JP2002215236A - Controller for travel of unmanned vehicle - Google Patents

Controller for travel of unmanned vehicle

Info

Publication number
JP2002215236A
JP2002215236A JP2001012722A JP2001012722A JP2002215236A JP 2002215236 A JP2002215236 A JP 2002215236A JP 2001012722 A JP2001012722 A JP 2001012722A JP 2001012722 A JP2001012722 A JP 2001012722A JP 2002215236 A JP2002215236 A JP 2002215236A
Authority
JP
Japan
Prior art keywords
vehicle
distance
traveling
roadside
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001012722A
Other languages
Japanese (ja)
Other versions
JP4229358B2 (en
Inventor
Masayuki Mori
眞幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001012722A priority Critical patent/JP4229358B2/en
Priority to US10/050,824 priority patent/US6751535B2/en
Publication of JP2002215236A publication Critical patent/JP2002215236A/en
Application granted granted Critical
Publication of JP4229358B2 publication Critical patent/JP4229358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Abstract

PROBLEM TO BE SOLVED: To provide an unmanned vehicle traveling controller capable of maintaining the accuracy of traveling guide at a high level even when the position measuring accuracy of GPS navigation or autonomous navigation is deteriorated or position measurement is disabled. SOLUTION: The unmanned vehicle traveling controller provided with a GPS receiver (13) for receiving a GPS signal and measuring the position of a vehicle, an autonomous navigation computing element (14) for measuring the position and azimuth of the vehicle on the basis of the traveling direction and distance of the vehicle, a position measuring part (11) for calculating the current position and azimuth of the vehicle on the basis of the position measuring results of the receiver (13) and the computing element (14), and a traveling control part (17) for controlling the traveling of the vehicle on the basis of a compared result between a previously set traveling course (4) and the calculated current position and azimuth is also provided with a road side band distance measuring instrument (15) for measuring a distance from the vehicle up to a road side band (5) formed on the side of the traveling course (4). The position measuring part (11) finds out the current position and the azimuth by correcting at least either one of the measuring position of the GPS receiver (13) and/or the measuring position and azimuth of the computing element (14) on the basis of the road side band distance measured by the measuring instrument (15).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉱山、採石場等で
予め設定された走行経路を自動走行する無人車両の走行
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a traveling control device for an unmanned vehicle that automatically travels on a predetermined traveling route in a mine, a quarry, or the like.

【0002】[0002]

【従来の技術】従来、予め設定された走行経路を自動走
行する無人車両の走行システムとしては、GPS受信器
により無人車両の絶対位置をする衛星測位航法(以後、
GPS航法と言う)と、無人車両の走行方向及び走行距
離を検出して前記絶対位置を基準とした相対位置及び方
位を内界センサにより推定演算する自律的な航法とを併
用し、両者の相互補完により位置計測精度を向上して走
行するようにしたものが良く知られている。前記自律的
な航法には、推測航法(速度センサや移動距離センサを
用いて走行距離を求め、かつジャイロや地磁気センサを
用いて方位を推定することで車両の位置と方位を推定す
る航法)や、慣性航法(ジャイロと加速度センサを用い
て車両の位置と方位を推定する航法)等が良く知られて
いる。以後、これらを総称して自律航法と呼ぶ。
2. Description of the Related Art Conventionally, as a traveling system of an unmanned vehicle that automatically travels on a predetermined traveling route, a satellite positioning navigation (hereinafter, referred to as an “absolute position”) that uses a GPS receiver to determine the absolute position of the unmanned vehicle.
GPS navigation) and autonomous navigation that detects the traveling direction and traveling distance of the unmanned vehicle and estimates and calculates the relative position and azimuth based on the absolute position using an internal sensor. It is well known that the vehicle travels with improved position measurement accuracy by complementation. The autonomous navigation includes dead reckoning (a method of estimating the traveling distance using a speed sensor or a moving distance sensor and estimating the direction using a gyro or a geomagnetic sensor to estimate the position and direction of the vehicle) and And inertial navigation (navigation for estimating the position and orientation of a vehicle using a gyro and an acceleration sensor) are well known. Hereinafter, these are collectively called autonomous navigation.

【0003】図12は、無人車両の走行システムを説明
する図である。同図において、固定基地局1は無人車両
10の管制を制御するものであり、管制通信アンテナ2
bを介して走行経路データや車両管制制御指令を無人車
両10に送信したり、車両状態信号を受信するようにし
ている。
FIG. 12 is a diagram illustrating a traveling system of an unmanned vehicle. In the figure, a fixed base station 1 controls the control of an unmanned vehicle 10 and a control communication antenna 2
Through b, travel route data and a vehicle control command are transmitted to the unmanned vehicle 10, and a vehicle state signal is received.

【0004】また、無人車両10は、位置計測部及び走
行制御部を有している。位置計測部により、GPSアン
テナ12aを介してGPS受信器により受信した複数の
衛星3a,〜3eからの位置情報に基づいて車両自身の
現在位置の絶対座標値を求める(GPS航法)。このと
き、前記位置計測部はGPSによる前記絶対座標位置か
らの相対位置及び方位を走行方向と走行距離に基づいて
求め、順次現在位置及び方位を推定演算している(自律
航法)。そして、所定のGPS測位サンプリング時間走
行した後に、新たに計測したGPSによる絶対位置に基
づいて前記相対位置及び方位による現在位置及び方位を
補正する。そして、走行制御部により、予め設定されて
いる走行経路の位置及び方位(走行方向)と前記現在位
置及び方位との比較結果に基づいて走行方向を演算する
と共に、該走行方向に所定速度で走行するように操舵及
び車速を制御する。以上の処理を繰り返して、無人車両
を走行経路に沿って誘導走行するようにしている。
[0004] The unmanned vehicle 10 has a position measuring unit and a traveling control unit. The position measurement unit obtains the absolute coordinate value of the current position of the vehicle itself based on the position information from the plurality of satellites 3a, 3e received by the GPS receiver via the GPS antenna 12a (GPS navigation). At this time, the position measurement unit obtains a relative position and an azimuth from the absolute coordinate position based on the GPS based on a traveling direction and a traveling distance, and sequentially estimates and calculates a current position and an azimuth (autonomous navigation). Then, after traveling for a predetermined GPS positioning sampling time, the current position and the direction based on the relative position and the direction are corrected based on the absolute position newly measured by the GPS. The traveling control unit calculates the traveling direction based on a comparison result between the preset position and orientation (traveling direction) of the traveling route and the current position and orientation, and travels at a predetermined speed in the traveling direction. The steering and the vehicle speed are controlled so that The above process is repeated to guide the unmanned vehicle along the traveling route.

【0005】上記のようなGPS航法は、測位開始した
タイミングからの計算時間及びGPS受信機から最終的
な位置計測部までの通信遅れ、測位データを出力するタ
イミング時間間隔が、自律航法での位置演算時間よりも
遅いという欠点がある。また、衛星3a,〜3eの受信
環境、即ち、無人車両の上空が周囲の岩壁、森林、構造
物等のために正常にGPS受信可能な状態であるかとい
う上空視界性、衛星配置、及び周囲の反射物から反射さ
れた電波を受信した時のマルチパス等の受信環境要因に
より、またDGPS(いわゆる、ディファレンシャル方式G
PS)の場合には固定基地局1からの補正情報通信が
山、岸壁、森林、構造物、電波環境などの様々な要因に
より遅れることにより、その測位精度が劣化したり、測
位不能になる場合があるという問題も知られている。
In the GPS navigation described above, the calculation time from the start of positioning, the communication delay from the GPS receiver to the final position measurement unit, and the timing time interval for outputting the positioning data are determined by the position in the autonomous navigation. There is a disadvantage that it is slower than the calculation time. Further, the reception environment of the satellites 3a to 3e, that is, the visibility of the sky, whether the sky above the unmanned vehicle is in a state where GPS reception can be normally performed due to surrounding rocks, forests, structures, and the like, the satellite arrangement, and Due to reception environment factors such as multipath when radio waves reflected from surrounding reflectors are received, DGPS (so-called differential system G
In the case of PS), when the correction information communication from the fixed base station 1 is delayed due to various factors such as a mountain, a quay, a forest, a structure, and a radio wave environment, the positioning accuracy is deteriorated or the positioning becomes impossible. There is also a known problem.

【0006】一方、自律航法は、その欠点を補完するた
めに用いられ、例えば速度センサと方位センサとの計測
値に基づき所定時間毎に短時間で走行距離を演算して相
対位置を算出しているので、リアルタイムに測位でき
る。ところが、速度センサや方位センサ等のセンサ誤差
が累積し、測位精度の劣化の問題があるために、上記G
PS航法により所定時間毎に補正して、位置精度の維持
を図っている。
[0006] On the other hand, autonomous navigation is used to compensate for the drawback. For example, a relative distance is calculated by calculating a traveling distance in a short time at predetermined time intervals based on measurement values of a speed sensor and a direction sensor. So you can measure in real time. However, since sensor errors such as a speed sensor and an azimuth sensor are accumulated and there is a problem of deterioration of positioning accuracy, the G
Correction is performed at predetermined time intervals by PS navigation to maintain positional accuracy.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の無人車両の走行システムにおいては、次のような問
題がある。 (1)GPS航法では、前述のように衛星受信環境の悪
化や、DGPSの場合には基地局からの補正テ゛ータの受信環境
の悪化等により測位精度が劣化したり、測位不能となる
場合がある。この場合には、GPS航法による絶対位置
と自律航法による相対位置及び方位とに基づいて求める
現在位置及び現在方位の精度が劣化したり、あるいは自
律航法のみで走行すると計測誤差の累積により現在位置
及び現在方位の精度が劣化する。このため、無人車両の
誘導精度が低下するから、車両管制に支障を来す。 (2)自律航法に係わる速度センサや方位センサ等が故
障した場合、GPS航法のみにより走行すると、前述の
ようにGPS航法による測位データ出力時間間隔が遅い
ので、計測する絶対座標位置の間隔が長過ぎてこの間の
走行誘導精度が低下する。また、GPS航法のみでは低
速時に速度精度や方位精度が劣化すること、及び旋回時
にGPSアンテナ軌跡(GPSによる方位に相当する)
が車両の姿勢方向とは異なることによる測位(位置及び
方位)精度が劣化することなどが影響し、走行誘導精度
が低下する。また、このときGPS航法の受信環境や通
信環境の悪化による測位(位置及び方位)精度の低下が
生じると、さらに走行誘導精度が低下する。このため、
自律航法不可となる故障の場合には車両管制に支障を来
し、無人車両の稼働率が低下する。しかしながら、上記
の場合でも確実に誘導走行できるような信頼性の高い走
行システムが強く要望されている。
However, the conventional traveling system for an unmanned vehicle has the following problems. (1) In the GPS navigation, as described above, the positioning accuracy may be deteriorated or the positioning may not be performed due to the deterioration of the satellite reception environment or the deterioration of the reception environment of the correction data from the base station in the case of DGPS. . In this case, the accuracy of the current position and the current direction obtained based on the absolute position by the GPS navigation and the relative position and the direction by the autonomous navigation deteriorates. The accuracy of the current bearing deteriorates. For this reason, guidance accuracy of the unmanned vehicle is reduced, which hinders vehicle control. (2) When the speed sensor or the direction sensor related to the autonomous navigation fails, if only the GPS navigation is used, the time interval of the positioning data output by the GPS navigation is slow as described above. The traveling guidance accuracy during this time is reduced. In addition, if only GPS navigation is used, speed accuracy and azimuth accuracy deteriorate at low speeds, and a GPS antenna trajectory (corresponding to GPS azimuth) during turning.
Is different from the attitude direction of the vehicle, the accuracy of positioning (position and direction) is degraded, and the traveling guidance accuracy is reduced. At this time, if the positioning (position and orientation) accuracy is reduced due to the deterioration of the reception environment or communication environment of the GPS navigation, the traveling guidance accuracy is further reduced. For this reason,
In the case of a failure that disables autonomous navigation, it hinders vehicle control and reduces the operating rate of unmanned vehicles. However, there is a strong demand for a highly reliable traveling system that can reliably perform guided traveling even in the above case.

【0008】本発明は、上記の問題点に着目してなされ
たものであり、GPS航法又は自律航法の測位精度の劣
化や測位不能な状態を招いた場合でも、走行誘導精度を
高く維持できる無人車両の走行制御装置を提供すること
を目的としている。
The present invention has been made in view of the above-mentioned problems, and is capable of maintaining high driving guidance accuracy even when the positioning accuracy of the GPS navigation or the autonomous navigation is deteriorated or the positioning cannot be performed. It is an object of the present invention to provide a traveling control device for a vehicle.

【0009】[0009]

【課題を解決するための手段、作用及び効果】上記の目
的を達成するために、第1発明は、GPS信号を受信し
て車両の絶対座標位置を測位するGPS受信器と、車両
の走行方向及び走行距離を計測し、この計測結果に基づ
いて車両の特定位置からの相対座標位置及び方位を測位
する自律航法演算器と、GPS受信器及び自律航法演算
器のそれぞれの測位結果に基づき車両の現在位置及び方
位を演算する位置計測部と、予め設定された走行経路の
位置及び方位と位置計測部により演算された現在位置及
び方位とをそれぞれ比較し、それぞれの偏差値を小さく
するように車両走行を制御する走行制御部とを備えた無
人車両の走行制御装置において、車両から走行経路の脇
に設けた路側帯までの距離を計測する路側帯距離計測器
を設け、前記位置計測部は、路側帯距離計測器により計
測した路側帯距離に基づき、前記GPS受信器の測位位
置、及び/又は、自律航法演算器の測位位置と方位との
少なくとも一方を補正して現在位置と方位を求める構成
としている。
In order to achieve the above object, a first invention is to provide a GPS receiver which receives a GPS signal to measure an absolute coordinate position of a vehicle, and a traveling direction of the vehicle. And an autonomous navigation calculator that measures the relative coordinate position and azimuth from a specific position of the vehicle based on the measurement result, and a GPS receiver and an autonomous navigation calculator based on the respective positioning results of the vehicle. A position measuring unit that calculates the current position and direction, and a vehicle that compares the position and direction of the traveling route set in advance with the current position and direction calculated by the position measuring unit, and reduces the respective deviation values. A travel control unit for controlling the travel of the unmanned vehicle, comprising: a roadside zone distance measuring device that measures a distance from the vehicle to a roadside zone provided on a side of the travel route; The measuring unit corrects at least one of the positioning position of the GPS receiver and / or the positioning position and the azimuth of the autonomous navigation calculator based on the roadside zone distance measured by the roadside zone distance measuring device, and corrects the current position and the current position. It is configured to obtain the direction.

【0010】第1発明によると、路側帯(路肩、看板、
反射板等により構成される)までの距離の計測値に基づ
き、GPS航法による測位位置、及び/又は、自律航法
による測位位置と方位との内少なくともいずれか一方を
補正して現在位置と方位を算出するので、GPS測位誤
差や、自律航法の測位誤差による位置と方位の計測精度
の低下を低減して、より信頼性の高い車両位置と方位を
測位できる。また、GPS航法又は自律航法の測位が不
能となったり、測位データの異常が認められた場合で
も、正常な方のGPS航法又は自律航法による測位(位
置と方位)データと路側帯距離の計測値とに基づき信頼
性のある現在位置と方位を求めることができるので、誘
導走行を継続でき、無人車両の稼働率を高めることがで
きる。この結果、信頼性の高い無人車両の走行システム
を構成できる。
According to the first invention, the roadside belt (road shoulder, signboard,
(Composed of a reflector, etc.) based on the measured value of the distance to the current position and the azimuth by correcting at least one of the positioning position by the GPS navigation and / or the positioning position and the azimuth by the autonomous navigation. Since the calculation is performed, a decrease in the measurement accuracy of the position and the direction due to the GPS positioning error and the positioning error of the autonomous navigation is reduced, and the vehicle position and the direction with higher reliability can be measured. In addition, even if positioning by GPS navigation or autonomous navigation becomes impossible or abnormalities in positioning data are recognized, positioning (position and direction) data by the normal GPS navigation or autonomous navigation and measured values of roadside zone distance Thus, a reliable current position and direction can be obtained based on the above, so that guided driving can be continued and the operation rate of the unmanned vehicle can be increased. As a result, a highly reliable traveling system for unmanned vehicles can be configured.

【0011】第2発明は、第1発明に基づき、前記位置
計測部は路側帯距離の計測値から路側帯の安定性を判断
し、安定性が良好なときに前記路側帯距離に基づく補正
を行うようにしている。
According to a second aspect based on the first aspect, the position measuring section determines the stability of the roadside zone from the measured value of the roadside zone distance, and performs correction based on the roadside zone distance when the stability is good. I'm trying to do it.

【0012】第2発明によると、路側帯が不安定であ
る、即ち予め設定されていないエリアで不連続に途切れ
ていたり、又は予め設定された変化率よりも大きく変化
したりするようなエリアには何か異常が発生したと判断
され、このような異常の有るエリアで計測した路側帯距
離は異常データとみなされる。ここで、路側帯の地形情
報として、予め、路肩の設置範囲及び走行経路に対する
路側帯距離変化率、看板や反射板の設置座標及び形状等
を設定しておく。従って、路側帯が安定であるときに、
路側帯距離に基づき補正を行うようにしている。これに
より、路側帯が不安定な場合に前記補正によって測位
(位置と方位)精度が低下するのを防止し、自動走行を
継続でき、無人車両の稼働率を高めることができる。
According to the second aspect of the present invention, the roadside zone is unstable, that is, the roadside zone is discontinuously interrupted in an area which is not set in advance or an area where the change rate is larger than a predetermined change rate. It is determined that some abnormality has occurred, and the roadside zone distance measured in an area having such an abnormality is regarded as abnormal data. Here, as the topographical information of the roadside zone, the roadside zone distance change rate with respect to the installation range of the road shoulder and the traveling route, the installation coordinates and the shape of the signboard and the reflector, and the like are set in advance. Therefore, when the roadside zone is stable,
The correction is performed based on the roadside belt distance. Thereby, when the roadside zone is unstable, it is possible to prevent the positioning (position and azimuth) accuracy from lowering due to the correction, continue the automatic driving, and increase the operating rate of the unmanned vehicle.

【0013】第3発明は、第1又は第2発明に基づき、
前記位置計測部の路側帯距離に基づく補正は、GPS受
信器の測位精度推測値及び/又は自律航法演算器の測位
精度推測値と、路側帯距離計測器の測位精度推測値とに
応じたセンサーフュージョンにより行うようにしてい
る。
A third invention is based on the first or second invention,
The correction based on the roadside zone distance of the position measuring unit is performed by a sensor corresponding to the positioning accuracy estimated value of the GPS receiver and / or the positioning accuracy estimated value of the autonomous navigation calculator and the positioning accuracy estimated value of the roadside zone distance measuring device. It is done by fusion.

【0014】第3発明によると、GPS受信器、自律航
法演算器、路側帯距離計測器のそれぞれの測位精度推測
値に応じたセンサーフュージョンにより補正位置と補正
方位を演算しているので、より信頼性の高い位置を求め
ることができる。尚、前記測位精度推測値は、GPS受
信器、自律航法演算器、路側帯距離計測器のそれぞれの
測位した結果及び認識している各センサ情報や、経験的
な判断から推測したものであり、リアルタイムで推測し
てもよいし、又は予め所定値に設定しても構わない。
According to the third aspect of the present invention, the corrected position and the corrected azimuth are calculated by the sensor fusion corresponding to the estimated values of the positioning accuracy of the GPS receiver, the autonomous navigation calculator, and the roadside distance measuring device, so that the reliability is improved. It is possible to obtain a position with high probability. In addition, the positioning accuracy estimation value is a GPS receiver, an autonomous navigation calculator, a roadside zone distance measuring device, and each of the recognized sensor information and recognized sensor information, and is estimated from empirical judgment. It may be estimated in real time, or may be set to a predetermined value in advance.

【0015】[0015]

【発明の実施の形態】以下に、図面を参照して本発明の
実施形態について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】本発明に係る無人車両の走行システムの基
本構成は図12と同じものとする。ここで、固定基地局
1の位置(絶対座標)は予め正確に計測されている。固
定基地局1は、GPSアンテナ2aを介してGPS受信
器により受信した複数の衛星3a,〜3eからの位置情
報に基づいてGPSによる絶対座標値を演算し、この演
算した絶対座標値と予め正確に測量して記憶した基地座
標値との比較により各演算時点でのGPSによる測位誤
差パラメータ(各受信器の共通誤差を表すパラメータで
あり、例えば、複数の衛星3a,〜3eからの距離情報
受信時の受信器内時計の時間遅れデータや、時刻情報デ
ータや、衛星軌道誤差データ等からなる)を求める。そ
して、求めたGPSの測位誤差パラメータを補正データ
として管制通信アンテナ2bを介して無人車両10に送
信する。
The basic configuration of the traveling system for an unmanned vehicle according to the present invention is the same as that shown in FIG. Here, the position (absolute coordinates) of the fixed base station 1 is accurately measured in advance. The fixed base station 1 calculates absolute coordinate values by GPS based on position information from a plurality of satellites 3a and 3e received by a GPS receiver via a GPS antenna 2a, and calculates the absolute coordinate values and the calculated absolute coordinate values in advance. A positioning error parameter by GPS at each calculation time point (a parameter representing a common error of each receiver, for example, receiving distance information from a plurality of satellites 3a to 3e) Time delay data of the internal clock of the receiver, time information data, satellite orbit error data, etc.). Then, the obtained GPS positioning error parameter is transmitted as correction data to the unmanned vehicle 10 via the control communication antenna 2b.

【0017】図1により、本発明に係る無人車両側の制
御装置構成を説明する。GPS受信器13はGPSアン
テナ12aを介して複数のGPS衛星から位置情報を受
信し、車両の絶対位置、方位及び速度(この場合は、G
PSアンテナ12aの移動方向を表すGPS姿勢角、及
び移動速度を表すGPS速度である)を計測する。この
とき、固定基地局1から管制通信アンテナ12bを介し
て受信した前記補正データに基づき、車両自身で測位し
た絶対座標値、方位及び速度を補正する(いわゆる、デ
ィファレンシャル方式GPSである)。また、GPS受
信器13は自身の故障診断機能を有しており、例えば、
GPS通信情報に含まれる、つまりGPS衛星で検出し
た通信異常信号の解析、及びGPS受信器13側での受
信データ異常検出などが行われる。
Referring to FIG. 1, the configuration of a control device for an unmanned vehicle according to the present invention will be described. The GPS receiver 13 receives position information from a plurality of GPS satellites via the GPS antenna 12a, and receives the absolute position, direction, and speed of the vehicle (in this case, G
(A GPS attitude angle indicating the moving direction of the PS antenna 12a and a GPS speed indicating the moving speed). At this time, the absolute coordinate value, azimuth, and speed measured by the vehicle itself are corrected based on the correction data received from the fixed base station 1 via the control communication antenna 12b (so-called differential GPS). The GPS receiver 13 has its own failure diagnosis function.
Analysis of a communication abnormality signal included in the GPS communication information, that is, a communication abnormality signal detected by a GPS satellite, detection of reception data abnormality on the GPS receiver 13 side, and the like are performed.

【0018】自律航法演算器14は、基点となる位置か
らの相対的な移動位置を測位するものであり、自律航法
による相対位置及び方位(この場合は走行方向)を演算
している。本実施形態では推測航法による例で示し、無
人車両の走行方向を計測するジャイロ21と、走行速度
を計測する速度センサ22とを有しており、計測した走
行方向と、走行速度から演算される走行距離とにより相
対位置及び方位を求めている。慣性航法による場合に
は、一般的な構成と同様に、重力方向に対して常に平衡
状態を保持するジャイロによるプラットホームを設け、
このプラットホームに加速度センサを備えており、加速
度信号を積分して速度信号を求め、さらに速度信号を算
出して移動距離を求め、ジャイロにより走行方向を検出
し、これらの各データから推測航法と同様の相対位置及
び方位を求めるようにしている。以後の説明は推測航法
について説明しているが、慣性航法についても同様に構
成できる。尚、速度センサ22は、例えば車輪の回転数
を検出する回転センサで構成され、4輪の内の少なくと
も一個所に(例えば左右前輪と後輪の3個所に)設けて
いる。また、自律航法演算器14は自身の故障診断機能
を有しており、ジャイロ21からの入力データ異常や故
障信号の解析、速度センサ22からの入力データ異常
(例えば、検出信号の変化異常や、左右前輪及び1個の
後輪にそれぞれ速度センサ22を設けた場合の各速度セ
ンサ22からの信号同士の比較)や断線検出信号の解析
などにより故障診断を行っている。
The autonomous navigation computing unit 14 measures a relative movement position from a position serving as a base point, and calculates a relative position and an azimuth (in this case, a traveling direction) by autonomous navigation. In the present embodiment, an example of dead reckoning is shown, which has a gyro 21 for measuring the traveling direction of the unmanned vehicle and a speed sensor 22 for measuring the traveling speed, and is calculated from the measured traveling direction and the traveling speed. The relative position and azimuth are obtained from the traveling distance. In the case of inertial navigation, as with the general configuration, a gyro platform that always maintains an equilibrium state in the direction of gravity is provided,
This platform is equipped with an acceleration sensor, which integrates the acceleration signal to obtain a speed signal, further calculates the speed signal to obtain the travel distance, detects the traveling direction with a gyro, and uses these data as in dead reckoning navigation. Are determined. Although the following description describes dead reckoning navigation, inertial navigation can be similarly configured. The speed sensor 22 is constituted by, for example, a rotation sensor for detecting the number of rotations of the wheels, and is provided at at least one of the four wheels (for example, at the three positions of the left and right front wheels and the rear wheels). Further, the autonomous navigation computing unit 14 has its own failure diagnosis function, and analyzes an abnormal input data from the gyro 21 and an abnormal signal, an abnormal input data from the speed sensor 22 (for example, an abnormal change in the detection signal, Failure diagnosis is performed by comparing the signals from the speed sensors 22 when the speed sensors 22 are provided on the left and right front wheels and one rear wheel, and analyzing a disconnection detection signal.

【0019】路側帯距離計測器15は、無人車両10か
ら走行経路の路側帯(土手、又は路側帯を表す壁や反射
板等)までの距離を非接触で計測するものであり、例え
ばレーザ距離計23や超音波距離計等を有している。路
側帯距離計測器15は自身の故障診断機能を有してお
り、例えば、計測信号の変化異常の解析を行う。
The roadside zone distance measuring device 15 measures the distance from the unmanned vehicle 10 to the roadside zone of the traveling route (such as a bank or a wall or a reflector representing the roadside zone) in a non-contact manner. It has a total 23, an ultrasonic distance meter, and the like. The roadside distance measuring device 15 has its own failure diagnosis function, and analyzes, for example, a change abnormality in a measurement signal.

【0020】位置計測部11は、それぞれの測位モジュ
ール(即ち、GPS受信器13、自律航法演算器14及
び路側帯距離計測器15)の測位データ(位置及び方位
であり、以後特に断らない限り同様とする)に基づい
て、各測位データの信頼性に応じた重みを考慮して加算
平均し、より信頼性の高い正確な無人車両の位置及び方
位を演算する。以後、このような重みを考慮して加算平
均により測位することをセンサーフュージョンという。
即ち、それぞれの測位モジュール13,14,15から
の故障診断結果信号に基づき、又はそれぞれの測位モジ
ュール13,14,15の測位データ間の乖離(データ
矛盾やデータ異常)をチェックし、異常の無い時は、各
測位データの信頼性つまり測位精度推測値(以後、単に
測位精度と言う)の大きさに応じたセンサーフュージョ
ンにより測位し、いずれかの測位モジュールに異常があ
る時は、異常モジュールの測位データを除外して他の測
位データ同士をその測位精度(信頼性)に応じたセンサ
ーフュージョンにより補完し合い、より正確な無人車両
の位置及び方位を求めるようにしている。尚、それぞれ
の測位モジュール13,14,15の測位精度は、測位
した結果及び認識している各センサ情報や、経験的な判
断から推測されるものであり、その推測値は実処理時に
リアルタイムで推定演算してもよいし、又は予め所定値
に設定してあっても構わない。
The position measuring unit 11 is a positioning data (position and direction) of each positioning module (ie, GPS receiver 13, autonomous navigation calculator 14, and roadside distance measuring device 15). ), Weighting according to the reliability of each positioning data is taken into account and averaged to calculate a more reliable and accurate position and orientation of the unmanned vehicle. Hereinafter, positioning based on averaging in consideration of such weights is referred to as sensor fusion.
That is, based on a failure diagnosis result signal from each of the positioning modules 13, 14, and 15, or a deviation (data inconsistency or data abnormality) between the positioning data of each of the positioning modules 13, 14, and 15, there is no abnormality. At that time, positioning is performed by sensor fusion according to the reliability of each positioning data, that is, the estimated value of positioning accuracy (hereinafter, simply referred to as positioning accuracy), and when there is an abnormality in any of the positioning modules, Excluding the positioning data, the other positioning data are complemented with each other by sensor fusion according to the positioning accuracy (reliability), thereby obtaining a more accurate position and orientation of the unmanned vehicle. Note that the positioning accuracy of each of the positioning modules 13, 14, and 15 is estimated from the result of positioning, the information of each recognized sensor, and empirical judgment, and the estimated value is obtained in real time during actual processing. Estimation calculation may be performed, or a predetermined value may be set in advance.

【0021】尚、上記データ異常の検出方法としては、
例えば、管制制御部16から走行経路に沿った地形情報
を入力し、この入力した地形情報と路側帯距離計測器1
5からの測位データとの差値情報に基づきデータ異常判
定を行う。そして、前記求めた正確な測位データに基づ
き無人車両を走行させるために、この測位データをそれ
ぞれ管制制御部16、走行制御部17及び安全管理部1
9に出力する。
Incidentally, as a method for detecting the above data abnormality,
For example, terrain information along the traveling route is input from the traffic control unit 16, and the input terrain information and the roadside distance measuring device 1 are input.
Data abnormality determination is performed based on the difference value information from the positioning data from No. 5. Then, in order to allow the unmanned vehicle to travel based on the obtained accurate positioning data, the positioning data is transmitted to the traffic control unit 16, the traveling control unit 17, and the safety management unit 1, respectively.
9 is output.

【0022】管制制御部16は、予め走行経路データC
D及び地形情報GIを記憶しておき、自動走行時にはこ
の記憶している走行経路データCDを走行制御部17と
位置計測部11とに、また地形情報GIを位置計測部1
1に出力している。地形情報GIは、走行経路に沿って
設置された路側帯に関する情報であり、詳細は後程説明
する。尚、走行経路データCDは、車両を実際にマニュ
アル走行して教示するティーチングにより作成してもよ
いし、予め走行経路の測量データに基づいてオフライン
にて作成したものを固定基地局1から管制通信アンテナ
12bを介して受信するようにしてもよい。また、上記
ティーチングで作成された走行経路データCDを路側帯
との距離に応じて、即ち路側帯距離と関連づけて編集、
修正したものであってもよい。またティーチングはGP
Sの条件が良好な時に行われ、実際に走行経路に沿って
走行した時のGPSによる位置、方位(走行方向)及び
車速の各データを所定時間毎に記憶する。このとき、位
置及び方位データとしては、GPSによる位置及び方位
と自律航法による位置及び方位とをそれぞれの測位デー
タの信頼性に応じて、つまりGPS通信信号の途切れ時
間やGPS測位誤差、及び自律航法の計測誤差等の大き
さに応じてセンサーフュージョンにより推定した位置及
び方位を用いた方が好ましい。
The traffic control unit 16 stores travel route data C
D and the terrain information GI are stored. During automatic driving, the stored traveling route data CD is stored in the travel control unit 17 and the position measurement unit 11 and the terrain information GI is stored in the position measurement unit 1.
1 is output. The terrain information GI is information relating to a roadside zone installed along the traveling route, and details will be described later. The travel route data CD may be created by teaching the vehicle while actually traveling manually, or may be created offline in advance based on survey data of the travel route from the fixed base station 1 in the control communication. You may make it receive via the antenna 12b. Further, the traveling route data CD created by the above teaching is edited according to the distance to the roadside belt, that is, in association with the roadside belt distance,
It may be modified. Teaching is GP
This is performed when the condition of S is favorable, and the data of the position, azimuth (running direction) and vehicle speed by GPS when the vehicle actually travels along the running route are stored at predetermined time intervals. At this time, as the position and direction data, the position and the direction by the GPS and the position and the direction by the autonomous navigation are determined according to the reliability of the respective positioning data, that is, the interruption time of the GPS communication signal, the GPS positioning error, and the autonomous navigation. It is preferable to use the position and orientation estimated by sensor fusion according to the magnitude of the measurement error and the like.

【0023】走行制御部17は、走行経路データに従っ
て無人車両が走行するように操舵、速度を制御するため
の各種のアクチュエータ18を制御する。尚、アクチュ
エータ18には、例えば、操舵を行うステアリングシリ
ンダを制御するステアリング制御弁、ブレーキやリター
ダを制御するブレーキ制御弁、エンジンの回転数制御レ
バーの揺動角を制御するモータ等がある。走行制御部1
7は走行経路上の目標位置及び目標方位と位置計測部1
1から入力した現在位置及び方位とのそれぞれの偏差が
小さくなるように走行方向及び走行距離を算出し、算出
した走行方向及び走行距離に基づいて前記アクチュエー
タ18に各制御指令を出力し、無人車両の自動走行を制
御する。
The traveling control unit 17 controls various actuators 18 for controlling steering and speed so that the unmanned vehicle travels according to the traveling route data. The actuator 18 includes, for example, a steering control valve for controlling a steering cylinder for steering, a brake control valve for controlling a brake and a retarder, and a motor for controlling a swing angle of an engine speed control lever. Travel control unit 1
7 is a target position and a target azimuth on the traveling route and a position measuring unit 1
The driving direction and the traveling distance are calculated so that the respective deviations from the current position and the azimuth input from 1 are reduced, and each control command is output to the actuator 18 based on the calculated traveling direction and the traveling distance, and the unmanned vehicle To control the automatic driving of the vehicle.

【0024】安全管理部19は、位置計測部11からの
現在位置データに基づいて無人車両前方の走行コース上
の障害物(人や車の侵入、落石等)を検出する機能を有
し、障害物を検出した場合には無人車両を安全に停止さ
せたり、障害物を回避して走行させたりする。また、位
置計測系や制御系がなんらかの予期せぬ(つまり自身で
は検出不可能な)異常を来した場合には、コース上にあ
るはずの無い路側帯や対向車両等を障害物として検出し
て車両を緊急停止させる。
The safety management section 19 has a function of detecting an obstacle (penetration of a person or a car, falling rocks, etc.) on a traveling course ahead of the unmanned vehicle based on the current position data from the position measurement section 11. When an object is detected, the unmanned vehicle is safely stopped, or the vehicle is driven around an obstacle. When the position measurement system or the control system has some unexpected abnormality (that is, it cannot be detected by itself), a roadside zone or an oncoming vehicle which should not be on the course is detected as an obstacle. Stop the vehicle immediately.

【0025】次に、上記の地形情報について、詳細に説
明する。路側帯距離計測器15により計測した路側帯と
走行中の無人車両との距離に基づいて無人車両の現在位
置を推定し、この推定した位置データと他のGPS受信
器13又は自律航法演算器14による測位データとのセ
ンサーフュージョンを行って正確な現在位置及び方位を
得るためには、走行経路の各走行位置に対応した走行経
路から路側帯までの正確な距離情報が必要となる。前記
地形情報GIとは、この正確な距離情報を得るための路
側帯情報である。地形情報GIは、走行経路の幅、経路
脇の土手の有無や連続性を表す地形情報、上空視界性が
悪くて路側帯距離でのセンサーフュージョンが必要な走
行エリアの走行方向距離等の条件によって、それぞれ構
成されるデータ内容が異なる以下のような種々のデータ
設定方式が考えられる。
Next, the above terrain information will be described in detail. The current position of the unmanned vehicle is estimated based on the distance between the roadside zone and the traveling unmanned vehicle measured by the roadside zone distance measuring device 15, and the estimated position data and another GPS receiver 13 or autonomous navigation calculator 14 In order to obtain an accurate current position and azimuth by performing sensor fusion with the positioning data according to the above, accurate distance information from the traveling route corresponding to each traveling position of the traveling route to the roadside zone is required. The terrain information GI is roadside zone information for obtaining this accurate distance information. The terrain information GI is determined by conditions such as the width of the traveling route, terrain information indicating the presence or absence and continuity of a bank beside the route, and the traveling direction distance of a traveling area in which visibility over the sky is poor and sensor fusion is required at the roadside zone distance. The following various data setting methods can be considered, each of which has different data contents.

【0026】・地形情報GIの設定方式 (1)走行路幅が均一で、走行路脇の土手の整備が行き
届いている場合 図2に示すように、走行経路4(路幅の略中央線)と路
側帯5との距離が一定であるから、無人車両10と路側
帯5との距離Lの基準値L0を予め設定しておく。この
基準距離L0と路側帯距離計測器15による計測値との
差値により、現在位置を推定する。
Setting method of the terrain information GI (1) When the traveling road width is uniform and the bank beside the traveling road is well maintained, as shown in FIG. 2, traveling route 4 (substantially center line of the road width) Since the distance between the vehicle and the roadside zone 5 is constant, a reference value L0 of the distance L between the unmanned vehicle 10 and the roadside zone 5 is set in advance. The current position is estimated based on the difference between the reference distance L0 and the value measured by the roadside distance measuring device 15.

【0027】(2)走行路幅が不均一で、土手の整備が
行き届いているが、走行経路と土手との距離が不均一な
場合(基準距離L0一定では成立しない場合) 図3に示すように、走行経路4と路側帯5との距離が走
行経路4に応じて変化するので、走行経路4に応じて基
準距離L0を逐次演算する必要がある。また、この場合
には、走行経路4に対する土手の傾き(路側帯距離の変
化率)も地形情報GIとして記憶している。地形情報G
Iは、例えば次のようないくつかの設定方法がある。 2-1)無人車両10側で、精密に測量した土手の座標デー
タを走行経路4に応じて記憶する方法この記憶した土手
座標と走行経路4との距離により基準距離L0を逐次求
め、求めた基準距離L0と実測距離データLとの差値に
より現在位置を推定する。また、前記土手座標と走行経
路4間の距離に基づき、走行経路4に対する土手の傾き
(路側帯距離の変化率)が算出される。尚、土手座標と
自車位置と走行経路4とを比較して、座標が重なった
り、接近し過ぎたり、座標データの乖離(矛盾)等の異
常が無いかを検出することも可能である。 2-2)基地局にある車両管制システム側で、精密に測量し
た土手座標データと走行経路4との距離を演算してお
き、走行経路4に応じて無人車両10が車両管制システ
ム側から受信する方法この方式は、無人車両10側の演
算処理時間が速くなる利点がある。 2-3)走行経路4のティーチングの時に走行経路4に応じ
て土手までの距離Lを計測し、これらの走行経路4のテ
ィーチングデータと上記計測した路側帯距離Lとを共に
車両管制システム側で記憶し、自動走行時、走行経路4
に応じて路側帯距離Lを受信する方法
(2) When the running path width is uneven and the bank is well-maintained, but the distance between the running path and the bank is uneven (when the reference distance L0 is not constant), as shown in FIG. Since the distance between the traveling route 4 and the roadside zone 5 changes according to the traveling route 4, it is necessary to sequentially calculate the reference distance L0 according to the traveling route 4. In this case, the inclination of the bank with respect to the travel route 4 (the rate of change of the roadside belt distance) is also stored as the topographic information GI. Terrain information G
I has several setting methods, for example, as follows. 2-1) A method of storing the coordinate data of the precisely measured bank on the unmanned vehicle 10 side according to the travel route 4 The reference distance L0 is sequentially obtained and obtained from the distance between the stored bank coordinates and the travel route 4. The current position is estimated from the difference between the reference distance L0 and the actually measured distance data L. Further, the inclination of the bank with respect to the travel route 4 (the rate of change of the roadside zone distance) is calculated based on the distance between the bank coordinates and the travel route 4. In addition, it is also possible to compare the bank coordinates, the own vehicle position, and the traveling route 4 to detect whether there is an abnormality such as overlapping, approaching, and deviation (contradiction) of coordinate data. 2-2) The vehicle control system at the base station calculates the distance between the precisely measured bank coordinate data and the travel route 4, and the unmanned vehicle 10 receives from the vehicle control system according to the travel route 4. This method has an advantage that the calculation processing time on the unmanned vehicle 10 side is shortened. 2-3) The distance L to the bank is measured according to the traveling route 4 at the time of the teaching of the traveling route 4, and the teaching data of the traveling route 4 and the measured roadside belt distance L are both determined on the vehicle control system side. Memorize, during automatic travel, travel route 4
To receive the roadside distance L according to

【0028】(3)整備された土手が無いエリアが続く
場合 走行路脇に一定間隔で反射ポールや看板等の所定の反射
物を設置し、地形情報GIとして、反射物設置位置座
標、又は該反射物と走行経路4との距離などが記憶され
る。自動走行時には、記憶した反射物設置座標と走行経
路4の座標とから無人車両10と路側帯5(反射物)と
の基準距離L0を算出し、又は記憶した反射物と走行経
路4との距離から前記基準距離L0を算出し、この基準
距離L0に基づき無人車両10の現在位置を推定する。
尚、反射物設置座標は測量して求めてもよいし、ティー
チング走行時に同時に反射物位置を検出して記憶しても
よい。また、反射物と走行経路4との距離も同様に測量
結果から算出してもよいし、ティーチング時に同時に検
出して記憶してもよい。
(3) In the case where an area without a bank has been maintained, predetermined reflectors such as reflection poles and signboards are installed at regular intervals on the side of the traveling road, and as the topographical information GI, the coordinates of the reflector installation positions or the reflectors are set. The distance between the reflection object and the travel route 4 is stored. At the time of automatic traveling, the reference distance L0 between the unmanned vehicle 10 and the roadside zone 5 (reflecting object) is calculated from the stored coordinates of the reflecting object and the coordinates of the traveling route 4 or the distance between the stored reflecting object and the traveling route 4. , The reference distance L0 is calculated, and the current position of the unmanned vehicle 10 is estimated based on the reference distance L0.
The reflector installation coordinates may be obtained by surveying, or the reflector position may be detected and stored at the same time as the teaching operation. Further, the distance between the reflection object and the travel route 4 may be similarly calculated from the survey result, or may be detected and stored simultaneously with the teaching.

【0029】(4)整備された土手があっても、車両走
行方向の位置補正が必要になる場合 この場合、反射物が一定間隔で設置されたり、走行方向
位置補正が必要なポイント(旋回点等)に反射物が設置
される。これらの反射物の座標は予め正確に測量され、
地形情報GIとして記憶される。
(4) A case where position correction in the vehicle running direction is required even if there is a repaired bank. In this case, a reflection object is installed at a fixed interval, or a point where the running direction position correction is required (a turning point). , Etc.). The coordinates of these reflectors are accurately measured in advance,
It is stored as terrain information GI.

【0030】次に、位置計測部11のセンサーフュージ
ョン機能について詳細に説明する。 (GPSと自律航法とのセンサーフュージョン)GPS
受信器13及び自律航法演算器14が共に故障が無く、
かつ各測位データの異常が無い場合には、両者の測位デ
ータのセンサーフュージョンにより現在位置及び方位が
算出される。即ち、図4に示すように、走行中は、所定
時間毎にGPS受信器13により測位されたGPS絶対
座標及び方位と、このときの固定基地局1からの前記補
正データとを参照してGPSによる測位データ(位置及
び方位)が求められ、このGPSによる測位データの計
測精度とこれまでの自律航法による測位データの計測精
度とを比較し、各測位データの精度(信頼性)に応じた
重み(例えば0.8と0.2)をそれぞれ掛けて平均値
を求め、これを補正された現在位置とし、この現在位置
の補正量に基づき方位を補正する。尚、自律航法による
方位データの計測精度が高い場合には、GPSによる測
位データの内、位置データのみを用いてセンサーフュー
ジョンを行なってもよい。走行制御部は、この補正され
た現在位置と走行経路4上の目標位置との偏差(距離)
α、及び車両の実姿勢角(つまり走行方向)と走行経路
4の目標姿勢角との偏差をそれぞれ小さくする方向に操
舵量を決定し、無人車両10を走行させ、この間自律航
法演算器14での推測航法により前記補正現在位置及び
方位を基準とした相対位置から現在位置及び方位を推定
演算する。以上のGPS航法と自律航法とのセンサーフ
ュージョンを繰り返す。
Next, the sensor fusion function of the position measuring section 11 will be described in detail. (Sensor fusion between GPS and autonomous navigation) GPS
Both the receiver 13 and the autonomous navigation calculator 14 have no failure,
If there is no abnormality in each positioning data, the current position and the azimuth are calculated by the sensor fusion of the positioning data of both. That is, as shown in FIG. 4, while traveling, the GPS is referred to by reference to the GPS absolute coordinates and azimuth measured by the GPS receiver 13 at predetermined time intervals and the correction data from the fixed base station 1 at this time. Positioning data (position and direction) is obtained by using the GPS, and the measurement accuracy of the positioning data by the GPS is compared with the measurement accuracy of the positioning data by the autonomous navigation so far, and the weight according to the accuracy (reliability) of each positioning data is obtained. (E.g., 0.8 and 0.2) are multiplied to obtain an average value, which is set as a corrected current position, and the azimuth is corrected based on the correction amount of the current position. When the measurement accuracy of the azimuth data by the autonomous navigation is high, the sensor fusion may be performed using only the position data among the positioning data by the GPS. The traveling control unit calculates a deviation (distance) between the corrected current position and a target position on the traveling route 4.
α, the steering amount is determined in a direction to reduce the deviation between the actual posture angle of the vehicle (that is, the traveling direction) and the target posture angle of the traveling route 4, and the unmanned vehicle 10 travels. The present position and direction are estimated and calculated from the relative position based on the corrected current position and direction by the dead reckoning navigation. The above-described sensor fusion between GPS navigation and autonomous navigation is repeated.

【0031】(GPSと自律航法とのセンサーフュージ
ョンの異常検出)GPS受信器13及び自律航法演算器
14は正常であるが、測位データ間に異常(乖離)が発
見された場合には、GPS受信器13、自律航法演算器
14及び路側帯距離計測器15の各測位データ同士のセ
ンサーフュージョンにより現在位置及び方位を推定す
る。即ち、GPS及び自律航法による各測位データのセ
ンサーフュージョンにより求めた現在位置を、さらに路
側帯距離による位置データとのセンサーフュージョンに
より補正してより信頼性の高い現在位置を求め、この現
在位置の補正量に基づきGPS航法及び自律航法による
方位を補正してより信頼性の高い方位を求める。ここで
上記のデータ異常検出方法としては、例えば、図5に示
すように正常な路側帯距離計測器15により計測した路
側帯距離Lの実測値と前記地形情報GIにより設定され
た又は求められた基準距離L0との差値が所定値を越え
た(即ち極端に小さくなり過ぎた、又は大きくなり過ぎ
た)ときに異常と判断することができる。あるいは、異
なる測位方法での前記各測位データ同士の差値が所定値
以上となったとき、データ間に大きな乖離があって異常
とみなすこともできる。但し、基準距離L0及び路側帯
実測距離のデータの安定性を判定し、確実にその連続性
が認められ、かつ土手形状が安定して検出される、つま
り連続性がある場合のみに、上記の異常検出の判定がな
されるようにしている。また、当然のことながら、路側
帯距離計測器15の故障が発生したときは、上述の路側
帯実測距離と基準距離L0との差値の大きさによる異常
診断や、路側帯距離によるセンサーフュージョンは行わ
ないものとする。
(Detection of abnormality in sensor fusion between GPS and autonomous navigation) The GPS receiver 13 and the autonomous navigation arithmetic unit 14 are normal, but if an abnormality (deviation) is found between the positioning data, the GPS reception is performed. The current position and azimuth are estimated from the sensor fusion of the respective positioning data of the device 13, the autonomous navigation calculator 14, and the roadside zone distance measuring device 15. That is, the current position obtained by the sensor fusion of each positioning data by GPS and autonomous navigation is further corrected by the sensor fusion with the position data based on the roadside distance to obtain a more reliable current position, and the current position is corrected. The azimuth by the GPS navigation and the autonomous navigation is corrected based on the amount, and a more reliable azimuth is obtained. Here, as the above-described data abnormality detection method, for example, as shown in FIG. 5, the data is set or obtained based on the measured value of the roadside distance L measured by the normal roadside distance measuring device 15 and the terrain information GI. When the difference value from the reference distance L0 exceeds a predetermined value (that is, when the difference value becomes extremely small or excessively large), it can be determined that there is an abnormality. Alternatively, when the difference value between the respective pieces of positioning data obtained by different positioning methods is equal to or more than a predetermined value, there may be a large difference between the data and the data may be regarded as abnormal. However, the stability of the data of the reference distance L0 and the actual measurement distance of the roadside zone is determined, and the continuity is surely recognized and the bank shape is detected stably. An abnormality detection determination is made. Naturally, when a failure of the roadside belt distance measuring device 15 occurs, the abnormality diagnosis based on the magnitude of the difference between the above-described actual measurement distance of the roadside belt and the reference distance L0, and the sensor fusion based on the roadside belt distance, Shall not be performed.

【0032】(GPS異常時の路側帯計測と自律航法と
のセンサーフュージョン)GPS受信器13の故障診断
で異常が認められた場合、自律航法により走行するが、
ジャイロ21と速度センサ22の累積誤差の影響により
推定現在位置及び方位は徐々にズレを生じ、このずれた
位置及び方位情報に基づき走行制御するので、図6に示
すようにその実際の走行軌跡7はそのずれた分だけ目標
の走行経路4から徐々に逸脱して行く。このとき、路側
帯距離計測器15による路側帯距離Lの実測値と前記基
準距離L0との差値に基づいて現在位置を推定し、この
路側帯距離Lに基づく推定現在位置と前記自律航法によ
る推定現在位置とのセンサーフュージョンにより位置補
正を行ってより信頼性の高い現在位置を求め、この現在
位置の補正量に基づき方位を補正する。通常の略直線的
な又は緩やかなカーブの走行路で、路側帯5が土手や壁
のようなものである場合には、上記で求めた現在位置に
基づき、走行方向に対して横方向のみの位置補正を行
う。この理由は、そのような場合、走行方向の位置誤差
は横方向に比べて小さく、かつ横方向誤差の方が自動走
行に関してはより重要であるのに対し、走行方向誤差は
問題とならないことが多いからである。尚、計測した路
側帯距離Lが所定値よりも小さ過ぎたり、大き過ぎたり
した時には、走行経路4から極端に逸脱したと判断して
上記補正を行う前に、緊急停止するようにしている。
(Sensor fusion of roadside zone measurement and autonomous navigation when GPS is abnormal) If abnormality is recognized in the failure diagnosis of GPS receiver 13, the vehicle travels by autonomous navigation.
The estimated current position and azimuth gradually deviate due to the influence of the accumulated error between the gyro 21 and the speed sensor 22, and travel is controlled based on the deviated position and azimuth information. Therefore, as shown in FIG. Gradually deviates from the target traveling route 4 by the deviation. At this time, the current position is estimated on the basis of the difference between the measured value of the roadside belt distance L by the roadside belt distance measuring device 15 and the reference distance L0, and the estimated current position based on the roadside belt distance L and the autonomous navigation are used. The position is corrected by sensor fusion with the estimated current position to obtain a more reliable current position, and the azimuth is corrected based on the correction amount of the current position. When the roadside zone 5 is a bank or a wall on an ordinary substantially straight or gentle curve traveling road, based on the current position obtained above, only the lateral direction with respect to the traveling direction is used. Perform position correction. The reason is that in such a case, the position error in the traveling direction is smaller than that in the lateral direction, and the lateral error is more important for automatic traveling, but the traveling direction error is not a problem. Because there are many. If the measured roadside belt distance L is too small or too large, it is determined that the vehicle has deviated extremely from the travel route 4 and an emergency stop is performed before the correction is performed.

【0033】(土手が無い場合、又は走行方向誤差が問
題となる場合) a)土手の無いエリアR(図7参照)が長い距離に及ん
で続く場合 b)交差点で曲がる場合、又は急旋回する場合 c)ホッパ、排土場や、積込場等の停止位置の近傍で、
走行方向の位置精度が要求される場合 これらの場合には、図7に示すように、設置座標が予め
正確に測量された、走行方向の位置補正用の反射ポール
や看板等の反射板25を路側帯5として設置する。この
座標既知の反射板25までの距離を路側帯距離計測器1
5により計測し、この計測距離に基づき現在位置を精度
良く推定して横方向位置と共に走行方向位置を正確に補
正することが可能となる。尚、路側帯距離計測器15に
よる計測値から現在位置を求めるには、当該反射板25
の既知座標と、計測時の車両の走行方向と、この走行方
向に対する路側帯距離計測器15からのレーザや超音波
の発信方向とに基づいて求めることが可能である。従っ
て、仮にこのような場所でGPSによる測位が不能にな
ったり異常となった時、又は自律航法に異常が認められ
た時には、路側帯距離計測器15による現在位置の測位
データと、GPSによる測位及び自律航法演算器14に
よる測位のいずれか正常である方の現在位置の測位デー
タとのセンサーフュージョンにより、走行方向位置精度
も高くでき、信頼性の高い位置を計測できる。この結
果、走行経路4に沿って確実に操向でき、交差点や急旋
回点での旋回が正確に行え、また停止位置での停止精度
を向上できる。
(When there is no bank, or when the traveling direction error is a problem) a) When the area R without the bank (see FIG. 7) continues over a long distance b) When turning at an intersection or turning sharply Case c) In the vicinity of a stop position such as a hopper, a dumping site, or a loading site,
When Positional Accuracy in Traveling Direction is Required In these cases, as shown in FIG. 7, a reflector 25 such as a reflective pole or signboard for positional correction in the traveling direction in which the installation coordinates are accurately measured in advance is used. Installed as roadside zone 5. The distance to the reflector 25 whose coordinates are known is determined by the roadside distance measuring device 1.
5, the current position is accurately estimated based on the measured distance, and the traveling direction position can be accurately corrected together with the lateral position. In order to determine the current position from the value measured by the roadside belt distance measuring device 15, the reflection plate 25
, The traveling direction of the vehicle at the time of measurement, and the transmission direction of the laser or ultrasonic wave from the roadside distance measuring device 15 with respect to this traveling direction. Therefore, if positioning by GPS becomes impossible or abnormal in such a place, or if abnormality is recognized in autonomous navigation, positioning data of the current position by the roadside distance measuring device 15 and positioning by GPS are used. The sensor fusion with the positioning data of the normal position, whichever is the position determined by the autonomous navigation computing unit 14, and the sensor fusion, the traveling direction position accuracy can be increased, and a highly reliable position can be measured. As a result, it is possible to reliably steer along the traveling route 4, to accurately turn at an intersection or a sharp turning point, and to improve stopping accuracy at a stopping position.

【0034】(自律航法異常時の路側帯計測とGPSで
の測位とのセンサーフュージョン)ジャイロ21や速度
センサ22の故障等による自律航法演算器14の異常を
認めた場合には、異常形態により以下のようにそれぞれ
冗長系を形成している計測手段に切換えるようにしてい
る。 a)装着している全速度センサが異常の場合 速度センサ22の代わりに、GPS速度を使用する。G
PS速度データは、所定時間(例えば0.5秒)毎にG
PS受信器13から出力される。 b)ジャイロに関する異常がある場合 ジャイロ21の代わりに、GPS姿勢角を使用する。G
PS姿勢角は、GPS受信器13が出力する姿勢角、又
はGPSアンテナ12aの位置移動軌跡による姿勢角
(ここでは移動方向)の推定値である。
(Sensor fusion of roadside zone measurement and GPS positioning when autonomous navigation is abnormal) When an abnormality of autonomous navigation arithmetic unit 14 due to failure of gyro 21 or speed sensor 22 or the like is recognized, depending on the abnormal form, As described above, the measuring means are switched to the measuring means forming a redundant system. a) When all the mounted speed sensors are abnormal The GPS speed is used instead of the speed sensor 22. G
The PS speed data is G every predetermined time (for example, 0.5 seconds).
Output from the PS receiver 13. b) When there is an abnormality related to the gyro The GPS attitude angle is used instead of the gyro 21. G
The PS attitude angle is an estimated value of the attitude angle output from the GPS receiver 13 or the attitude angle (in this case, the moving direction) based on the position and movement trajectory of the GPS antenna 12a.

【0035】上記のGPS速度は、所定時間毎の移動距
離に基づき算出しているので低速での精度が低いときが
あり、またデータ出力時間間隔がGPSのサンプリング
時間よりも小さくならない為、自律航法による速度の計
測精度よりも劣化するときがある。また上記のGPS姿
勢角はGPSアンテナ位置の変化から算出されるので、
車両直進時にはある程度の高い精度であるが、旋回時な
どには車両姿勢角(つまり走行方向)とは一致しないこ
とから精度が劣化する等の欠点もある。従って、このよ
うなGPS速度及びGPS姿勢角による位置計測精度は
自律航法よりも低下するので、このGPSデータを用い
た疑似的な自律航法により誘導走行すると、図8に示す
ように軌跡7aがずれて行く。このとき、路側帯距離計
測器15による路側帯5(土手や、前述の反射板25等
を含む)までの距離実測値Lに基づいて演算した現在位
置と、上記GPS速度及び/又はGPS姿勢角により計
測した現在位置とのずれ量から、この疑似的な自律航法
による計測精度を推定し、推定した計測精度に基づき前
記GPS速度及び/又はGPS姿勢角による現在位置を
補正する。そして、補正した現在位置とGPS測位によ
る現在位置とのセンサーフュージョンによって、より信
頼性の高い現在位置を求め、さらにこの現在位置の補正
量に基づき方位を補正する。尚、上記の補正を行う以前
に、路側帯距離の実測値と基準距離L0との差が極端に
大きくなり過ぎた時は目標の走行経路4を逸脱している
から、無人車両10を緊急停止させるようにする。
Since the above-mentioned GPS speed is calculated based on the moving distance at every predetermined time, the accuracy at a low speed may be low. In addition, since the data output time interval does not become smaller than the GPS sampling time, the autonomous navigation is used. There is a case where the accuracy of the speed measurement is deteriorated. In addition, since the above GPS attitude angle is calculated from a change in the GPS antenna position,
Although the accuracy is high to some extent when the vehicle goes straight, there is a disadvantage that the accuracy is deteriorated when the vehicle turns, for example, because it does not match the vehicle attitude angle (that is, the traveling direction). Therefore, the position measurement accuracy based on the GPS speed and the GPS attitude angle is lower than that of the autonomous navigation. Therefore, when the vehicle is guided by pseudo autonomous navigation using the GPS data, the trajectory 7a is shifted as shown in FIG. Go. At this time, the current position calculated based on the actually measured distance L to the roadside zone 5 (including the bank, the above-described reflector 25, and the like) by the roadside zone distance measuring device 15 and the GPS speed and / or GPS attitude angle The estimation accuracy of the pseudo autonomous navigation is estimated from the amount of deviation from the current position measured by the above, and the current position is corrected based on the GPS speed and / or GPS attitude angle based on the estimated measurement accuracy. Then, a more reliable current position is obtained by sensor fusion of the corrected current position and the current position obtained by GPS positioning, and the azimuth is corrected based on the correction amount of the current position. If the difference between the measured value of the roadside belt distance and the reference distance L0 becomes extremely large before the above correction is performed, the vehicle deviates from the target traveling route 4 and the unmanned vehicle 10 is urgently stopped. Let it do.

【0036】(土手安定判別について)上述のような、
路側帯距離計測に基づいてセンサーフュージョンや異常
検出を実施する場合に重要なことは、先ず第1に、計測
対象が土手や壁の場合、均一性(なだらかに変化するこ
と)及び連続性(途切れてないこと)等の安定性を評価
し、必ず評価結果が良好な時(安定と判断した時)に上
記路側帯距離計測による測位データを使用すると言う大
前提上で成立することである。即ち、予め土手や壁が設
置されているエリアで不連続に途切れていたり、又は予
め設定された変化率よりも大きく変化したりするよう
な、路側帯5が不安定であるエリアには何か異常が発生
したと判断され、このような異常の有るエリアで計測し
た路側帯距離は異常データとみなされる。第2に、反射
ポールの場合には反射ポールの反射強度が所定値以上で
あること、また看板(所定の形状をなすサイン看板等)
の場合にはその形状、設置位置及び設置距離等により特
徴化することにより、これらの反射板25の特徴検出を
可能として、他の物との識別を明確に行うことが重要で
ある。土手等の上記安定性の判別は、例えば路側帯距離
の前回計測値からの変化量(差値)、変化率、又は複数
の位置での計測距離から算出される土手の車両に対する
相対向き(つまり土手の傾き)などのパラメータに基づ
き評価する。このとき、求めたパラメータが所定許容値
(例えば、地形情報GIに基づいて求められる路側帯距
離変化率に対して許容値を予め設定する)以上の大きさ
である時は、土手等の変化が急激であり、不安定である
と判断し、路側帯距離計測による測位データは使用しな
いようにしている。また,安定判別評価結果は路側帯距
離計測の精度推測値を計算する判断材料としており、こ
れによりセンサーフュージョンする際の重み付けに反映
してもよい。尚、上記の方法に限定されず、予め安定エ
リアと不安定エリア又は土手の無いエリアとを測量して
地形情報GIとして固定基地局1にある車両管制システ
ム側で記憶しておき、無人車両10は車両管制システム
側から通信でこの地形情報GIを入力してもよいことは
言うまでもない。
(About bank stability determination)
When performing sensor fusion and abnormality detection based on roadside belt distance measurement, it is important to first consider the uniformity (gently changing) and continuity (interruption) when the measurement target is a bank or wall. This is true on the premise that when the evaluation result is always good (when it is determined to be stable), the positioning data based on the roadside distance measurement is used. That is, in areas where the roadside zone 5 is unstable, such as discontinuous breaks in areas where a bank or wall is previously installed, or a change greater than a preset change rate, It is determined that an abnormality has occurred, and the roadside zone distance measured in an area having such an abnormality is regarded as abnormal data. Second, in the case of a reflection pole, the reflection intensity of the reflection pole is equal to or higher than a predetermined value, and a signboard (a signboard having a predetermined shape).
In the case of (1), it is important that the characteristics of the reflection plate 25 can be detected by characterizing the shape, the installation position, the installation distance, and the like, so that the reflection plate 25 can be clearly distinguished from other objects. The determination of the stability of the bank or the like is performed, for example, by determining the relative amount to the vehicle of the bank calculated from the amount of change (difference value) of the roadside belt distance from the previous measurement value, the rate of change, or the measurement distance at a plurality of positions (that is, Evaluate based on parameters such as bank inclination). At this time, when the obtained parameter is greater than or equal to a predetermined allowable value (for example, an allowable value is set in advance for the roadside zone distance change rate obtained based on the terrain information GI), a change in the bank or the like is made. It is determined that it is abrupt and unstable, and the positioning data based on the roadside distance measurement is not used. Further, the stability determination evaluation result is used as a determination material for calculating an estimated accuracy value of the roadside belt distance measurement, and may be reflected in the weighting at the time of sensor fusion. Note that the method is not limited to the above method, and a stable area and an unstable area or an area without a bank are measured in advance and stored as terrain information GI on the vehicle control system side in the fixed base station 1, and the unmanned vehicle 10 May input the terrain information GI by communication from the vehicle control system.

【0037】以上説明した位置計測部11のセンサーフ
ュージョンの処理手順を、図9及び図10に示すフロー
チャートにより説明する。先ずステップS1で、GPS
受信器13からGPS航法に関係する情報を入力し、故
障診断を行う。次にステップS2で、自律航法演算器1
4から自律航法の情報を入力し、故障診断を行う。次に
ステップS3で、路側帯距離計測器15から路側帯距離
計測に関係する情報を入力し、故障診断を行う。さらに
ステップS4で、固定基地局1の車両管制システムから
通信で走行経路データCD、地形情報GIを入力し、故
障診断を行う。
The processing procedure of the sensor fusion of the position measuring unit 11 described above will be described with reference to the flowcharts shown in FIGS. First, in step S1, the GPS
Information related to GPS navigation is input from the receiver 13 to perform a failure diagnosis. Next, in step S2, the autonomous navigation computing unit 1
Input information of autonomous navigation from 4 and perform fault diagnosis. Next, in step S3, information related to roadside belt distance measurement is input from the roadside belt distance measurement device 15, and failure diagnosis is performed. Further, in step S4, the travel route data CD and the terrain information GI are input from the vehicle control system of the fixed base station 1 by communication, and a failure diagnosis is performed.

【0038】そしてステップS5で、走行経路データC
Dが正常か否か、即ち走行経路データCDの通信が正常
か、及び受信したデータが連続的かをチェックし、正常
のときは、ステップS7で地形情報GIが正常か否か、
即ち地形情報GIの通信が正常か、及び受信したデータ
が正常か(例えば、土手の座標値の変化量、変化率が所
定値以内か等)をチェックする。地形情報GIが正常の
ときは、ステップS8で路側帯距離計測に関する故障診
断で正常かチェックし、正常なときは、さらにステップ
S9で路側帯距離計測データに基づき求めた路側帯5の
安定性は良好かを判別する。前記ステップS7、ステッ
プS8で正常でないとき、及びステップS9で安定性良
好でないときには、ステップS10で路側帯計測不可フ
ラグをセットし、ステップS11に移行する。尚、ステ
ップS5で走行経路データCDが正常でないときは、ス
テップS6で走行制御部17に車両停止指令を出力して
車両を停止させる。
Then, in step S5, the traveling route data C
It is checked whether D is normal, that is, whether the communication of the traveling route data CD is normal and whether the received data is continuous. If it is normal, it is determined in step S7 whether the terrain information GI is normal.
That is, it is checked whether the communication of the terrain information GI is normal and whether the received data is normal (for example, whether the change amount of the coordinate value of the bank, the change rate is within a predetermined value, etc.). If the terrain information GI is normal, it is checked in step S8 whether or not the fault is related to the roadside zone distance measurement, and if it is normal, the stability of the roadside zone 5 obtained based on the roadside zone distance measurement data in step S9 is determined. Determine if it is good. If it is not normal in steps S7 and S8, and if the stability is not good in step S9, the roadside zone measurement impossible flag is set in step S10, and the process proceeds to step S11. If the traveling route data CD is not normal in step S5, a vehicle stop command is output to the traveling control unit 17 in step S6 to stop the vehicle.

【0039】ステップS9で安定性が良好なときは、ス
テップS11で自律航法の故障診断結果が正常かをチェ
ックし、正常なときは次にステップS12でGPS航法
の故障診断結果が正常かをチェックし、正常なときはさ
らにステップS13で路側帯計測不可フラグがセットさ
れているかチェックする。この後、路側帯計測不可フラ
グがセットされてないときは、ステップS14で自律航
法、GPS航法及び路側帯距離計測によりそれぞれ現在
位置を演算し、各現在位置同士の差値を求め、次にステ
ップS15でこの各差値が所定値以内かチェックし、所
定値以内のときはステップS16で各現在位置データ同
士の乖離(相互矛盾)が無いと判断し、GPS航法、自
律航法及び路側帯距離計測により求めたそれぞれの現在
位置及び方位データに基づきセンサーフュージョンを行
ない、補正現在位置及び方位を演算する。そして、この
後、ステップ18でこの補正現在位置及び方位を最終的
な車両位置及び方位として決定し、そのデータを管制制
御部16、走行制御部17、安全管理部19に出力す
る。管制制御部16、走行制御部17及び安全管理部1
9はこの補正現在位置と方位、目標位置及び目標走行姿
勢に基づきそれぞれ所定の管制制御、走行制御、安全走
行管理を行う。これ以降、ステップS1に戻って処理を
繰り返す。
If the stability is good in step S9, it is checked in step S11 whether the failure diagnosis result of the autonomous navigation is normal. If it is normal, next, in step S12, it is checked whether the failure diagnosis result of the GPS navigation is normal. If it is normal, it is further checked in step S13 whether the roadside zone measurement impossible flag is set. Thereafter, when the roadside zone measurement impossible flag is not set, the current position is calculated by the autonomous navigation, the GPS navigation and the roadside zone distance measurement in step S14, and a difference value between the current positions is obtained. In S15, it is checked whether or not each of the difference values is within a predetermined value. If the difference value is within the predetermined value, it is determined in step S16 that there is no divergence (mutual inconsistency) between the current position data, and GPS navigation, autonomous navigation, and roadside zone distance measurement are performed. The sensor fusion is performed based on the respective current position and direction data obtained by the above, and the corrected current position and direction are calculated. Then, in step 18, the corrected current position and direction are determined as the final vehicle position and direction, and the data is output to the traffic control unit 16, the traveling control unit 17, and the safety management unit 19. Traffic control unit 16, running control unit 17, and safety management unit 1
Reference numeral 9 performs predetermined control, traveling control, and safe traveling management based on the corrected current position and orientation, the target position, and the target traveling posture, respectively. Thereafter, the process returns to step S1 to repeat the processing.

【0040】ステップS15で前記各差値が所定値以内
でないときは、ステップS17で前記各現在位置データ
同士の乖離が有ると判断し、走行制御部17に車両停止
指令を出力して車両を停止させる。
If the difference values are not within the predetermined values in step S15, it is determined in step S17 that there is a deviation between the current position data, and a vehicle stop command is output to the traveling control unit 17 to stop the vehicle. Let it.

【0041】前記ステップS13で路側帯計測不可フラ
グがセットされているときは、ステップS19で自律航
法及びGPS航法によりそれぞれ現在位置及び方位を演
算し、両現在位置同士の差値を求め、次にステップS2
0でこの差値が所定値以内かチェックし、所定値以内の
ときはステップS21で両現在位置データ同士の乖離が
無いと判断し、GPS航法及び自律航法により求めたそ
れぞれの現在位置及び方位データに基づきセンサーフュ
ージョンを行ない、補正現在位置及び方位を演算し、こ
の後前記ステップS18に移行する。またステップS2
0で前記差値が所定値以内でないときは、前記ステップ
S17に移行して車両を停止させる。
If the roadside zone measurement impossible flag is set in step S13, the current position and the azimuth are calculated by the autonomous navigation and the GPS navigation in step S19, and the difference between the two current positions is obtained. Step S2
It is checked whether this difference value is within a predetermined value at 0. If it is within the predetermined value, it is determined in step S21 that there is no divergence between the two current position data, and the respective current position and direction data obtained by the GPS navigation and the autonomous navigation are determined. The sensor fusion is performed on the basis of the above, the corrected current position and the azimuth are calculated, and thereafter, the process proceeds to the step S18. Step S2
If the difference is not equal to or smaller than the predetermined value, the process proceeds to step S17 to stop the vehicle.

【0042】前記ステップS12でGPS航法の故障診
断結果が正常でないときは、ステップS22で路側帯計
測不可フラグがセットされているかチェックし、路側帯
計測不可フラグがセットされてないときは、ステップS
23で自律航法及び路側帯距離計測によりそれぞれ現在
位置を演算し、両現在位置同士の差値を求める。次にス
テップS24でこの差値が所定値以内かチェックし、所
定値以内のときはステップS25で両現在位置データ同
士の乖離が無いと判断し、自律航法及び路側帯距離計測
により求めたそれぞれの現在位置及び方位データに基づ
きセンサーフュージョンを行ない、補正現在位置及び方
位を演算する。この後、前記ステップS18に移行す
る。また、ステップS24で前記差値が所定値以内でな
いときは、前記ステップS17に移行して車両を停止さ
せる。
If the failure diagnosis result of the GPS navigation is not normal in step S12, it is checked in step S22 whether the roadside zone measurement impossible flag is set. If the roadside zone measurement impossible flag is not set, step S22 is executed.
At 23, the current position is calculated by the autonomous navigation and the roadside distance measurement, and the difference between the two current positions is obtained. Next, in step S24, it is checked whether the difference value is within a predetermined value. If the difference value is within the predetermined value, it is determined in step S25 that there is no divergence between the two current position data, and the respective values obtained by the autonomous navigation and the roadside zone distance measurement are determined. The sensor fusion is performed based on the current position and direction data to calculate the corrected current position and direction. Thereafter, the process proceeds to step S18. If it is determined in step S24 that the difference value is not within the predetermined value, the process proceeds to step S17 to stop the vehicle.

【0043】前記ステップS22で路側帯計測不可フラ
グがセットされているときは、ステップS26で自律航
法により現在位置及び方位を推定演算し、ステップS2
7でこの推定現在位置及び方位に基づき車両を減速させ
て停止させるように走行制御部17に指令を出力する。
If the roadside zone measurement impossible flag is set in step S22, the current position and azimuth are estimated and calculated by autonomous navigation in step S26.
In step 7, a command is output to the travel control unit 17 to decelerate and stop the vehicle based on the estimated current position and direction.

【0044】前記ステップS11で自律航法の故障診断
結果が正常でないときは、ステップS28でGPS航法
の故障診断結果が正常かをチェックする。正常なときは
ステップS29で、前記自律航法の走行速度と走行方向
との冗長を切換える、即ち走行速度に関する全ての(複
数センサがある場合)入力データ異常又は全ての速度セ
ンサ異常と診断したら、速度データとしてGPS速度を
用い、走行方向に関する入力データ異常又は方位センサ
異常と診断したら、走行方向データとしてGPS姿勢を
用いて自律航法を行う。
If the failure diagnosis result of the autonomous navigation is not normal in step S11, it is checked in step S28 whether the failure diagnosis result of the GPS navigation is normal. If it is normal, in step S29, the redundancy between the traveling speed and the traveling direction of the autonomous navigation is switched, that is, if it is diagnosed that all the input data relating to the traveling speed (when there are a plurality of sensors) or all the speed sensors are abnormal, If it is determined that the input data relating to the traveling direction is abnormal or the azimuth sensor is abnormal using the GPS speed as the data, autonomous navigation is performed using the GPS attitude as the traveling direction data.

【0045】そして、ステップS30で路側帯計測不可
フラグがセットされているかチェックし、路側帯計測不
可フラグがセットされてないときは、ステップS31
で、速度センサ及び方位センサの内故障の無い方の計測
データと、その故障した方の代用のGPS速度及び/又
はGPS姿勢とに基づき自律航法により現在位置を演算
すると共に、GPS航法及び路側帯距離計測によりそれ
ぞれ現在位置を演算し、各現在位置同士の差値を求め
る。次にステップS32でこの各差値が所定値以内かチ
ェックし、所定値以内のときはステップS33でGPS
航法、自律航法(前記代用のGPS速度及び/又はGP
S姿勢に基づく)及び路側帯距離計測により求めたそれ
ぞれの現在位置データに基づきセンサーフュージョンを
行なって補正現在位置及び方位を演算し、前記ステップ
S18に移行する。上記ステップS32で前記各差値が
所定値以内でないときは、前記ステップS17に移行す
る。
In step S30, it is checked whether the roadside zone measurement impossible flag is set. If the roadside zone measurement impossible flag is not set, step S31 is executed.
The current position is calculated by autonomous navigation based on the measured data of the speed sensor and the direction sensor that has no failure and the substitute GPS speed and / or GPS attitude of the failed sensor, and the GPS navigation and the roadside zone are used. The current position is calculated by the distance measurement, and a difference value between the current positions is obtained. Next, in step S32, it is checked whether or not each of the difference values is within a predetermined value.
Navigation, autonomous navigation (the alternative GPS speed and / or GP
Based on the respective current position data obtained based on the S side posture) and the roadside belt distance measurement, sensor fusion is performed to calculate a corrected current position and orientation, and the process proceeds to step S18. If the respective difference values are not within the predetermined values in step S32, the process proceeds to step S17.

【0046】前記ステップS30で路側帯計測不可フラ
グがセットされているときは、ステップ34で車両減速
停止指令を出力して車両の減速を開始させ、次にステッ
プS35で、車両が停止するまでは、前記代用のGPS
速度及び/又はGPS姿勢による代替自律航法を継続
し、前記ステップ18に移行して所定の処理を行う。
If the roadside zone measurement disable flag is set in step S30, a vehicle deceleration stop command is output in step 34 to start deceleration of the vehicle. , The substitute GPS
The alternative autonomous navigation based on the speed and / or the GPS attitude is continued, and the process proceeds to step 18 to perform a predetermined process.

【0047】前記ステップS28でGPS航法の故障診
断結果が正常でないときは、ステップS36で路側帯計
測不可フラグがセットされているかチェックし、路側帯
計測不可フラグがセットされてないときは、ステップS
37で車両減速停止指令を出力して車両を減速停止させ
る。また、車両が停止するまでの操舵誘導は、路側帯計
測の計測値と地形情報GIデータとに基づき走行を制御
するように指令を出力する。次にステップS38では、
車両が停止するまで、自律航法データの走行距離及び走
行方向の内の異常発生していない方のデータと、異常が
認められた方のデータについて過去の正常時の車両速度
及び/又は車両姿勢、車両軌跡、現在の操舵角度等から
推測した車両速度及び/又は走行方向データとに基づく
自律航法、及び路側帯距離計測による位置補正演算を実
施する。仮に、自律航法データの走行距離及び走行方向
の両方共が異常である場合には、過去の正常時の車両速
度と車両姿勢、車両軌跡、現在の操舵角度等から推測し
た車両速度及び走行方向データに基づく車両停止までの
予測に基づいた自律航法と、路側帯距離計測とによる位
置補正演算を実施する。
If the failure diagnosis result of the GPS navigation is not normal in step S28, it is checked in step S36 whether the roadside zone measurement impossible flag is set. If the roadside zone measurement impossible flag is not set, step S36 is executed.
At 37, a vehicle deceleration stop command is output to decelerate and stop the vehicle. In addition, for steering guidance until the vehicle stops, a command is output to control traveling based on the measured value of the roadside zone measurement and the terrain information GI data. Next, in step S38,
Until the vehicle stops, the data of the autonomous navigation data of the driving distance and the driving direction in which no abnormality has occurred and the data of the one in which the abnormality has been recognized, the past normal vehicle speed and / or vehicle attitude, The autonomous navigation based on the vehicle speed and / or the traveling direction data estimated from the vehicle trajectory, the current steering angle, and the like, and the position correction calculation based on the roadside distance measurement are performed. If both the traveling distance and traveling direction of the autonomous navigation data are abnormal, the vehicle speed and traveling direction data estimated from the past normal vehicle speed and vehicle attitude, vehicle trajectory, current steering angle, etc. And a position correction calculation based on roadside belt distance measurement based on autonomous navigation based on prediction until vehicle stop based on the vehicle.

【0048】前記ステップS36で路側帯計測不可フラ
グがセットされているときは、ステップS39で急制動
をかけて車両を緊急停止させる。次にステップ40で、
車両が停止するまで、自律航法データの走行距離及び走
行方向の内の異常発生していない方のデータと異常が認
められた方のデータを過去の正常時の車両速度及び/又
は車両姿勢、車両軌跡、現在の操舵角度等から推測する
ことでなされる自律航法を実施する。また、自律航法デ
ータの走行距離及び走行方向の両方が異常である場合に
は、その両方において過去の正常時の車両速度と車両姿
勢、車両軌跡、現在の操舵角度等から車両停止までの予
測に基づいた自律航法を実施する。
If the roadside zone measurement impossible flag is set in step S36, the vehicle is emergency stopped by applying sudden braking in step S39. Next, in step 40,
Until the vehicle stops, the autonomous navigation data of the traveling distance and traveling direction in which the abnormality has not occurred and the data in which the abnormality has been recognized are compared with the past normal vehicle speed and / or vehicle attitude, vehicle Autonomous navigation is performed by estimating from the trajectory, the current steering angle, and the like. In addition, when both the traveling distance and the traveling direction in the autonomous navigation data are abnormal, prediction of the vehicle speed and vehicle attitude, vehicle trajectory, vehicle trajectory, current steering angle, etc., in the past and normal, in both cases, until the vehicle stops. Implement autonomous navigation based on it.

【0049】図11は、本発明に係る走行制御装置を用
いて行った実機テスト結果を表す走行軌跡図である。同
図において、5aは走行経路4に沿って車両を走行させ
て土手までの距離を計測した時に安定判別結果が良好で
あったエリアの路側帯5を表し、5b(太線で示す)は
安定判別結果がNGであったエリアの路側帯5を表して
いる。このような路側帯5を設けた走行経路4に沿って
自律航法のみで(GPS航法による測位が異常又は不能
であると仮定している)走行した場合には、軌跡4aの
ようにずれて行くことが示されている。そして、このと
き、路側帯安定判別結果が良好な時に路側帯距離計測と
自律航法とのセンサーフュージョンにより現在位置を演
算して走行した場合には、走行経路4から逸脱すること
なく図示のように走行することを確認した。このことか
ら、路側帯距離計測とのセンサーフュージョンにより車
両位置の測位精度を高めることができることが分かる。
FIG. 11 is a travel locus diagram showing the results of an actual machine test performed using the travel control device according to the present invention. In FIG. 5, reference numeral 5a denotes a roadside zone 5 of an area in which the result of the stability determination is good when the vehicle travels along the travel route 4 and the distance to the bank is measured, and 5b (shown by a thick line) indicates the stability determination. The roadside zone 5 of the area where the result was NG is shown. When the vehicle travels along the traveling route 4 provided with the roadside zone 5 only by the autonomous navigation (assuming that positioning by the GPS navigation is abnormal or impossible), the vehicle travels as a trajectory 4a. It has been shown. Then, at this time, when the roadside zone stability determination result is good and the current position is calculated by the sensor fusion between the roadside zone distance measurement and the autonomous navigation, the vehicle travels without deviating from the travel route 4 as shown in the figure. I confirmed that I would run. From this, it is understood that the positioning accuracy of the vehicle position can be improved by the sensor fusion with the roadside distance measurement.

【0050】以上説明したように、本発明によると以下
の効果を奏する。 (1)路肩、看板、反射板25等により構成される路側
帯5までの距離の計測値に基づき、GPS航法による測
位位置(さらに必要ならば方位)、及び/又は、自律航
法による測位位置と方位との少なくともいずれか一方を
センサーフュージョンにより補正して現在位置と方位を
算出するので、GPS測位誤差や自律航法測位誤差によ
る位置計測精度の低下を抑制して、より信頼性の高い車
両位置を測位できる。 (2)また、固定基地局1からの補正データ等の遅れ時
間増大などの通信環境の悪化や、上空視界性、衛星配
置、マルチパス等の受信環境の悪化によって、GPS航
法の測位不能や測位精度の劣化が発生したり、自律航法
の測位が不能となったり、両航法のいずれかの測位デー
タの異常が認められた場合には、正常な方のGPS航法
又は自律航法による測位データと路側帯距離の計測値と
に基づきセンサーフュージョンにより信頼性のある現在
位置及び方位を算出することができる。従って、上記異
常が発生しても確実に誘導走行を制御でき、無人車両の
稼働率を高めることができる。この結果、信頼性の高い
無人車両の走行システムを構成できる。
As described above, the present invention has the following effects. (1) Based on the measured value of the distance to the roadside zone 5 constituted by the road shoulder, the signboard, the reflector 25, etc., the positioning position (and the azimuth if necessary) by GPS navigation and / or the positioning position by autonomous navigation Since the current position and direction are calculated by correcting at least one of the directions with sensor fusion, a decrease in position measurement accuracy due to GPS positioning errors or autonomous navigation positioning errors is suppressed, and a more reliable vehicle position is obtained. Positioning is possible. (2) In addition, the deterioration of the communication environment such as an increase in the delay time of the correction data from the fixed base station 1 and the deterioration of the reception environment such as the visibility of the sky, the satellite constellation, and the multipath cause the GPS navigation to be unable to perform positioning or positioning. If the accuracy is deteriorated, positioning by autonomous navigation is disabled, or any of the positioning data in both navigation is abnormal, the positioning data and route by the normal GPS navigation or autonomous navigation are used. A reliable current position and azimuth can be calculated by sensor fusion based on the measured value of the side zone distance. Therefore, even if the above-described abnormality occurs, the guided traveling can be reliably controlled, and the operation rate of the unmanned vehicle can be increased. As a result, a highly reliable traveling system for unmanned vehicles can be configured.

【0051】(3)路側帯5が不安定であるエリアで計
測した路側帯距離は異常データとみなされ、路側帯5の
安定性が認められた場合に路側帯距離計測による測位デ
ータを使用する。この路側帯距離の計測値に基づきセン
サーフュージョンにより、GPS航法による測位位置
(さらに必要ならば方位)、及び/又は自律航法による
測位位置と方位との少なくともいずれか一方の補正を行
うので、路側帯5が不安定な場合に前記補正を行うこと
によって生じる測位精度の低下を防止できる。また、路
側帯5の安定性が認められた場合に、路側帯距離の計測
値に基づき測位データ間の乖離(データ異常)が無いか
をチェックするので、間違いのない判断ができる。この
結果、路側帯5の不安定状況に左右されずに自動走行を
継続でき、無人車両の稼働率を高めることができる。
(3) The roadside belt distance measured in the area where the roadside belt 5 is unstable is regarded as abnormal data, and when the stability of the roadside belt 5 is recognized, the positioning data obtained by the roadside belt distance measurement is used. . Based on the measured value of the roadside zone distance, sensor fusion is used to correct at least one of the positioning position by GPS navigation (and the azimuth if necessary) and / or the positioning position and azimuth by autonomous navigation. When the position 5 is unstable, it is possible to prevent a decrease in positioning accuracy caused by performing the correction. Further, when the stability of the roadside zone 5 is recognized, it is checked whether or not there is a deviation (data abnormality) between the positioning data based on the measured value of the roadside zone distance, so that it is possible to make a correct determination. As a result, the automatic traveling can be continued without being affected by the unstable state of the roadside zone 5, and the operating rate of the unmanned vehicle can be increased.

【0052】(4)GPS受信器13、自律航法演算器
14及び路側帯距離計測器15のそれぞれの測位精度に
応じたセンサーフュージョンにより補正位置を演算して
いるので、より信頼性の高い位置及び方位を求めること
ができる。従って、確実に無人車両10の誘導走行を制
御できる。
(4) Since the corrected position is calculated by the sensor fusion according to the positioning accuracy of each of the GPS receiver 13, the autonomous navigation calculator 14, and the roadside distance measuring device 15, the position and the position of the more reliable The direction can be determined. Therefore, the guided traveling of the unmanned vehicle 10 can be reliably controlled.

【0053】(5)地形情報GIと路側帯距離とに基づ
いて車両位置及び方位を測位しているので、例えば一時
的にGPS航法及び自律航法の測位が共に不能となった
り、両測位データに異常が認められた場合でも、直ちに
停止することなく減速するなどして路側帯距離計測のみ
により自動誘導走行ができる。従って、無人車両の誘導
停止の頻度を少なくし稼働率を高めるので、信頼性の高
い走行システムを構成できる。(6)地形情報GIは路
側帯5の状態に応じて、一定値の路側帯距離(基準距離
L0)、あるいは走行経路4に対応した路側帯5の座標
位置又は路側帯距離等を記憶することにより、様々な地
形条件の走行経路4の場合でも本走行制御装置は対応で
きるようになっており、汎用的な走行システムを構成で
きる。(7)土手の無いエリアや、例えば急旋回位置や
停止位置近傍等のように車両の走行方向位置が重要とな
るエリアでは、路側帯として反射板25を設置すること
により、精度の高い測位ができ、より信頼性を向上でき
る。
(5) Since the vehicle position and direction are measured based on the terrain information GI and the roadside zone distance, for example, both the GPS navigation and the autonomous navigation are temporarily disabled, Even if an abnormality is found, the vehicle can automatically decelerate without stopping immediately and perform guided driving only by measuring the roadside belt distance. Therefore, the frequency of the guidance stop of the unmanned vehicle is reduced and the operation rate is increased, so that a highly reliable traveling system can be configured. (6) The terrain information GI stores a fixed value of the roadside zone distance (reference distance L0), the coordinate position of the roadside zone 5 corresponding to the traveling route 4, or the roadside zone distance, depending on the state of the roadside zone 5. Accordingly, the traveling control device can cope with the traveling route 4 under various terrain conditions, and a general-purpose traveling system can be configured. (7) In an area where the traveling direction of the vehicle is important, for example, in an area without a bank or near a sharp turning position or a stop position, by installing the reflector 25 as a roadside zone, highly accurate positioning can be performed. And reliability can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無人車両の制御装置の構成図である。FIG. 1 is a configuration diagram of an unmanned vehicle control device of the present invention.

【図2】均一な路幅の走行路の説明図である。FIG. 2 is an explanatory diagram of a traveling road having a uniform road width.

【図3】走行経路と路側帯との距離が不均一な場合の走
行路の説明図である。
FIG. 3 is an explanatory diagram of a traveling path when the distance between the traveling path and the roadside zone is uneven.

【図4】GPSと自律航法とのセンサーフュージョンの
説明図である。
FIG. 4 is an explanatory diagram of sensor fusion between GPS and autonomous navigation.

【図5】路側帯距離計測値に基づく測位データ異常検出
方法の説明図である。
FIG. 5 is an explanatory diagram of a positioning data abnormality detection method based on a roadside distance measurement value.

【図6】路側帯計測と自律航法とのセンサーフュージョ
ンの説明図である。
FIG. 6 is an explanatory diagram of sensor fusion of roadside zone measurement and autonomous navigation.

【図7】反射板を設置する場合の走行路の説明図であ
る。
FIG. 7 is an explanatory view of a traveling path when a reflector is installed.

【図8】路側帯計測とGPSでの測位とのセンサーフュ
ージョンの説明図である。
FIG. 8 is an explanatory diagram of sensor fusion of roadside zone measurement and positioning by GPS.

【図9】センサーフュージョンの処理手順を表すフロー
チャート(前半)例である。
FIG. 9 is an example of a flowchart (first half) illustrating a processing procedure of sensor fusion.

【図10】センサーフュージョンの処理手順を表すフロ
ーチャート(後半)例である。
FIG. 10 is an example of a flowchart (second half) representing a processing procedure of sensor fusion.

【図11】実機テスト結果を表す走行軌跡図である。FIG. 11 is a traveling locus diagram showing actual machine test results.

【図12】無人車両の走行システムの構成図である。FIG. 12 is a configuration diagram of a traveling system of an unmanned vehicle.

【符号の説明】[Explanation of symbols]

1…固定基地局、4…走行経路、5…路側帯、7,7a
…軌跡、10…無人車両、11…位置計測部、13…G
PS受信器、14…自律航法演算器、15…路側帯距離
計測器、16…管制制御部、17…走行制御部、18…
アクチュエータ、19…安全管理部、21…ジャイロ、
22…速度センサ、23…レーザ距離計、25…反射
板。
DESCRIPTION OF SYMBOLS 1 ... Fixed base station, 4 ... Running route, 5 ... Roadside zone, 7, 7a
... track, 10 ... unmanned vehicle, 11 ... position measurement unit, 13 ... G
PS receiver, 14: Autonomous navigation calculator, 15: Roadside zone distance measuring device, 16: Traffic control unit, 17: Travel control unit, 18 ...
Actuator, 19: Safety management unit, 21: Gyro,
22: speed sensor, 23: laser distance meter, 25: reflector.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 GPS信号を受信して車両の絶対座標位
置を測位するGPS受信器(13)と、車両の走行方向及び
走行距離を計測し、この計測結果に基づいて車両の特定
位置からの相対座標位置及び方位を測位する自律航法演
算器(14)と、GPS受信器(13)及び自律航法演算器(14)
のそれぞれの測位結果に基づき車両の現在位置及び方位
を演算する位置計測部(11)と、予め設定された走行経路
(4)の位置及び方位と位置計測部(11)により演算された
現在位置及び方位とをそれぞれ比較し、それぞれの偏差
値を小さくするように車両走行を制御する走行制御部(1
7)とを備えた無人車両の走行制御装置において、 車両から走行経路(4)の脇に設けた路側帯(5)までの距離
を計測する路側帯距離計測器(15)を設け、 前記位置計測部(11)は、路側帯距離計測器(15)により計
測した路側帯距離に基づき、前記GPS受信器(13)の測
位位置、及び/又は、自律航法演算器(14)の測位位置と
方位との少なくとも一方を補正して現在位置と方位を求
めることを特徴とする無人車両の走行制御装置。
1. A GPS receiver (13) that receives a GPS signal to measure an absolute coordinate position of a vehicle, and measures a traveling direction and a traveling distance of the vehicle. Autonomous navigation calculator (14) for measuring relative coordinate position and direction, GPS receiver (13) and autonomous navigation calculator (14)
A position measuring unit (11) for calculating the current position and azimuth of the vehicle based on the respective positioning results, and a preset traveling route
A traveling control unit (1) that compares the position and orientation of (4) with the current position and orientation calculated by the position measuring unit (11) and controls the vehicle traveling so as to reduce the respective deviation values.
7) a travel control device for an unmanned vehicle, comprising: a roadside zone distance measuring device (15) for measuring a distance from the vehicle to a roadside zone (5) provided beside the travel route (4); The measuring unit (11) is based on the roadside distance measured by the roadside distance measuring device (15), based on the positioning position of the GPS receiver (13), and / or the positioning position of the autonomous navigation calculator (14). A travel control device for an unmanned vehicle, wherein at least one of the azimuths is corrected to obtain a current position and an azimuth.
【請求項2】 請求項1記載の無人車両の走行制御装置
において、 前記位置計測部(11)は路側帯距離の計測値から路側帯
(5)の安定性を判断し、安定性が良好なときに前記路側
帯距離に基づく補正を行うことを特徴とする無人車両の
走行制御装置。
2. The travel control device for an unmanned vehicle according to claim 1, wherein the position measuring unit (11) is configured to determine a roadside zone from a measured value of a roadside zone distance.
(5) A travel control device for an unmanned vehicle, wherein the stability is determined, and when the stability is good, the correction is performed based on the roadside belt distance.
【請求項3】 請求項1又は2記載の無人車両の走行制
御装置において、 前記位置計測部(11)の路側帯距離に基づく補正は、GP
S受信器(13)の測位精度推測値及び/又は自律航法演算
器(14)の測位精度推測値と、路側帯距離計測器(15)の測
位精度推測値とに応じたセンサーフュージョンにより行
うことを特徴とする無人車両の走行制御装置。
3. The travel control device for an unmanned vehicle according to claim 1, wherein the correction of the position measuring unit based on a roadside belt distance is performed by a GP.
To be performed by sensor fusion according to the estimated positioning accuracy of the S receiver (13) and / or the estimated positioning accuracy of the autonomous navigation calculator (14) and the estimated positioning accuracy of the roadside distance measuring device (15). A travel control device for an unmanned vehicle.
JP2001012722A 2001-01-22 2001-01-22 Driving control device for unmanned vehicles Expired - Fee Related JP4229358B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001012722A JP4229358B2 (en) 2001-01-22 2001-01-22 Driving control device for unmanned vehicles
US10/050,824 US6751535B2 (en) 2001-01-22 2002-01-18 Travel controlling apparatus of unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012722A JP4229358B2 (en) 2001-01-22 2001-01-22 Driving control device for unmanned vehicles

Publications (2)

Publication Number Publication Date
JP2002215236A true JP2002215236A (en) 2002-07-31
JP4229358B2 JP4229358B2 (en) 2009-02-25

Family

ID=18879690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012722A Expired - Fee Related JP4229358B2 (en) 2001-01-22 2001-01-22 Driving control device for unmanned vehicles

Country Status (2)

Country Link
US (1) US6751535B2 (en)
JP (1) JP4229358B2 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264182A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Method and apparatus for measuring location of vehicle
JP2005062083A (en) * 2003-08-19 2005-03-10 Komatsu Engineering Corp Survey system having function of position error correction
JP2006138834A (en) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp Navigation device, navigation system, navigation positioning method, and vehicle
JP2006301716A (en) * 2005-04-15 2006-11-02 Fuji Heavy Ind Ltd Autonomous traveling vehicle and control method thereof
JP2007249631A (en) * 2006-03-16 2007-09-27 Fujitsu Ltd Polygonal line following mobile robot, and control method for polygonal line following mobile robot
JP2007334896A (en) * 2006-06-16 2007-12-27 Samsung Electronics Co Ltd Moving apparatus for providing position correction function and position correction method
WO2008120751A1 (en) * 2007-03-30 2008-10-09 Fujitsu Ten Limited Device for specifying vehicle position, method for specifying vehicle position and device for assisting operation
JP2009031298A (en) * 2008-09-01 2009-02-12 Geographical Survey Inst Ministry Of Land Infrastructure & Transport Method and device for continuously positioning movable body by using wireless lan positioning in combination with gps positioning, and continuous positioning program for movable body
JP2009031042A (en) * 2007-07-25 2009-02-12 Furuno Electric Co Ltd Attitude measuring apparatus
JP2009147370A (en) * 2004-12-27 2009-07-02 Asml Netherlands Bv Lithographic apparatus with multiple alignment arrangements and alignment measurement method
JP2010122904A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Autonomous mobile robot
CN102393744A (en) * 2011-11-22 2012-03-28 湖南大学 Navigation method of pilotless automobile
JP2012105557A (en) * 2010-11-15 2012-06-07 Original Soft:Kk Automatic lawn mower
JP2013161399A (en) * 2012-02-08 2013-08-19 Murata Mach Ltd Carriage vehicle
WO2015015576A1 (en) * 2013-07-30 2015-02-05 株式会社小松製作所 Management system and management method for mining machine
WO2015097909A1 (en) * 2013-12-27 2015-07-02 株式会社小松製作所 Mining-machine management system, mining machine, and management method
WO2015097905A1 (en) * 2013-12-27 2015-07-02 株式会社小松製作所 Management system and management method for mining machine
WO2015097907A1 (en) * 2013-12-27 2015-07-02 株式会社小松製作所 Management system and management method for mining machine
WO2015102096A1 (en) * 2014-12-26 2015-07-09 株式会社小松製作所 Mining machine, management system for mining machine, and management method for mining machine
WO2016060281A1 (en) * 2015-10-30 2016-04-21 株式会社小松製作所 Control system for work machine, work machine, management system for work machine, and control method and program for work machine
WO2016060282A1 (en) * 2015-10-30 2016-04-21 株式会社小松製作所 Control system for work machine, work machine, management system for work machine, and control method and program for work machine
WO2016117713A1 (en) * 2016-02-29 2016-07-28 株式会社小松製作所 Control system for work machine, work machine, and management system for work machine
US9513633B2 (en) 2014-07-30 2016-12-06 Komatsu Ltd. Work vehicle and control method for work vehicle
JP2017003395A (en) * 2015-06-09 2017-01-05 富士重工業株式会社 Vehicle positioning system
US9550499B2 (en) 2014-07-30 2017-01-24 Komatsu Ltd. Work vehicle and control method for work vehicle
WO2017072980A1 (en) * 2015-10-30 2017-05-04 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine management method
WO2017109999A1 (en) * 2015-12-25 2017-06-29 株式会社小松製作所 Work machine management system, work machine, and work machine management device
WO2017109977A1 (en) * 2015-12-25 2017-06-29 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine management method
WO2017171073A1 (en) * 2017-03-31 2017-10-05 株式会社小松製作所 Transport vehicle control system, transport vehicle, and transport vehicle control method
JP2018502357A (en) * 2014-10-27 2018-01-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Vehicle guidance method and guidance device in parking lot
JP2018106226A (en) * 2016-12-22 2018-07-05 株式会社クボタ Work vehicle
JP2018525632A (en) * 2015-08-20 2018-09-06 ゼンドライヴ, インコーポレイテッドZendrive, Inc. Method for accelerometer-assisted navigation
JP2019008646A (en) * 2017-06-27 2019-01-17 株式会社クボタ Work vehicle
KR20190070450A (en) * 2017-12-13 2019-06-21 (주)자스텍엠 Apparatus for processing vehicle information
JP2020008461A (en) * 2018-07-10 2020-01-16 株式会社豊田自動織機 Autonomous moving body location estimation device
US10631147B2 (en) 2016-09-12 2020-04-21 Zendrive, Inc. Method for mobile device-based cooperative data capture
US10678250B2 (en) 2016-12-09 2020-06-09 Zendrive, Inc. Method and system for risk modeling in autonomous vehicles
CN111624547A (en) * 2019-02-27 2020-09-04 北方数字化技术公司 Tracking objects in an electromagnetic field
KR20210035940A (en) * 2019-09-24 2021-04-02 현대모비스 주식회사 Method for platooning of vehicles
US11062594B2 (en) 2017-06-28 2021-07-13 Zendrive, Inc. Method and system for determining traffic-related characteristics
US11151813B2 (en) 2017-06-28 2021-10-19 Zendrive, Inc. Method and system for vehicle-related driver characteristic determination
US11175152B2 (en) 2019-12-03 2021-11-16 Zendrive, Inc. Method and system for risk determination of a route
CN113759408A (en) * 2020-06-05 2021-12-07 丰田自动车株式会社 Position estimation device and position estimation method
JP2021536637A (en) * 2018-09-06 2021-12-27 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. Multiple autonomous mobile robots
US11375338B2 (en) 2015-08-20 2022-06-28 Zendrive, Inc. Method for smartphone-based accident detection
US11409308B2 (en) 2018-09-06 2022-08-09 Lg Electronics Inc. Robot cleaner and a controlling method for the same
US11432697B2 (en) 2018-09-06 2022-09-06 Lg Electronics Inc. Robot cleaner and a controlling method for the same
WO2023032277A1 (en) * 2021-09-01 2023-03-09 ソニーグループ株式会社 Position measurement device, position measurement method, and program
US11734963B2 (en) 2013-03-12 2023-08-22 Zendrive, Inc. System and method for determining a driver in a telematic application
US11775010B2 (en) 2019-12-02 2023-10-03 Zendrive, Inc. System and method for assessing device usage
US11871313B2 (en) 2017-11-27 2024-01-09 Zendrive, Inc. System and method for vehicle sensing and analysis

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050149256A1 (en) * 2002-05-10 2005-07-07 Siemens Aktiengesellschaft Device for determining the position by means of fixed and/or variable landmarks
DE10228064B4 (en) * 2002-06-17 2005-08-11 Robert Bosch Gmbh Method, real-time computing device and initialization program for Teilinitialisierung a run on the computing device computer program
US6907347B2 (en) * 2002-11-21 2005-06-14 Ford Global Technologies, Llc Systems and method for estimating speed and pitch sensor errors
FI115414B (en) * 2003-07-03 2005-04-29 Sandvik Tamrock Oy Arrangement for monitoring the location of a mine vehicle in a mine
GB2403861B (en) * 2003-07-11 2006-03-29 Omnicom Engineering Ltd A method and system of surveying and measurement
US7007625B2 (en) * 2003-09-25 2006-03-07 H2Eye (International) Limited Location and movement of remote operated vehicles
DE10354290A1 (en) * 2003-11-20 2005-06-02 Daimlerchrysler Ag Lane alignment apparatus, selection apparatus and method for detecting the lane of a vehicle
US7480561B2 (en) * 2003-12-23 2009-01-20 Honda Motor Co., Ltd. Prioritized delivery of navigation information
US7263438B2 (en) * 2003-12-23 2007-08-28 Honda Motor Co., Ltd. Smart storage and transmission of navigation information
US7146271B2 (en) * 2003-12-23 2006-12-05 Honda Motor Co., Ltd. System and method for managing navigation information
US7184888B2 (en) * 2003-12-23 2007-02-27 Honda Motor Co., Ltd. System and method for transferring navigation information using different coordinate systems
AU2004316333B2 (en) * 2004-02-27 2010-09-02 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active damping method thereof, and windmill tower
US7206696B2 (en) * 2004-05-19 2007-04-17 Honda Motor Co., Ltd. Method for modifying navigation information
JP4328660B2 (en) * 2004-04-15 2009-09-09 富士重工業株式会社 Aircraft automatic take-off device, automatic landing device, automatic take-off and landing device, aircraft automatic take-off method, automatic landing method, and automatic take-off and landing method
US8075243B2 (en) 2004-05-03 2011-12-13 Jervis B. Webb Company Automatic transport loading system and method
TW200540089A (en) * 2004-05-03 2005-12-16 Webb Int Co Jerwis B Automatic transport loading system and method
US8192137B2 (en) 2004-05-03 2012-06-05 Jervis B. Webb Company Automatic transport loading system and method
US8210791B2 (en) 2004-05-03 2012-07-03 Jervis B. Webb Company Automatic transport loading system and method
US7980808B2 (en) * 2004-05-03 2011-07-19 Jervis B. Webb Company Automatic transport loading system and method
JP4476687B2 (en) * 2004-05-07 2010-06-09 株式会社ナビタイムジャパン Portable navigation terminal, map display method and program
US20050261829A1 (en) * 2004-05-19 2005-11-24 Honda Motor Co., Ltd. System and method for off route processing
US20050261824A1 (en) * 2004-05-19 2005-11-24 Honda Motor Co., Ltd. System and method for varying content
US7292936B2 (en) * 2004-05-19 2007-11-06 Honda Motor Co., Ltd. System and method for displaying information
US8065083B2 (en) * 2004-07-23 2011-11-22 Yamaha Corporation Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
WO2006011276A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
US20060061469A1 (en) * 2004-09-21 2006-03-23 Skyfence Inc. Positioning system that uses signals from a point source
US7499774B2 (en) * 2004-10-22 2009-03-03 Irobot Corporation System and method for processing safety signals in an autonomous vehicle
US7499776B2 (en) * 2004-10-22 2009-03-03 Irobot Corporation Systems and methods for control of an unmanned ground vehicle
US7499804B2 (en) * 2004-10-22 2009-03-03 Irobot Corporation System and method for multi-modal control of an autonomous vehicle
US8078338B2 (en) 2004-10-22 2011-12-13 Irobot Corporation System and method for behavior based control of an autonomous vehicle
US7499775B2 (en) * 2004-10-22 2009-03-03 Irobot Corporation System and method for terrain feature tracking
US7706977B2 (en) * 2004-10-26 2010-04-27 Honeywell International Inc. Personal navigation device for use with portable device
US20060259233A1 (en) * 2005-05-11 2006-11-16 Industrial Technology Research Institute Road precursory and vehicle trip recording method of navigation system
US20060276958A1 (en) * 2005-06-02 2006-12-07 Jervis B. Webb Company Inertial navigational guidance system for a driverless vehicle utilizing laser obstacle sensors
US20080109122A1 (en) * 2005-11-30 2008-05-08 Ferguson Alan L Work machine control using off-board information
US8140265B2 (en) * 2006-03-21 2012-03-20 Skymeter Corporation Private, auditable vehicle positioning system and on-board unit for same
US20090157566A1 (en) * 2006-03-21 2009-06-18 Bernard Grush Method and process to ensure that a vehicular travel path recording that includes positional errors can be used to determine a reliable and repeatable road user charge
JP2007303989A (en) * 2006-05-12 2007-11-22 Pioneer Electronic Corp Moving body terminal device, control method of moving body terminal device, control program of moving body terminal device, and recording medium for recording control program of moving body terminal device
US8417383B2 (en) * 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US20070282565A1 (en) * 2006-06-06 2007-12-06 Honeywell International Inc. Object locating in restricted environments using personal navigation
US20080039991A1 (en) * 2006-08-10 2008-02-14 May Reed R Methods and systems for providing accurate vehicle positioning
KR100791386B1 (en) * 2006-08-18 2008-01-07 삼성전자주식회사 Method and system of cell decomposition in mobile robot
US8437900B2 (en) * 2007-01-30 2013-05-07 Komatsu Ltd. Control device for guided travel of unmanned vehicle
US7873444B1 (en) 2007-02-08 2011-01-18 Lockheed Martin Corporation Controlling movement of an unmanned vehicle
US7676967B2 (en) * 2007-04-30 2010-03-16 Caterpillar Inc. Machine with automated blade positioning system
DE502007005855D1 (en) * 2007-08-02 2011-01-13 Siemens Ag Mobile operating device and method for its use
US20090054067A1 (en) * 2007-08-23 2009-02-26 Telefonaktiebolaget Lm Ericsson (Publ) System and method for gesture-based command and control of targets in wireless network
US8560157B2 (en) 2007-09-19 2013-10-15 Topcon Positioning Systems, Inc. Partial manual control state for automated vehicle navigation system
US7844760B2 (en) * 2007-09-29 2010-11-30 Intel Corporation Schedule and data caching for wireless transmission
US8112178B2 (en) * 2008-01-07 2012-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic platform for autonomous automotive vehicle development
US20090216410A1 (en) * 2008-02-26 2009-08-27 William Edward Allen Automated machine management system with destination selection
US8099205B2 (en) * 2008-07-08 2012-01-17 Caterpillar Inc. Machine guidance system
US8237389B2 (en) * 2008-11-12 2012-08-07 Irobot Corporation Multi mode safety control module
TWI391629B (en) * 2008-11-25 2013-04-01 Ind Tech Res Inst Method for modifying navigation information and navigation apparatus using the same
EP2192385A1 (en) * 2008-11-26 2010-06-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Signal processing module, navigation device with the signal processing module, vehicle provided with a navigation device and method of providing navigation data
US20100152933A1 (en) * 2008-12-11 2010-06-17 Honeywell International Inc. Apparatus and method for unmanned aerial vehicle ground proximity detection, landing and descent
US8352120B2 (en) * 2009-02-17 2013-01-08 Lockheed Martin Corporation System and method for stability control using GPS data
US8359178B2 (en) * 2009-03-04 2013-01-22 Honeywell International Inc. Method and apparatus for identifying erroneous sensor outputs
US8150621B1 (en) 2009-04-07 2012-04-03 The United States of America as represeneted by the Secretary of the Navy Command and control of autonomous surface vehicle
US8751102B2 (en) * 2009-04-10 2014-06-10 Ford Global Technologies, Llc Vehicle ready light control method and system
US8793090B2 (en) 2010-06-23 2014-07-29 Aisin Aw Co., Ltd. Track information generating device, track information generating method, and computer-readable storage medium
KR20120059109A (en) * 2010-11-30 2012-06-08 한국전자통신연구원 Apparatus for detecting multi vehicle using laser scanner sensor and method thereof
US9122278B2 (en) 2011-05-24 2015-09-01 Bae Systems Plc Vehicle navigation
EP2527943A1 (en) * 2011-05-24 2012-11-28 BAE Systems Plc. Vehicle navigation
JP5830533B2 (en) * 2011-05-31 2015-12-09 株式会社日立製作所 Autonomous mobile system
US20130006482A1 (en) * 2011-06-30 2013-01-03 Ramadev Burigsay Hukkeri Guidance system for a mobile machine
CN102495415B (en) * 2011-11-28 2013-03-06 北京航空航天大学 Self-adaptation detection method of global position system (GPS) retardation time
US8855847B2 (en) 2012-01-20 2014-10-07 Toyota Motor Engineering & Manufacturing North America, Inc. Intelligent navigation system
US8755966B2 (en) 2012-04-03 2014-06-17 Caterpillar Inc. System and method for controlling autonomous machine within lane boundaries during position uncertainty
US9205828B1 (en) * 2012-06-29 2015-12-08 Google Inc. Method and apparatus for determining vehicle location based on motor feedback
US20140288824A1 (en) * 2013-03-22 2014-09-25 Qualcomm Incorporated Method and/or system for selective application of direction of travel
JP2014191689A (en) * 2013-03-28 2014-10-06 Hitachi Industrial Equipment Systems Co Ltd Traveling object attached with position detection device for outputting control command to travel control means of traveling object and position detection device
US8954205B2 (en) * 2013-06-01 2015-02-10 Savari, Inc. System and method for road side equipment of interest selection for active safety applications
FR3013834B1 (en) * 2013-11-28 2015-12-25 Airbus Operations Sas METHOD FOR MERGING SENSOR DATA USING A COHERENCE CRITERION
KR101534958B1 (en) * 2013-12-09 2015-07-07 현대자동차주식회사 Apparatus and Method for Controlling of Automatic Steering of Vehicle
GB2513738A (en) * 2014-05-08 2014-11-05 Daimler Ag Method for determining a position of a vehicle by a navigation system of the vehicle
JP6539958B2 (en) 2014-08-28 2019-07-10 村田機械株式会社 Carrier
SE540131C2 (en) 2014-12-24 2018-04-10 Husqvarna Ab Robotic work tool with trajectory correction
JP6671152B2 (en) 2015-11-19 2020-03-25 日立建機株式会社 Abnormality detection device of self-position estimation device and vehicle
CA2941233C (en) * 2015-11-30 2019-01-08 Komatsu Ltd. Work machine control system, work machine, work machine management system, and method for controlling work machine
US10162354B2 (en) * 2016-07-21 2018-12-25 Baidu Usa Llc Controlling error corrected planning methods for operating autonomous vehicles
CN107784850A (en) * 2016-08-26 2018-03-09 中兴通讯股份有限公司 A kind of automatic driving vehicle control method, terminal, server and system
KR20180091357A (en) * 2017-02-06 2018-08-16 한국전자통신연구원 Method and apparatus for controlling autonomous driving vehicle using dead reckoning
CN108733068A (en) * 2017-04-24 2018-11-02 菜鸟智能物流控股有限公司 Aircraft with a flight control device
CN108882168B (en) * 2017-05-10 2020-09-08 腾讯科技(深圳)有限公司 Travel track acquisition method and device and server
US10409287B2 (en) * 2017-11-30 2019-09-10 Komatsu America Corp. Vehicle guide display and path navigation method
CN107943049B (en) * 2017-12-13 2020-04-21 江西洪都航空工业集团有限责任公司 Unmanned vehicle control method and unmanned mowing vehicle
FR3075355B1 (en) * 2017-12-14 2019-11-08 Safran Electronics & Defense METHOD FOR ESTIMATING NAVIGATION DATA OF A GROUND VEHICLE USING GEOMETRY PARAMETERS AND ROUTE ORIENTATION
US10627236B2 (en) * 2018-02-27 2020-04-21 Sharp Kabushiki Kaisha Position measurement apparatus, position correction method, and position information acquisition system
CN108762245B (en) * 2018-03-20 2022-03-25 华为技术有限公司 Data fusion method and related equipment
KR20200087307A (en) * 2018-12-28 2020-07-21 현대자동차주식회사 Vehicle and control method of the same
DE102019201697A1 (en) * 2019-02-11 2020-06-25 Zf Friedrichshafen Ag Method for stopping an autonomous vehicle
US11898850B2 (en) * 2019-05-08 2024-02-13 Hitachi Astemo, Ltd. Vehicle position detection device and parameter set creation device for vehicle position detection
TWI710489B (en) * 2019-07-08 2020-11-21 宏碁股份有限公司 Vehicle and vehicle controlling method
US11899139B2 (en) * 2019-09-20 2024-02-13 Intel Corporation Photonic devices with redundant components and their applications
CN110862279B (en) * 2019-12-18 2021-11-16 华中农业大学 Crawler-type unmanned organic fertilizer turner based on laser radar navigation
US11520009B2 (en) * 2020-02-05 2022-12-06 Caterpillar Inc. Method and system for detecting an obstacle
US20210258834A1 (en) * 2020-02-14 2021-08-19 Panasonic Avionics Corporation Antenna blockage detection and mitigation
CN113408331A (en) * 2020-03-17 2021-09-17 株式会社斯巴鲁 Gaze object detection device
CN112462749B (en) * 2020-05-12 2023-06-06 丰疆智能科技股份有限公司 Automatic agricultural machine navigation method, automatic agricultural machine navigation system and agricultural machine
US11608066B1 (en) 2020-05-19 2023-03-21 Waymo Llc Responding to input on a brake pedal of a brake by wire system for an autonomous vehicle
CN112665538B (en) * 2020-12-09 2023-10-13 云南昆船电子设备有限公司 Vehicle autonomous navigation transverse ranging system and method
AU2021202152A1 (en) * 2021-04-08 2022-10-27 Caterpillar Underground Mining Pty Ltd System, apparatus, and method to select and apply route properties of a mine site
CN113298727B (en) * 2021-05-17 2023-08-18 中国矿业大学 Underground auxiliary transport vehicle navigation system and method based on multiple identification lines
CN114397115A (en) * 2022-01-10 2022-04-26 招商局检测车辆技术研究院有限公司 Method and system for testing positioning performance of port automatic driving vehicle
CN116686535B (en) * 2023-06-30 2023-12-01 哈尔滨市大地勘察测绘有限公司 Unmanned harvester control method and system based on data analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207803A (en) * 1988-02-16 1989-08-21 Sanyo Electric Co Ltd Self-traveling working vehicle
JPH0322108A (en) * 1989-06-20 1991-01-30 Shinko Electric Co Ltd Mobile robot
JPH06331400A (en) * 1993-05-24 1994-12-02 Sanyo Electric Co Ltd Sensor fusion method
JPH0895638A (en) * 1994-09-28 1996-04-12 East Japan Railway Co Travel controller for mobile working robot
JPH10260728A (en) * 1997-03-18 1998-09-29 Fujitsu General Ltd Control method for floor cleaning robot
JPH11237916A (en) * 1998-02-23 1999-08-31 Komatsu Ltd Interference estimating device for automated vehicle
JPH11296229A (en) * 1998-02-13 1999-10-29 Komatsu Ltd Vehicle guide device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208750A (en) * 1987-06-17 1993-05-04 Nissan Motor Co., Ltd. Control system for unmanned automotive vehicle
US4939650A (en) * 1988-06-14 1990-07-03 Shinko Electric Co., Ltd. Path correction method for a self-contained unmanned vehicle
JP3164659B2 (en) * 1992-09-16 2001-05-08 株式会社ザナヴィ・インフォマティクス Navigation equipment
US5875408A (en) * 1995-07-17 1999-02-23 Imra America, Inc. Automated vehicle guidance system and method for automatically guiding a vehicle
DE59809476D1 (en) * 1997-11-03 2003-10-09 Volkswagen Ag Autonomous vehicle and method for controlling an autonomous vehicle
US6064926A (en) * 1997-12-08 2000-05-16 Caterpillar Inc. Method and apparatus for determining an alternate path in response to detection of an obstacle
DE69915156T2 (en) * 1998-04-24 2004-10-28 Inco Ltd., Toronto Automatic guiding and measuring device
US6445983B1 (en) * 2000-07-07 2002-09-03 Case Corporation Sensor-fusion navigator for automated guidance of off-road vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207803A (en) * 1988-02-16 1989-08-21 Sanyo Electric Co Ltd Self-traveling working vehicle
JPH0322108A (en) * 1989-06-20 1991-01-30 Shinko Electric Co Ltd Mobile robot
JPH06331400A (en) * 1993-05-24 1994-12-02 Sanyo Electric Co Ltd Sensor fusion method
JPH0895638A (en) * 1994-09-28 1996-04-12 East Japan Railway Co Travel controller for mobile working robot
JPH10260728A (en) * 1997-03-18 1998-09-29 Fujitsu General Ltd Control method for floor cleaning robot
JPH11296229A (en) * 1998-02-13 1999-10-29 Komatsu Ltd Vehicle guide device
JPH11237916A (en) * 1998-02-23 1999-08-31 Komatsu Ltd Interference estimating device for automated vehicle

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264182A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Method and apparatus for measuring location of vehicle
JP2005062083A (en) * 2003-08-19 2005-03-10 Komatsu Engineering Corp Survey system having function of position error correction
JP2006138834A (en) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp Navigation device, navigation system, navigation positioning method, and vehicle
JP4694870B2 (en) * 2004-11-12 2011-06-08 三菱電機株式会社 Navigation device, navigation system, navigation positioning method, and vehicle
US8345245B2 (en) 2004-12-27 2013-01-01 Asml Netherlands B.V. Lithographic apparatus with multiple alignment arrangements and alignment measuring method
JP2009182335A (en) * 2004-12-27 2009-08-13 Asml Netherlands Bv Lithographic apparatus with multiple alignment arrangements and alignment measuring method
JP2009147370A (en) * 2004-12-27 2009-07-02 Asml Netherlands Bv Lithographic apparatus with multiple alignment arrangements and alignment measurement method
JP2006301716A (en) * 2005-04-15 2006-11-02 Fuji Heavy Ind Ltd Autonomous traveling vehicle and control method thereof
JP2007249631A (en) * 2006-03-16 2007-09-27 Fujitsu Ltd Polygonal line following mobile robot, and control method for polygonal line following mobile robot
KR101297388B1 (en) * 2006-06-16 2013-08-19 삼성전자주식회사 Moving apparatus and method for compensating position
US7768417B2 (en) 2006-06-16 2010-08-03 Samsung Electronics Co., Ltd. Moving apparatus, method, and medium for compensating position of the moving apparatus
JP2007334896A (en) * 2006-06-16 2007-12-27 Samsung Electronics Co Ltd Moving apparatus for providing position correction function and position correction method
JP4718518B2 (en) * 2006-06-16 2011-07-06 三星電子株式会社 Mobile device providing position correction function
JP2008249666A (en) * 2007-03-30 2008-10-16 Fujitsu Ten Ltd Vehicle position specifying device and vehicle position specifying method
WO2008120751A1 (en) * 2007-03-30 2008-10-09 Fujitsu Ten Limited Device for specifying vehicle position, method for specifying vehicle position and device for assisting operation
JP2009031042A (en) * 2007-07-25 2009-02-12 Furuno Electric Co Ltd Attitude measuring apparatus
JP4631064B2 (en) * 2008-09-01 2011-02-16 国土交通省国土地理院長 Method and apparatus for continuous positioning of moving body using both wireless LAN positioning and GPS positioning, and continuous positioning program for moving body
JP2009031298A (en) * 2008-09-01 2009-02-12 Geographical Survey Inst Ministry Of Land Infrastructure & Transport Method and device for continuously positioning movable body by using wireless lan positioning in combination with gps positioning, and continuous positioning program for movable body
JP2010122904A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Autonomous mobile robot
JP2012105557A (en) * 2010-11-15 2012-06-07 Original Soft:Kk Automatic lawn mower
CN102393744A (en) * 2011-11-22 2012-03-28 湖南大学 Navigation method of pilotless automobile
JP2013161399A (en) * 2012-02-08 2013-08-19 Murata Mach Ltd Carriage vehicle
KR20130091627A (en) * 2012-02-08 2013-08-19 무라다기카이가부시끼가이샤 Transfer vehicle
KR101707058B1 (en) * 2012-02-08 2017-02-27 무라다기카이가부시끼가이샤 Transfer vehicle
US11734963B2 (en) 2013-03-12 2023-08-22 Zendrive, Inc. System and method for determining a driver in a telematic application
WO2015015576A1 (en) * 2013-07-30 2015-02-05 株式会社小松製作所 Management system and management method for mining machine
JP5714129B1 (en) * 2013-07-30 2015-05-07 株式会社小松製作所 Mining machine management system and management method
US10025313B2 (en) 2013-07-30 2018-07-17 Komatsu Ltd. Management system and management method of mining machine
WO2015097905A1 (en) * 2013-12-27 2015-07-02 株式会社小松製作所 Management system and management method for mining machine
JPWO2015097905A1 (en) * 2013-12-27 2017-03-23 株式会社小松製作所 Mining machine management system and management method
US9836061B2 (en) 2013-12-27 2017-12-05 Komatsu Ltd. Management system and managing method of mining machine
WO2015097907A1 (en) * 2013-12-27 2015-07-02 株式会社小松製作所 Management system and management method for mining machine
AU2013408995B2 (en) * 2013-12-27 2018-02-22 Komatsu Ltd. Management system and managing method of mining machine
CN105849661A (en) * 2013-12-27 2016-08-10 株式会社小松制作所 Management system and management method for mining machine
WO2015097909A1 (en) * 2013-12-27 2015-07-02 株式会社小松製作所 Mining-machine management system, mining machine, and management method
US10228701B2 (en) 2013-12-27 2019-03-12 Komatsu Ltd. Mining machine management system and management method
JPWO2015097907A1 (en) * 2013-12-27 2017-03-23 株式会社小松製作所 Mining machine management system and management method
US10488867B2 (en) 2013-12-27 2019-11-26 Komatsu Ltd. Mining machine management system, mining machine, and management method
US10599158B2 (en) 2013-12-27 2020-03-24 Komatsu Ltd. Mining machine management system and management method
JPWO2015097909A1 (en) * 2013-12-27 2017-03-23 株式会社小松製作所 Mining machine management system, mining machine and management method
US9513633B2 (en) 2014-07-30 2016-12-06 Komatsu Ltd. Work vehicle and control method for work vehicle
US9550499B2 (en) 2014-07-30 2017-01-24 Komatsu Ltd. Work vehicle and control method for work vehicle
JP2018502357A (en) * 2014-10-27 2018-01-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Vehicle guidance method and guidance device in parking lot
JP5997364B2 (en) * 2014-12-26 2016-09-28 株式会社小松製作所 Mining machine, mining machine management system, and mining machine management method
US10800406B2 (en) 2014-12-26 2020-10-13 Komatsu Ltd. Mining machine, management system of mining machine, and management method of mining machine
JPWO2015102096A1 (en) * 2014-12-26 2017-03-23 株式会社小松製作所 Mining machine, mining machine management system, and mining machine management method
AU2014374841B2 (en) * 2014-12-26 2016-05-12 Komatsu Ltd. Mining machine, management system of mining machine, and management method of mining machine
WO2015102096A1 (en) * 2014-12-26 2015-07-09 株式会社小松製作所 Mining machine, management system for mining machine, and management method for mining machine
JP2017003395A (en) * 2015-06-09 2017-01-05 富士重工業株式会社 Vehicle positioning system
US11927447B2 (en) 2015-08-20 2024-03-12 Zendrive, Inc. Method for accelerometer-assisted navigation
JP2018525632A (en) * 2015-08-20 2018-09-06 ゼンドライヴ, インコーポレイテッドZendrive, Inc. Method for accelerometer-assisted navigation
US11079235B2 (en) 2015-08-20 2021-08-03 Zendrive, Inc. Method for accelerometer-assisted navigation
US11375338B2 (en) 2015-08-20 2022-06-28 Zendrive, Inc. Method for smartphone-based accident detection
AU2015331287B2 (en) * 2015-10-30 2017-09-21 Komatsu Ltd. Construction machine control system, a construction machine, a construction machine management system, and a construction machine control method and program
JPWO2016060281A1 (en) * 2015-10-30 2017-04-27 株式会社小松製作所 Work machine control system, work machine, work machine management system, work machine control method and program
AU2015331288B2 (en) * 2015-10-30 2017-08-17 Komatsu Ltd. Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
JP6055120B2 (en) * 2015-10-30 2016-12-27 株式会社小松製作所 Work machine control system, work machine, work machine management system, work machine control method and program
WO2016060281A1 (en) * 2015-10-30 2016-04-21 株式会社小松製作所 Control system for work machine, work machine, management system for work machine, and control method and program for work machine
AU2015331287B9 (en) * 2015-10-30 2017-11-02 Komatsu Ltd. Construction machine control system, a construction machine, a construction machine management system, and a construction machine control method and program
AU2015331288A1 (en) * 2015-10-30 2017-05-18 Komatsu Ltd. Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
US9869555B2 (en) 2015-10-30 2018-01-16 Komatsu Ltd. Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
WO2017072980A1 (en) * 2015-10-30 2017-05-04 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine management method
JP6059846B2 (en) * 2015-10-30 2017-01-11 株式会社小松製作所 Mining work machine control system, mining work machine, mining work machine management system, mining work machine control method and program
WO2016060282A1 (en) * 2015-10-30 2016-04-21 株式会社小松製作所 Control system for work machine, work machine, management system for work machine, and control method and program for work machine
US10935660B2 (en) 2015-10-30 2021-03-02 Komatsu Ltd. Control system of work machine, work machine, management system of work machine, and method of managing work machine
JPWO2016060282A1 (en) * 2015-10-30 2017-04-27 株式会社小松製作所 Mining work machine control system, mining work machine, mining work machine management system, mining work machine control method and program
US10026308B2 (en) 2015-10-30 2018-07-17 Komatsu Ltd. Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
JPWO2017072980A1 (en) * 2015-10-30 2018-08-23 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine management method
CN105849586A (en) * 2015-10-30 2016-08-10 株式会社小松制作所 Control system for work machine, work machine, management system for work machine, and control method and program for work machine
CN105849586B (en) * 2015-10-30 2018-11-09 株式会社小松制作所 Control system, Work machine, its management system and the control method of Work machine
JPWO2017109977A1 (en) * 2015-12-25 2018-10-18 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine management method
JPWO2017109999A1 (en) * 2015-12-25 2018-10-11 株式会社小松製作所 Work machine management system, work machine and work machine management device
WO2017109977A1 (en) * 2015-12-25 2017-06-29 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine management method
AU2015418445B2 (en) * 2015-12-25 2019-08-15 Komatsu Ltd. Control system for work machine, work machine, management system for work machine, and management method for work machine
US10520320B2 (en) 2015-12-25 2019-12-31 Komatsu Ltd. Management system for work machine, work machine, and management device for work machine
US10768634B2 (en) 2015-12-25 2020-09-08 Komatsu Ltd. Control system for work machine, work machine, management system for work machine, and management method for work machine
WO2017109999A1 (en) * 2015-12-25 2017-06-29 株式会社小松製作所 Work machine management system, work machine, and work machine management device
US10119830B2 (en) 2016-02-29 2018-11-06 Komatsu Ltd. Control system for work machine, work machine, and management system for work machine
JP6087475B2 (en) * 2016-02-29 2017-03-01 株式会社小松製作所 Work machine control system, work machine, and work machine management system
WO2016117713A1 (en) * 2016-02-29 2016-07-28 株式会社小松製作所 Control system for work machine, work machine, and management system for work machine
JPWO2016117713A1 (en) * 2016-02-29 2017-04-27 株式会社小松製作所 Work machine control system, work machine, and work machine management system
CN106104206A (en) * 2016-02-29 2016-11-09 株式会社小松制作所 The management system of the control system of Work machine, Work machine and Work machine
US10631147B2 (en) 2016-09-12 2020-04-21 Zendrive, Inc. Method for mobile device-based cooperative data capture
US11659368B2 (en) 2016-09-12 2023-05-23 Zendrive, Inc. Method for mobile device-based cooperative data capture
US11878720B2 (en) 2016-12-09 2024-01-23 Zendrive, Inc. Method and system for risk modeling in autonomous vehicles
US10678250B2 (en) 2016-12-09 2020-06-09 Zendrive, Inc. Method and system for risk modeling in autonomous vehicles
JP2018106226A (en) * 2016-12-22 2018-07-05 株式会社クボタ Work vehicle
WO2017171073A1 (en) * 2017-03-31 2017-10-05 株式会社小松製作所 Transport vehicle control system, transport vehicle, and transport vehicle control method
JPWO2017171073A1 (en) * 2017-03-31 2018-04-05 株式会社小松製作所 Transport vehicle control system, transport vehicle, and transport vehicle control method
US10802503B2 (en) 2017-03-31 2020-10-13 Komatsu Ltd. Control system of transporter vehicle, transporter vehicle, and control method of transporter vehicle
JP2019008646A (en) * 2017-06-27 2019-01-17 株式会社クボタ Work vehicle
US11062594B2 (en) 2017-06-28 2021-07-13 Zendrive, Inc. Method and system for determining traffic-related characteristics
US11151813B2 (en) 2017-06-28 2021-10-19 Zendrive, Inc. Method and system for vehicle-related driver characteristic determination
US11735037B2 (en) 2017-06-28 2023-08-22 Zendrive, Inc. Method and system for determining traffic-related characteristics
US11871313B2 (en) 2017-11-27 2024-01-09 Zendrive, Inc. System and method for vehicle sensing and analysis
KR20190070450A (en) * 2017-12-13 2019-06-21 (주)자스텍엠 Apparatus for processing vehicle information
KR102074905B1 (en) * 2017-12-13 2020-02-07 (주)자스텍엠 Apparatus for processing vehicle information
JP2020008461A (en) * 2018-07-10 2020-01-16 株式会社豊田自動織機 Autonomous moving body location estimation device
JP7165259B2 (en) 2018-09-06 2022-11-02 エルジー エレクトロニクス インコーポレイティド Multiple autonomous mobile robots
JP2021536637A (en) * 2018-09-06 2021-12-27 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. Multiple autonomous mobile robots
US11432697B2 (en) 2018-09-06 2022-09-06 Lg Electronics Inc. Robot cleaner and a controlling method for the same
US11409308B2 (en) 2018-09-06 2022-08-09 Lg Electronics Inc. Robot cleaner and a controlling method for the same
US11906979B2 (en) 2018-09-06 2024-02-20 Lg Electronics Inc. Plurality of autonomous mobile robots and controlling method for the same
CN111624547A (en) * 2019-02-27 2020-09-04 北方数字化技术公司 Tracking objects in an electromagnetic field
KR20210035940A (en) * 2019-09-24 2021-04-02 현대모비스 주식회사 Method for platooning of vehicles
KR102629323B1 (en) 2019-09-24 2024-01-26 현대모비스 주식회사 Method for platooning of vehicles
US11775010B2 (en) 2019-12-02 2023-10-03 Zendrive, Inc. System and method for assessing device usage
US11175152B2 (en) 2019-12-03 2021-11-16 Zendrive, Inc. Method and system for risk determination of a route
JP2021191648A (en) * 2020-06-05 2021-12-16 トヨタ自動車株式会社 Position estimation device and position estimation method
CN113759408A (en) * 2020-06-05 2021-12-07 丰田自动车株式会社 Position estimation device and position estimation method
US11733396B2 (en) 2020-06-05 2023-08-22 Toyota Jidosha Kabushiki Kaisha Position estimation device and position estimation method
WO2023032277A1 (en) * 2021-09-01 2023-03-09 ソニーグループ株式会社 Position measurement device, position measurement method, and program

Also Published As

Publication number Publication date
JP4229358B2 (en) 2009-02-25
US20020099481A1 (en) 2002-07-25
US6751535B2 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
JP4229358B2 (en) Driving control device for unmanned vehicles
JP5028851B2 (en) Road information detection apparatus and program
US11150649B2 (en) Abnormality detection device
US10935660B2 (en) Control system of work machine, work machine, management system of work machine, and method of managing work machine
US5926117A (en) Vehicle control system, vehicle mounting apparatus, base station apparatus and vehicle control method
US5563786A (en) Autonomous running control system for vehicle and the method thereof
JP3710451B2 (en) Method and apparatus for measuring position of moving object
US5938704A (en) Autonomous running control system for vehicle and the method there
US11829151B2 (en) Construction-vehicle autonomous travel control device
JP3869108B2 (en) Unmanned vehicle interference prediction apparatus and unmanned vehicle guided traveling method
US20200385018A1 (en) Path generation device and vehicle control system
US11613253B2 (en) Method of monitoring localization functions in an autonomous driving vehicle
US8010280B2 (en) Vehicle travel safety device
JP2000284830A (en) Unmanned running controller
US9250086B1 (en) Machine positioning system having alignment error detection
US11835643B2 (en) Work machine control system, work machine, and work machine control method
JP2018167735A (en) Steering support device of vehicle
US11059480B2 (en) Collision avoidance system with elevation compensation
JP2023016761A (en) Method for detecting presence of obstacle in gnss- and ins-based localization of vehicle
JP2023090308A (en) Mining machine and autonomous traveling system
US20210096569A1 (en) Work machine control system, work machine, and work machine control method
US20240010238A1 (en) A method for controlling a driving operation of an autonomously controlled vehicle
JP3557834B2 (en) Vehicle absolute position calculation method
JPH03248209A (en) Automatic running system for running vehicle
KR20150012922A (en) System for tracking position of transporter for ship block and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4229358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees