに含まれるMの数]+[ポ
リマーに含まれるM’の数]、で表される。すなわち単位
繰り返し構造は上記(化1)の点線で囲った部分に相当
する。
However, in the above (Chemical Formula 1), M = H 2 or a transition metal ion of Groups 4 to 12 in the periodic table, M ′ is defined in the same manner as M, and M ′ = M or M ′ ≠ M, X = C or N, X ′ is defined as X, and X ′ =
X or X ′ ≠ X, L = none or an oxygen atom,
L ′ is defined similarly to L, and L ′ = L or L ′ ≠ L.
The degree of polymerization of the two-dimensional polymer is not particularly limited, but from the viewpoint of a decrease in solubility in the electrolyte, the degree of polymerization n is required to be n ≧ 2, and the polymer is In some cases, it is difficult to synthesize polymers that are insoluble and n exceeds 8, and as the number of n increases, the relative content of cyano groups, that is, [number of cyano groups / molecular weight] decreases, and the acceptability of the polymer decreases. In view of the fact that the potential of the cathode half-cell reaction moves in a negative direction (moves in a direction in which the output of the battery decreases), n = 3 to 6 is most preferable. The degree of polymerization n is the “number of repeating structures” of the unit structure composed of one phthalocyanine or pyrazinocyanine ring skeleton and one bidentate ligand L in the above (Chemical Formula 1). The number of M contained in the polymer] + [the number of M ′ contained in the polymer]. That is, the unit repeating structure corresponds to the portion surrounded by the dotted line in the above (Chemical Formula 1).

【0008】上記カソード用材料を利用してリチウム
(イオン)二次電池を作製するに際しては、アノードお
よび電解質には従来知られたものを適宜採用することが
できる。アノードの具体例としては、金属リチウム、も
しくはリチウム/アルミニウム合金、グラファイトリチ
ウム(Li・Gp)などを挙げることができ、電解質として
は、ヘキサフロロリン酸リチウム(LiPF6)有機溶媒溶
液などのリチウム塩の非水溶液ないしそれをポリマーゲ
ルに含浸させたフィルムなどが挙げられる。
In producing a lithium (ion) secondary battery using the above-mentioned cathode material, conventionally known anodes and electrolytes can be appropriately employed. Specific examples of the anode include metallic lithium, lithium / aluminum alloy, and graphite lithium (Li · Gp). The electrolyte is a lithium salt such as a lithium hexafluorophosphate (LiPF 6 ) organic solvent solution. And a film in which the polymer gel is impregnated.

【0009】そして、カソード部材には、本発明のカソ
ード用材料(二次元ポリマー)と、例えばアセチレンブ
ラックなどの集電粒子、およびポリビニリデンフロリド
(PVDFと略)などの結着剤とを混練・乾燥させ薄膜とし
たものを用いる。なお、本発明の二次元ポリマーの割合
は、特に限定されるものではないが、カソード部材全体
に対して、50〜85wt%程度とすることが好ましい。ま
た、アセチレンブラックなどの集電粒子は、多すぎると
容量低下をもたらし、逆に少なすぎると内部インピーダ
ンスの増加を引き起こすので、カソード部材全体に対し
て、40〜10wt%程度とすることが好ましい。結着剤の量
は、カソード用材料と集電粒子を結着できる限りにおい
て最小量で良く、概ね25wt%以下、好ましくは5〜15wt%
である。
The cathode material is kneaded with the cathode material (two-dimensional polymer) of the present invention, current-collecting particles such as acetylene black, and a binder such as polyvinylidene fluoride (abbreviated as PVDF). -Use a dried thin film. In addition, the ratio of the two-dimensional polymer of the present invention is not particularly limited, but is preferably about 50 to 85 wt% with respect to the entire cathode member. When the amount of the current-collecting particles such as acetylene black is too large, the capacity is reduced. On the other hand, when the amount is too small, the internal impedance is increased. The amount of the binder may be a minimum amount as long as it can bind the cathode material and the current collecting particles, and is approximately 25 wt% or less, preferably 5 to 15 wt%.
It is.

【0010】[0010]

【実施例】以下、実施例に基づき本発明をさらに詳細に
説明する。なお、実施例1〜12は本発明に係る二次元
ポリマーの合成例であり、実施例13〜36は上記二次
元ポリマーを用いてリチウム二次電池を作製した例であ
る。 (実施例1)テトラシアノベンゼン(TCBと略)1.0g
(5.6mmol)をスルホラン35mlに溶解し、0.05mlのジア
ザビシクロウンデセンを加えて窒素気流下に135℃にて2
時間反応、約1lのクロロホルムに注下して黒緑色沈殿を
ろ集した。最小量のDMFに溶解し、クロロホルムに再沈
殿精製して、オクタシアノ無金属フタロシアニン(以
後、H2PcOC)0.90g(収率90%)を得た。TOF-Massスペク
トル:m/z=714(分子量=714.6)。H2PcOCの全量とTCB
0.68g(3.8mmol)を(*)DMF中に混合し、減圧乾固した
後、250℃にて3時間、続いて300℃にて2時間反応させ、
DMFおよびクロロホルムで洗浄して不溶性の黒緑色固体6
30mgを得た。ニトリル量をジブチルアルミニウムヒドリ
ドにより滴定して求めたところ、(化1)においてM=
M’=H2、X=X’=C、L=無し、n=3.1の二次元ポリマ―であ
ることが確認された。
The present invention will be described in more detail with reference to the following examples. Examples 1 to 12 are examples of synthesizing the two-dimensional polymer according to the present invention, and Examples 13 to 36 are examples of manufacturing a lithium secondary battery using the two-dimensional polymer. (Example 1) 1.0 g of tetracyanobenzene (abbreviated as TCB)
(5.6 mmol) was dissolved in 35 ml of sulfolane, and 0.05 ml of diazabicycloundecene was added thereto.
The reaction was allowed to proceed for an hour, and the mixture was poured into about 1 liter of chloroform, and a black-green precipitate was collected by filtration. It was dissolved in a minimum amount of DMF and purified by reprecipitation in chloroform to obtain 0.90 g (yield: 90%) of octacyano metal-free phthalocyanine (hereinafter, H 2 PcOC). TOF-Mass spectrum: m / z = 714 (molecular weight = 714.6). Total amount of H 2 PcOC and TCB
After mixing 0.68 g (3.8 mmol) in (*) DMF and drying under reduced pressure, the mixture was reacted at 250 ° C. for 3 hours, and then at 300 ° C. for 2 hours,
Wash with DMF and chloroform for insoluble black-green solid 6
30 mg were obtained. The amount of nitrile was determined by titration with dibutylaluminum hydride.
It was confirmed that the polymer was a two-dimensional polymer having M '= H 2 , X = X' = C, L = none, and n = 3.1.

【0011】(実施例2)テトラシアノベンゼン1.0g
(5.6mmol)と酢酸第一鉄無水和物0.24g(1.4mmol)を
スルホラン35mlに溶解し、0.05mlのジサザビシクロウン
デセンを加えて窒素気流下に135℃にて2時間反応、約1l
のクロロホルムに注下して黒緑色沈殿をろ集した。最小
量のDMFに溶解し、クロロホルムに再沈殿精製して、オ
クタシアノ鉄フタロシアニン(以後、FePcOC)1.1g(収
率70%)を得た。TOF-Massスペクトル:m/z=768(分子量
=768.5)。FePcOC全量、ビスアセチルアセトナト鉄(II)
錯体0.22g(1.41mmol)、TCB 0.75g(4.2mmol)を用い
て実施例1と同様に反応させ、不溶性の黒緑色固体820m
gを得た。ニトリル量を実施例1と同様に求め、また焼
成物の原子吸光分析からFe含量を求めたところ、(化
1)においてM=M’=Fe、X=X’=C、L=無し、n=4.5の二次
元ポリマーであることが確認された。
Example 2 1.0 g of tetracyanobenzene
(5.6 mmol) and 0.24 g (1.4 mmol) of anhydrous ferrous acetate are dissolved in 35 ml of sulfolane, and 0.05 ml of dissabicycloundecene is added. The mixture is reacted at 135 ° C. for 2 hours under a nitrogen stream, about 1 l.
The mixture was poured into chloroform, and a black-green precipitate was collected by filtration. The residue was dissolved in a minimum amount of DMF and purified by reprecipitation in chloroform to obtain 1.1 g (70% yield) of octacyanoiron phthalocyanine (hereinafter referred to as FePcOC). TOF-Mass spectrum: m / z = 768 (molecular weight
= 768.5). FePcOC total amount, bis (acetylacetonato) iron (II)
The reaction was carried out in the same manner as in Example 1 using 0.22 g (1.41 mmol) of the complex and 0.75 g (4.2 mmol) of TCB, and 820 m of an insoluble black green solid was obtained.
g was obtained. When the amount of nitrile was determined in the same manner as in Example 1 and the Fe content was determined by atomic absorption analysis of the calcined product, M = M ′ = Fe, X = X ′ = C, L = none, n = = 4.5 was confirmed as a two-dimensional polymer.

【0012】(実施例3)酢酸第一鉄無水和物の替わり
に酢酸コバルト無水和物0.25g(1.4mmol)を用いてコバ
ルトオクタシアノフタロシアニン(以後、CoPcOC)0.86
g(収率80%)を得て[TOF-Massスペクトル:m/z=771(分
子量=771.6)]、その全量をビスアセチルアセトナトコ
バルト(II)0.18g(1.1mmol)、TCB 0.80g(4.5mmol)と
反応させた他は実施例2と同様にして不溶性の黒緑色固
体657mgを得た。ニトリル量を実施例1と同様に求め、
また焼成物の原子吸光分析からCo含量を求めたところ、
(化1)においてM=M’=Co、X=X’=C、L=無し、n=3.5の
二次元ポリマーであることが確認された。
Example 3 Cobalt octacyanophthalocyanine (hereinafter referred to as CoPcOC) 0.86 was obtained by using cobalt acetate anhydrous 0.25 g (1.4 mmol) instead of ferrous acetate anhydrous.
g (yield 80%) [TOF-Mass spectrum: m / z = 771 (molecular weight = 771.6)], the total amount of which is 0.18 g (1.1 mmol) of bisacetylacetonatocobalt (II), 0.80 g of TCB ( 657 mg of an insoluble black-green solid was obtained in the same manner as in Example 2 except that the reaction was carried out with 4.5 mmol). The amount of nitrile was determined in the same manner as in Example 1,
When the Co content was determined from the atomic absorption analysis of the calcined product,
In (Chemical Formula 1), it was confirmed that the polymer was a two-dimensional polymer in which M = M '= Co, X = X' = C, L = none, and n = 3.5.

【0013】(実施例4)酢酸第一鉄無水和物の替わり
に酢酸ニッケル無水和物0.25g(1.4mmol)を用いてニッ
ケルオクタシアノフタロシアニン(以後、NiPcOC)0.86
g(収率80%)を得て[TOF-Massスペクトル:m/z=771(分
子量=771.5)]、その全量をビスアセチルアセトナトニ
ッケル(II)0.18g(1.1mmol)、TCB 0.80g(4.5mmol)と
反応させた他は実施例2と同様にして不溶性の黒緑色固
体740mgを得た。ニトリル量を実施例1と同様に求め、
また焼成物の原子吸光分析からNi含量を求めたところ、
(化1)においてM=M’=Ni、X=X’=C、L=無し、n=4.8の
二次元ポリマーであることが確認された。
(Example 4) Nickel octacyanophthalocyanine (hereinafter NiPcOC) 0.86 using 0.25 g (1.4 mmol) of nickel acetate anhydride instead of ferrous acetate anhydride.
g (80% yield) [TOF-Mass spectrum: m / z = 771 (molecular weight = 771.5)], the total amount of which is 0.18 g (1.1 mmol) of bisacetylacetonatonickel (II), 0.80 g of TCB ( 740 mg of an insoluble black-green solid was obtained in the same manner as in Example 2 except that the reaction was carried out with 4.5 mmol). The amount of nitrile was determined in the same manner as in Example 1,
When the Ni content was determined from the atomic absorption analysis of the calcined product,
In the chemical formula 1, it was confirmed that the polymer was a two-dimensional polymer in which M = M ′ = Ni, X = X ′ = C, L = none, and n = 4.8.

【0014】(実施例5)TCBの替わりにテトラシアノ
ピラジン(以後、TCP)1.0g(5.6mmol)、酢酸第一鉄無
水和物の替わりに酢酸銅無水和物0.25g(1.4mmol)を用
いて銅オクタシアノピラジノシアニン(以後、CuPycO
C)0.98g(収率90%)を得て[TOF-Massスペクトル:m/z=
784(分子量=784.1)]、その全量をビスアセチルアセト
ナト銅(II) 0.21g(1.3mmol)、TCP 0.90g(5.0mmol)
と反応させた他は実施例2と同様にして不溶性の黒緑色
固体720mgを得た。ニトリル量を実施例1と同様に求
め、また焼成物の原子吸光分析から銅含量を求めたとこ
ろ、(化1)においてM=M’=Cu、X=X’=N、L=無し、n=
5.2の二次元ポリマーであることが確認された。
(Example 5) Tetracyanopyrazine (hereinafter, TCP) 1.0 g (5.6 mmol) was used instead of TCB, and copper acetate anhydrous 0.25 g (1.4 mmol) was used instead of ferrous acetate anhydrous. Copper octacyanopyrazinocyanine (hereinafter referred to as CuPycO
C) 0.98 g (90% yield) was obtained [TOF-Mass spectrum: m / z =
784 (molecular weight = 784.1)], the total amount of which is 0.21 g (1.3 mmol) of copper (II) bisacetylacetonate, 0.90 g (5.0 mmol) of TCP
In the same manner as in Example 2 except that the reaction was carried out, 720 mg of an insoluble black-green solid was obtained. When the amount of nitrile was determined in the same manner as in Example 1, and the copper content was determined by atomic absorption analysis of the calcined product, it was found that in Chemical Formula 1, M = M ′ = Cu, X = X ′ = N, L = none, n =
It was confirmed to be a two-dimensional polymer of 5.2.

【0015】(実施例6)酢酸第一鉄無水和物の替わり
に酢酸亜鉛無水和物0.25g(1.4mmol)を用いて亜鉛オク
タシアノピラジノシアニン(以後、ZnPycOC)0.55g(収
率50%)を得て[TOF-Massスペクトル:m/z=786(分子量=
786.0)]、その全量をビスアセチルアセトナト亜鉛(II)
0.17g(0.70mmol)、TCP 0.50g(2.8mmol)と反応させ
た他は実施例5と同様にして不溶性の黒緑色固体420mg
を得た。ニトリル量を実施例1と同様に求め、また焼成
物の原子吸光分析からZn含量を求めたところ、(化1)
においてM=M’=Zn、X=X’=N、L=無し、n=4.2の二次元ポ
リマーであることが確認された。
Example 6 0.55 g of zinc octacyanopyrazinocyanine (hereinafter ZnPycOC) (yield 50%) was obtained by using 0.25 g (1.4 mmol) of zinc acetate anhydrate instead of ferrous acetate anhydrate. ) To obtain [TOF-Mass spectrum: m / z = 786 (molecular weight =
786.0)], and the whole amount is zinc bisacetylacetonato (II)
420 mg of an insoluble black-green solid in the same manner as in Example 5 except that it was reacted with 0.17 g (0.70 mmol) and 0.50 g (2.8 mmol) of TCP.
I got The amount of nitrile was determined in the same manner as in Example 1, and the Zn content was determined by atomic absorption analysis of the calcined product.
It was confirmed that the polymer was a two-dimensional polymer having M = M ′ = Zn, X = X ′ = N, L = none, and n = 4.2.

【0016】(実施例7)酢酸第一鉄無水和物の替わり
に酢酸クロム無水和物0.24g(1.4mmol)を用いてクロム
オクタシアノピラジノシアニン(以後、CrPycOC)0.54g
(収率50%)を得て[TOF-Massスペクトル:m/z=772(分
子量=772.6)]、その全量をビスアセチルアセトナトク
ロム(II)0.17g(0.70mmol)、TCP 0.50g(2.8mmol)と
反応させた他は実施例5と同様にして不溶性の黒緑色固
体400mgを得た。ニトリル量を実施例1と同様に求め、
また焼成物の原子吸光分析からZn含量を求めたところ、
(化1)においてM=M’=Cr、X=X’=N、L=無し、n=3.6の
二次元ポリマーであることが確認された。
(Example 7) 0.54 g of chromium octacyanopyrazinocyanine (hereinafter referred to as CrPycOC) using 0.24 g (1.4 mmol) of chromium acetate anhydride instead of ferrous acetate anhydride.
(TOF-Mass spectrum: m / z = 772 (molecular weight = 772.6)), and the whole amount was 0.17 g (0.70 mmol) of bisacetylacetonatochromium (II) and 0.50 g (2.8%) of TCP. mmol) to obtain 400 mg of an insoluble black-green solid in the same manner as in Example 5. The amount of nitrile was determined in the same manner as in Example 1,
Also, when the Zn content was determined from atomic absorption analysis of the fired product,
In the chemical formula 1, it was confirmed that the polymer was a two-dimensional polymer in which M = M ′ = Cr, X = X ′ = N, L = none, and n = 3.6.

【0017】(実施例8)酢酸第一鉄無水和物の替わり
にビスアセチルアセトナトオキソバナジウム0.24g(1.4
mmol)を用いてオキソバナジウムオクタシアノピラジノ
シアニン(以後、VOPycOC)0.77g(収率70%)を得て[TO
F-Massスペクトル:m/z=787(分子量=787.5)]、その全
量をビスアセチルアセトナトオキソバナジウム(II)0.16
g(0.97mmol)、TCP 0.70g(3.9mmol)と反応させた他
は実施例5と同様にして不溶性の黒緑色固体 590mgを得
た。ニトリル量を実施例1と同様に求め、また焼成物の
原子吸光分析からV含量を求めたところ、(化1)にお
いてM=M’=V、X=X’=N、L=L’=O、n=5.2の二次元ポリマ
ーであることが確認された。
Example 8 0.24 g of bisacetylacetonatooxovanadium (1.4 g) was used in place of ferrous acetate anhydrate.
mmol) to obtain 0.77 g (yield 70%) of oxovanadium octacyanopyrazinocyanine (hereinafter referred to as VOPycOC) [TO
F-Mass spectrum: m / z = 787 (molecular weight = 787.5)], and the total amount thereof was bisacetylacetonatooxovanadium (II) 0.16.
g (0.97 mmol) and TCP 0.70 g (3.9 mmol), except that 590 mg of an insoluble black-green solid was obtained in the same manner as in Example 5. When the amount of nitrile was determined in the same manner as in Example 1, and the V content was determined by atomic absorption analysis of the calcined product, M = M ′ = V, X = X ′ = N, L = L ′ = It was confirmed that the polymer was a two-dimensional polymer having O and n = 5.2.

【0018】(実施例9)酢酸第一鉄無水和物の替わり
にビスアセチルアセトナトオキソチタニウム0.23g(1.4
mmol)を用いてオキソチタニウムオクタシアノピラジノ
シアニン(以後、TiOPycOC)0.65g(収率60%)を得て[T
OF-Massスペクトル:m/z=784(分子量=784.4)]、その
全量をビスアセチルアセトナトオキソチタニウム(II)0.
14g(0.83mmol)、TCP 0.60g(3.3mmol)と反応させた
他は実施例5と同様にして不溶性の黒緑色固体500mgを
得た。ニトリル量を実施例1と同様に求め、また焼成物
の原子吸光分析からZn含量を求めたところ、(化1)に
おいてM=Ti、X=X’=N、L=L’=O、n=4.8の二次元ポリマ
ーであることが確認された。
Example 9 0.23 g of bisacetylacetonatooxotitanium (1.4 g) was used instead of anhydrous ferrous acetate.
mmol) to obtain 0.65 g (60% yield) of oxotitanium octacyanopyrazinocyanine (hereinafter referred to as "TiOPycOC").
OF-Mass spectrum: m / z = 784 (molecular weight = 784.4)], and the total amount thereof is bisacetylacetonatooxotitanium (II) 0.1.
Except having reacted with 14 g (0.83 mmol) and 0.60 g (3.3 mmol) of TCP, it carried out similarly to Example 5, and obtained 500 mg of insoluble black-green solids. When the amount of nitrile was determined in the same manner as in Example 1, and the Zn content was determined by atomic absorption analysis of the calcined product, it was found that in Chemical Formula 1, M = Ti, X = X ′ = N, L = L ′ = O, n = 4.8 was confirmed as a two-dimensional polymer.

【0019】(実施例10)実施例1で得られた中間体
であるH2PcOC1.0g(1.4mmol)とビスアセチルアセトナ
ト鉄(II)0.19g(1.20mmol)、TCB0.70g(3.9mmol)を用
いた他は、実施例1の(*)印以降の操作を同様に行
い、不溶性の黒緑色固体530mgを得た。ニトリル量を実
施例1と同様に求め、また焼成物の原子吸光分析からFe
含量を求めたところ、(化1)においてM=H2、M’=Fe、
X=C、L=無し、n=5.2の二次元ポリマーであることが確認
された。
Example 10 1.0 g (1.4 mmol) of H 2 PcOC which is an intermediate obtained in Example 1, 0.19 g (1.20 mmol) of iron (II) bisacetylacetonato, 0.70 g (3.9 mmol) of TCB ) Was performed in the same manner as in Example 1 except for using (*), to obtain 530 mg of an insoluble black-green solid. The amount of nitrile was determined in the same manner as in Example 1, and the atomic absorption analysis of the calcined product showed Fe
When the content was determined, in the chemical formula 1, M = H 2 , M ′ = Fe,
It was confirmed that the polymer was a two-dimensional polymer in which X = C, L = none, and n = 5.2.

【0020】(実施例11)実施例2で得られた中間体
であるFePcOC1.1g(0.98mmol)とビスアセチルアセトナ
トオキソバナジウム0.24g(1.4mmol)、TCP0.69g(3.8m
mol)を用いた他は、実施例1の(*)印以降の操作を同
様に行い、不溶性の黒緑色固体550mgを得た。ニトリル
量を実施例1と同様に求め、また焼成物の原子吸光分析
からFe含量を求めたところ、(化1)においてM=Fe、
M’=V、X=C、X’=N、L=無し、L’=O、n=3.9の二次元ポ
リマーであることが確認された。
Example 11 1.1 g (0.98 mmol) of FePcOC, an intermediate obtained in Example 2, 0.24 g (1.4 mmol) of bisacetylacetonatooxovanadium, and 0.69 g (3.8 m) of TCP
550 mg of an insoluble black-green solid was obtained in the same manner as in Example 1 except for using (mol). The amount of nitrile was determined in the same manner as in Example 1, and the Fe content was determined by atomic absorption analysis of the calcined product.
It was confirmed that the polymer was a two-dimensional polymer having M '= V, X = C, X' = N, L = none, L '= O, and n = 3.9.

【0021】(実施例12)実施例8で得られたVOPycO
C1.0g(1.3mmol)とビスアセチルアセトナトコバルト(I
I)0.19g(1.20mmol)、TCB0.70g(3.9mmol)を用いた他
は、実施例1の(*)印以降の操作を同様に行い、不溶
性の黒緑色固体560mgを得た。ニトリル量を実施例1と
同様に求め、また焼成物の原子吸光分析からFe含量を求
めたところ、(化1)においてM=V、M’=Co、X=C、X’=
N、L=O、L’=無し、n=4.9の二次元ポリマーであること
が確認された。
(Example 12) VOPycO obtained in Example 8
C1.0g (1.3mmol) and bisacetylacetonatocobalt (I
I) Except that 0.19 g (1.20 mmol) and 0.70 g (3.9 mmol) of TCB were used, the operations after (*) in Example 1 were performed in the same manner to obtain 560 mg of an insoluble black-green solid. When the amount of nitrile was determined in the same manner as in Example 1, and the Fe content was determined by atomic absorption analysis of the calcined product, M = V, M ′ = Co, X = C, X ′ =
It was confirmed that the polymer was a two-dimensional polymer having N, L = O, L ′ = none, and n = 4.9.

【0022】(実施例13)厚み1300μm、16mmφの金
属リチウム箔(アノード)、0.5M LiPF6のジメトキシエ
タン(DME)溶液をしみ込ませた空孔率=37%、厚み25μm
のポリプロピレン製セパレータ、および実施例1で得た
二次元ポリマー60wt%、アセチレンブラック25wt%および
ポリフッ化ビニリデン(PVDF)15wt%を100μm厚に成型
したカソードを2016ボタン型電池に組み込み、放電終止
電圧1.0V、充電終止電圧4.2V、放電速度0.5C、の定電流
充放電試験を行った。その結果、開放電圧=3.81V、平均
出力=1.80V、カソード容量=850mAh/g、カソードエネル
ギー密度=1530Wh/kg、エネルギー密度が最大値の80%に
低下する充放電回数=1650回のリチウム二次電池が得ら
れた。
Example 13 A lithium metal foil (anode) having a thickness of 1300 μm and 16 mmφ, a porosity impregnated with a 0.5 M LiPF 6 dimethoxyethane (DME) solution = 37%, and a thickness of 25 μm
And a cathode formed by molding a two-dimensional polymer obtained in Example 1, 60 wt% of the two-dimensional polymer, 25 wt% of acetylene black and 15 wt% of polyvinylidene fluoride (PVDF) to a thickness of 100 μm into a 2016 button type battery, and a discharge end voltage of 1.0 A constant current charge / discharge test was performed at V, a charge termination voltage of 4.2 V, and a discharge rate of 0.5 C. As a result, the open circuit voltage = 3.81 V, the average output = 1.80 V, the cathode capacity = 850 mAh / g, the cathode energy density = 1530 Wh / kg, the number of times of charge and discharge when the energy density decreases to 80% of the maximum value = 1650 The following battery was obtained.

【0023】(実施例14〜24)実施例13と同様
に、ただし、実施例2〜12の二次元ポリマーを用いて
充放電試験を行い、(表1)の結果を得た。
(Examples 14 to 24) A charge / discharge test was performed in the same manner as in Example 13 except that the two-dimensional polymers of Examples 2 to 12 were used, and the results shown in Table 1 were obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例25)約400メッシュのグラファ
イト粉末75wt%とPVDF25wt%を500μmの厚みに成型し、0.
5M LiPF6−DME電解質溶液中で金属リチウムをアノード
として放電させ、グラファイト中にリチウムが層間化合
物としてドープされたグラファイトリチウム(Gp・Li)
電極を作成した。このGp・Li電極をアノードとした他は
実施例13と同様に電池系を作成し、放電終止電圧1.0
V、充電終止電圧4.2V、放電速度0.5C、の定電流充放電
試験を行った。その結果、開放電圧=3.70V、平均出力=
1.71V、カソード容量=860mAh/g、カソードエネルギー密
度=1470Wh/kg、エネルギー密度が最大値の80%に低下す
る充放電回数=2350回のリチウムイオン二次電池が得ら
れた。
(Example 25) 75 wt% of graphite powder of about 400 mesh and 25 wt% of PVDF were molded to a thickness of 500 μm.
Lithium graphite (Gp · Li) in which lithium is discharged as an intercalation compound in graphite by discharging lithium metal as an anode in a 5M LiPF 6 -DME electrolyte solution
Electrodes were made. A battery system was prepared in the same manner as in Example 13 except that the Gp / Li electrode was used as the anode, and the discharge end voltage was set to 1.0.
A constant current charge / discharge test was performed at V, a charge termination voltage of 4.2 V, and a discharge rate of 0.5 C. As a result, open voltage = 3.70 V, average output =
A lithium ion secondary battery having 1.71 V, a cathode capacity of 860 mAh / g, a cathode energy density of 1470 Wh / kg, and a charge / discharge cycle of 2350 times at which the energy density was reduced to 80% of the maximum value was obtained.

【0026】(実施例26〜36)実施例25と同様
に、ただし、実施例2〜12の二次元ポリマーを用いて
充放電試験を行い、(表2)の結果を得た。
Examples 26 to 36 A charge / discharge test was performed in the same manner as in Example 25 except that the two-dimensional polymers of Examples 2 to 12 were used, and the results shown in Table 2 were obtained.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上、本発明のカソード用材料は、カソ
ード半電池反応において容量580〜940mAh/g、エネルギ
ー密度980〜1950Wh/kgの高い能力を示すため、[金属リ
チウム/電解質/一次元ポリマー]の形のリチウム二次
電池として平均出力1.64〜2.07V、容量580〜940mAh/g、
エネルギー密度980〜1950Wh/kg、[Li・Gp/電解質/一次
元ポリマー]の形のリチウムイオン二次電池として平均
出力1.58〜1.99V、容量590〜930mAh/g、エネルギー密度
930〜1850Wh/kgの高容量・高エネルギー密度を達成する
ことができる。この高容量・高エネルギー密度のリチウ
ム(イオン)二次電池は、長寿命かつ繰り返し充放電特
性に優れた電源として、各種ポータブル電子機器に搭載
できる。
As described above, the cathode material of the present invention exhibits a high capacity of 580 to 940 mAh / g and an energy density of 980 to 1950 Wh / kg in a cathode half-cell reaction. ] Type lithium secondary battery, average output 1.64 ~ 2.07V, capacity 580 ~ 940mAh / g,
Energy density 980 ~ 1950Wh / kg, average output 1.58 ~ 1.99V, capacity 590 ~ 930mAh / g, energy density as lithium-ion secondary battery in the form of [Li-Gp / electrolyte / one-dimensional polymer]
High capacity and high energy density of 930-1850Wh / kg can be achieved. This high-capacity, high-energy-density lithium (ion) secondary battery can be mounted on various portable electronic devices as a power source having a long life and excellent repetitive charge / discharge characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 美博 東京都小金井市東町2−11−4 (72)発明者 大西 賢 神奈川県横浜市旭区若葉台2−22−1402 Fターム(参考) 5H029 AJ05 AK16 AL07 AL12 AM00 AM02 AM07 AM16 HJ02 5H050 AA07 BA16 BA17 CA22 CB08 CB12 HA02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mihiro Asai 2-11-4 Higashicho, Koganei-shi, Tokyo (72) Inventor Ken Satoshi 2-22-1402 Wakabadai, Asahi-ku, Yokohama-shi, Kanagawa F-term (reference) 5H029 AJ05 AK16 AL07 AL12 AM00 AM02 AM07 AM16 HJ02 5H050 AA07 BA16 BA17 CA22 CB08 CB12 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記(化1)に示すような、ポリ[シア
ノ(金属)フタロシアニン]ないしポリ[シアノ(金属)
ピラジノシアニン]の、二量体以上のオリゴマーまたは
二次元ポリマーからなるカソード用材料。 【化1】 ただし(化1)において、 M=H2または周期律表において第4〜12族の遷移金属イオ
ンであり、M’はMと同様に定義され、M’=MまたはM’≠
Mであり、X=CまたはNであり、X’はXと同様に定義さ
れ、X’=XまたはX’≠Xであり、L=無しまたは酸素原子
であり、L’はLと同様に定義され、L’=LまたはL’≠L
である。
1. Poly [cyano (metal) phthalocyanine] to poly [cyano (metal) as shown in the following
Material for a cathode comprising a dimer or higher oligomer or a two-dimensional polymer of pyrazinocyanine]. Embedded image However, in (Chemical Formula 1), M = H 2 or a transition metal ion of Groups 4 to 12 in the periodic table, M ′ is defined in the same manner as M, and M ′ = M or M ′ ≠.
M, X = C or N, X ′ is defined as X, X ′ = X or X ′ ≠ X, L = no or oxygen atom, L ′ is the same as L Defined, L '= L or L' ≠ L
It is.
【請求項2】 請求項1記載の材料をカソード部材に含
むことを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising the material according to claim 1 in a cathode member.
【請求項3】 請求項1記載の材料をカソード部材に含
むことを特徴とするリチウムイオン二次電池。
3. A lithium ion secondary battery comprising the material according to claim 1 in a cathode member.
JP2001013769A 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same Pending JP2002216765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013769A JP2002216765A (en) 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013769A JP2002216765A (en) 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2002216765A true JP2002216765A (en) 2002-08-02

Family

ID=18880574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013769A Pending JP2002216765A (en) 2001-01-22 2001-01-22 Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2002216765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118320A (en) * 2008-11-14 2010-05-27 Denso Corp Secondary battery
GB2617144A (en) * 2022-03-30 2023-10-04 Nicholas Huw Cartwright Method and apparatus for synthesizing two-dimensional materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118320A (en) * 2008-11-14 2010-05-27 Denso Corp Secondary battery
GB2617144A (en) * 2022-03-30 2023-10-04 Nicholas Huw Cartwright Method and apparatus for synthesizing two-dimensional materials

Similar Documents

Publication Publication Date Title
US6743877B1 (en) Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
US8242213B2 (en) Method for manufacturing polyradical compound and battery
EP1381100B1 (en) Electricity storage device
EP2025689B1 (en) Process for production of polyradical compound and battery cell
US6866963B2 (en) Cathode active material and lithium battery employing the same
JP4467926B2 (en) Electrochemical element
JP4984535B2 (en) battery
US20140061532A1 (en) Radical composition and battery using same
JP2002110235A (en) Electrolyte for electrochemical device and battery using the same
WO2014141696A1 (en) Electrode active material for power storage device, and power storage device
US20040045818A1 (en) Electrochemical device
JP3380930B2 (en) Aluminum non-aqueous electrolyte secondary battery
JP2002313344A (en) Electrode binder, and electrode and battery manufactured by using it
JP2004342605A (en) Electrochemical element and electrode active material for electrochemical element
JP2002216765A (en) Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same
JPH03291863A (en) Secondary cell
US20070003832A1 (en) Cationic conductor
JP4476788B2 (en) Polymer compound for electrode material, electrode using the same and non-aqueous battery
JP4752218B2 (en) Electrode active material, battery and polyradical compound
JP3685571B2 (en) Functional polymer, polymer solid electrolyte and battery using the same
JP2002216764A (en) Positive electrode material, lithium secondary battery and lithium ion secondary battery using the same
JP2951706B2 (en) Battery components
JP2010062119A (en) Secondary battery
JP2877784B2 (en) Copper-organic disulfide electrode and secondary battery using the same
JP2007035375A (en) Electrode activating material, battery, and polymer