JP2002210453A - Method for purifying soil - Google Patents

Method for purifying soil

Info

Publication number
JP2002210453A
JP2002210453A JP2001008963A JP2001008963A JP2002210453A JP 2002210453 A JP2002210453 A JP 2002210453A JP 2001008963 A JP2001008963 A JP 2001008963A JP 2001008963 A JP2001008963 A JP 2001008963A JP 2002210453 A JP2002210453 A JP 2002210453A
Authority
JP
Japan
Prior art keywords
soil
purified
water
oxygen
pore water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001008963A
Other languages
Japanese (ja)
Other versions
JP4988989B2 (en
Inventor
Shojiro Osumi
省二郎 大隅
Jun Tsubota
潤 坪田
Masabumi Shinohara
正文 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001008963A priority Critical patent/JP4988989B2/en
Publication of JP2002210453A publication Critical patent/JP2002210453A/en
Application granted granted Critical
Publication of JP4988989B2 publication Critical patent/JP4988989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying soil by which action of a microorganism is promoted and whole soil to be purified is uniformly purified when organic matter contained in the soil to be purified is removed by using the microorganism. SOLUTION: The method for purifying soil in which the organic matter contained in the soil to be purified 1 is removed by using the microorganism comprises a sucking process for sucking water in voids between soil in the soil to be purified 1, an adsorbing process in which the water in voids between soil sucked in the sucking process is brought into contact with an adsorbent 52 for adsorbing an inhibitor inhibiting the removal of the organic matter by the microorganism and a supply process in which the water in voids between soil brought into contact with the adsorbent 52 in the adsorbing process is supplied to the soil to be purified 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は土壌浄化方法に関
し、特に、浄化対象土壌に含まれる有機物を、この有機
物を分解可能な微生物を用いて除去する土壌浄化方法に
関する。
The present invention relates to a soil purification method, and more particularly to a soil purification method for removing organic substances contained in soil to be purified using microorganisms capable of decomposing the organic substances.

【0002】[0002]

【従来の技術】従来、この種の土壌浄化方法において
は、特に、土壌間隙に地下水等の水分が充満した状態の
汚染土壌から有機物を分解除去しようとする場合、酸素
不足を解消するために、前記土壌の内部、もしくは土壌
下部に空気注入用のパイプや散気盤を埋設し、このパイ
プから前記土壌中に酸素を含む空気を供給していた。し
かしながら、上述した従来の土壌浄化方法によれば、前
記パイプや散気盤から放出された酸素を含んだ気泡は水
平方向へあまり拡散せず、又、進入が容易な比較的大き
な径の土壌間隙に偏って地表方向に上昇する傾向があ
り、土壌内部或いは下方から空気を供給しても、浄化対
象となる土壌全体に亘って、均一に酸素を供給すること
は困難であったので、前記微生物による前記有機物の分
解を効率よく行なうことは困難であるという問題点があ
った。
2. Description of the Related Art Conventionally, in this type of soil purification method, particularly when organic matter is to be decomposed and removed from contaminated soil in a state in which water such as groundwater is filled in a soil gap, in order to eliminate oxygen deficiency, A pipe for injecting air or an air diffuser is buried in the inside of the soil or below the soil, and air containing oxygen is supplied from the pipe into the soil. However, according to the above-mentioned conventional soil purification method, the oxygen-containing air bubbles released from the pipes and the air diffusers do not diffuse much in the horizontal direction, and a relatively large-diameter soil gap that is easy to enter. And even if air is supplied from inside or below the soil, it is difficult to supply oxygen uniformly over the entire soil to be purified. However, there is a problem that it is difficult to efficiently decompose the organic matter by the above method.

【0003】そこで、本願発明者らは、上述した問題点
を解決すべく、前記土壌間隙中に酸素を含む気体或いは
酸素を豊富に溶存する液体を広く流通させる通り道を確
保して、浄化対象土壌全体に亘って酸素を行き亘らせる
方法として、前記浄化対象土壌中の土壌間隙水を吸引す
る吸引工程を有する土壌浄化方法や、前記土壌浄化方法
において、更に前記吸引工程で吸引した前記土壌間隙水
に酸素を添加して前記浄化対象土壌に再供給する供給工
程を有する土壌浄化方法を提唱した。この土壌浄化方法
によれば、前記浄化対象土壌中の土壌間隙水を吸引する
吸引工程で、前記地下水等の土壌間隙水の移動と比べて
前記土壌間隙水の吸引速度を大きくなるように吸引する
ことによって、前記土壌間隙に負圧を形成し、地表や土
壌の他の領域から酸素を豊富に含む空気や水を前記土壌
間隙に浸透させて、前記土壌間隙に前記酸素供給水を積
極的に供給し、浄化対象となる土壌全体に亘って均一に
酸素を供給することができた。更に、前記供給工程にお
いて、前記吸引工程で吸引した前記土壌間隙水に酸素を
添加して、前記負圧が生じた浄化対象土壌に供給するこ
とによって、前記土壌間隙に前記酸素供給水を積極的に
供給し、浄化対象となる土壌全体に亘って均一に酸素を
供給することができた。
[0003] In order to solve the above-mentioned problems, the inventors of the present invention have secured a passage through which a gas containing oxygen or a liquid in which oxygen is abundantly dissolved is widely distributed in the soil gap, and the soil to be purified is As a method of distributing oxygen over the whole, in the soil purification method having a suction step of sucking soil pore water in the soil to be purified, or in the soil purification method, the soil gap further sucked in the suction step A soil purification method having a supply step of adding oxygen to water and resupplying the soil to be purified has been proposed. According to this soil purification method, in the suction step of sucking the soil pore water in the soil to be purified, the suction is performed so that the suction speed of the soil pore water is increased as compared with the movement of the soil pore water such as the groundwater. Thereby, a negative pressure is formed in the soil gap, air and water containing oxygen rich from the surface and other areas of the soil penetrate into the soil gap, and the oxygen supply water is positively supplied to the soil gap. Oxygen could be supplied uniformly over the entire soil to be supplied and purified. Further, in the supplying step, oxygen is added to the soil pore water sucked in the suction step and supplied to the purification target soil in which the negative pressure is generated, whereby the oxygen supply water is positively supplied to the soil gap. To supply oxygen uniformly over the entire soil to be purified.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前掲し
た、本願発明者らが提唱した土壌浄化方法を用いても、
前記浄化対象土壌中の有機物の分解の進行が比較的遅い
場合があるという問題点があった。
However, even if the above-mentioned soil purification method proposed by the present inventors is used,
There is a problem that the decomposition of the organic matter in the purification target soil may progress relatively slowly.

【0005】従って、本発明の目的は、上記欠点に鑑
み、浄化対象土壌に含まれる有機物を微生物を用いて除
去する際に、微生物の活動を促進し、浄化対象土壌全体
を均一に浄化する土壌浄化方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned drawbacks, and when removing organic substances contained in a soil to be purified using microorganisms, promote the activity of microorganisms and uniformly purify the entire soil to be purified. It is to provide a purification method.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
の本発明の土壌浄化方法の特徴手段は、請求項1に記載
されているように、浄化対象土壌に含まれる有機物を、
微生物を用いて除去する土壌浄化方法において、前記浄
化対象土壌中の土壌間隙水を吸引する吸引工程と、前記
吸引工程で吸引した前記土壌間隙水を、前記微生物によ
る前記有機物の除去を阻害する阻害物質を吸着する吸着
剤に接触させる吸着工程と、前記吸着工程で前記吸着剤
に接触させた前記土壌間隙水を、前記浄化対象土壌に供
給する供給工程とを有する点にある。
According to a first aspect of the present invention, there is provided a soil purification method comprising the steps of: removing organic matter contained in a soil to be purified;
In a soil purification method for removing using microorganisms, a suction step of sucking soil pore water in the soil to be purified, and inhibiting the soil pore water sucked in the suction step from inhibiting removal of the organic matter by the microorganism. The present invention is characterized in having an adsorption step of bringing a substance into contact with an adsorbent for adsorbing a substance, and a supply step of supplying the soil pore water brought into contact with the adsorbent in the adsorption step to the purification target soil.

【0007】上記特徴手段において、請求項2に記載さ
れているように、前記土壌間隙水に酸素を添加する酸素
添加工程を有することが好ましく、請求項3に記載され
ているように、前記阻害物質がナフタレン又はその誘導
体であることが好ましく、請求項4に記載されているよ
うに、前記吸着剤が活性炭であることが好ましく、請求
項5に記載されているように、前記浄化対象土壌を原位
置で処理することが好ましい。そして、これらの作用効
果は、以下の通りである。
[0007] In the above-mentioned characteristic means, it is preferable that the method further comprises an oxygen addition step of adding oxygen to the soil pore water. Preferably, the substance is naphthalene or a derivative thereof, as described in claim 4, the adsorbent is preferably activated carbon, and as described in claim 5, the soil to be purified is Processing in situ is preferred. And these effects are as follows.

【0008】本願発明者らは、前記浄化対象土壌中の有
機物の分解の進行が比較的遅い適用例における、微生物
による有機物分解を阻害する機構について、種々の要因
について鋭意検討を重ねた。この結果、前記浄化対象土
壌が、前記微生物による前記有機物の除去を阻害する阻
害物質を含むものであって、特に、前記阻害物質が前記
土壌間隙水に溶出した場合に、微生物による有機物分解
が抑制されることを明らかにした。
The inventors of the present application have intensively studied various factors regarding the mechanism of inhibiting the decomposition of organic substances by microorganisms in the application example in which the decomposition of organic substances in the soil to be purified is relatively slow. As a result, the purification target soil contains an inhibitory substance that inhibits the removal of the organic matter by the microorganism, and in particular, when the inhibitory substance is eluted into the soil pore water, organic matter decomposition by the microorganism is suppressed. It will be clear.

【0009】詳細には、前述した本願発明者らが提案し
た土壌浄化方法を前記阻害物質が溶出している前記浄化
対象土壌に適用すると、前記浄化対象土壌から吸引され
た前記土壌間隙水が再び前記浄化対象土壌に供給される
ので、前記阻害物質が溶出した前記土壌間隙水に、前記
微生物が繰り返し暴露されることになる。すると、酸素
の供給が十分に行なわれていても、前記微生物の活動は
阻害され或いは死滅し、前記有機物の分解が進行し難く
なるものと考えられる。そこで、本願発明者らは、この
様な阻害機構を回避すべく鋭意研究を行なった結果、本
願発明に想到するに至った。
More specifically, when the above-described soil purification method proposed by the present inventors is applied to the soil to be purified in which the inhibitor is eluted, the soil pore water sucked from the soil to be purified is reused. Since the microorganisms are supplied to the purification target soil, the microorganisms are repeatedly exposed to the soil pore water from which the inhibitor has been eluted. Then, it is considered that even if the supply of oxygen is sufficiently performed, the activity of the microorganism is inhibited or killed, and the decomposition of the organic matter is difficult to progress. Therefore, the inventors of the present application have conducted intensive studies to avoid such an inhibition mechanism, and as a result, have come to the present invention.

【0010】即ち、請求項1に記載されているように、
浄化対象土壌に含まれる有機物を微生物を用いて除去す
る土壌浄化方法において、前記浄化対象土壌中の土壌間
隙水を吸引する吸引工程を設ければ、前記地下水等の土
壌間隙水の移動と比べて前記土壌間隙水の吸引速度を大
きくなるように吸引することによって、吸引された土壌
間隙水の体積と移動により他の領域から進入した土壌間
隙水の体積の差に基づく負圧が生じ、前記土壌間隙内が
前記浄化対象土壌の間隙に存在する流体(液体、気体)
を、遠方から吸引箇所に向かって流動させることを促進
することができる。そして、前記供給工程において、前
記吸引工程で吸引した前記土壌間隙水を前記浄化対象土
壌に再度供給することによって、前記吸引工程において
負圧が形成された前記土壌間隙に、前記土壌間隙水を積
極的に誘導し、前記土壌間隙内をより流動させ易くする
ことができる。このように、吸引工程と供給工程とを連
動させることによって、前記浄化対象土壌の土壌間隙の
中で前記土壌間隙水が循環する。ここで、前記土壌間隙
水は、前記気泡とは異なって、浮力の影響をあまりうけ
ないで負圧が形成された方向に向かうので、水平方向へ
も容易に移動し、又、前記浄化対象土壌の細かい間隙の
中をも隈なく移動することができる。
That is, as described in claim 1,
In a soil purification method for removing organic substances contained in the soil to be purified using microorganisms, if a suction step of sucking soil pore water in the soil to be purified is provided, compared with the movement of soil pore water such as the groundwater. By sucking so that the suction speed of the soil pore water is increased, a negative pressure is generated based on the difference between the volume of the soil pore water sucked and the volume of the soil pore water that has entered from another region due to movement, and Fluid (liquid, gas) in the gap between the soils to be purified
Can be facilitated to flow from a distance toward the suction point. Then, in the supply step, the soil pore water sucked in the suction step is supplied again to the soil to be purified, so that the soil pore water is positively applied to the soil gap where the negative pressure is formed in the suction step. And it can be made to flow more easily in the soil gap. In this way, by linking the suction step and the supply step, the soil pore water circulates in the soil gap of the soil to be purified. Here, unlike the air bubbles, the soil pore water flows in a direction in which a negative pressure is formed without being greatly affected by buoyancy, so that the soil pore water easily moves in the horizontal direction, and the soil to be purified is also removed. It can move all the way through the small gap.

【0011】更に、本法にあっては、吸着工程を設け
て、前記吸引工程において吸引した土壌間隙水を、前記
微生物による前記有機物の除去を阻害する阻害物質を吸
着する吸着剤に接触させてあるので、前記阻害物質を除
去した土壌間隙水を前記浄化対象土壌に還流させること
ができる。
Further, in the present method, an adsorption step is provided, and the soil pore water sucked in the suction step is brought into contact with an adsorbent for adsorbing an inhibitory substance which inhibits the removal of the organic matter by the microorganism. Therefore, the soil pore water from which the inhibitor has been removed can be returned to the purification target soil.

【0012】従って、前記土壌間隙水の移動に伴って、
前記浄化対象土壌の細かい間隙の中からも前記阻害物質
を前記処理対象土壌外に移動させ、この阻害物質を吸着
剤に吸着させることによって前記土壌間隙水から前記阻
害物質を除去した上で、再度、前記処理対象土壌に供給
することによって、前記処理対象土壌全体に亘って前記
阻害物質の除去を行なうことができる。これにより、前
記阻害物質が土壌間隙水に僅かでも溶出することによっ
て微生物に対して毒性を発揮する物質である場合でも前
記微生物による有機物分解を行なうことが出来、且つ、
前記吸引工程で前記浄化対象土壌から取り出した前記土
壌間隙水を廃棄する必要が無くなるので、廃水処理設備
の建設・運転コストを削減することができる。
Therefore, with the movement of the soil pore water,
The inhibitory substance is moved out of the treatment target soil even from within the fine gap of the purification target soil, and the inhibitory substance is removed from the soil pore water by adsorbing the inhibitory substance on the adsorbent, and again. By supplying the substance to the treatment target soil, the inhibitor can be removed over the entire treatment target soil. Thereby, even when the inhibitor is a substance that exerts toxicity to microorganisms even if it is slightly eluted into soil pore water, organic substances can be decomposed by the microorganisms, and
Since it is not necessary to discard the soil pore water taken out from the purification target soil in the suction step, it is possible to reduce the construction and operation costs of the wastewater treatment facility.

【0013】更に、この土壌間隙水を、請求項2に記載
してあるように、前記酸素添加工程において酸素を添加
して酸素富化し、前記浄化対象土壌中を流動させると、
従来法では酸素を運搬することが困難であった微細な土
壌間隙や遠隔にある土壌間隙を通過し、酸素供給が困難
であった領域にまで速やかに大量の酸素を供給すること
ができる。特に、土壌間隙水の水平方向への移動が容易
となることによって、地表から離れた深部や吸引箇所か
ら水平方向に離れた領域にまで酸素を容易に供給するこ
とができるので、気泡のみを供給する曝気などの方法で
は酸素供給が困難であった領域にまで酸素を供給するこ
とができる。又、同時に、別個に酸素供給用の水を調達
する必要が無くなるので、前記酸素供給用の水の採取、
製造、運搬コストを削減することができる。尚、この酸
素添加工程は、酸素富化した流体を供給するという目的
を達成するために、前記土壌間隙水が前記浄化対象土壌
から吸引され、再供給されるまでの間に行なえばよい。
Further, as described in claim 2, this soil pore water is enriched with oxygen by adding oxygen in the oxygen addition step, and flows through the soil to be purified.
A large amount of oxygen can be quickly supplied to a region where it has been difficult to carry oxygen by passing through a fine soil gap or a remote soil gap where it was difficult to transport oxygen, and to a region where oxygen supply was difficult. In particular, because the horizontal movement of soil pore water is facilitated, oxygen can be easily supplied to the deep part away from the ground surface and the area horizontally away from the suction point, so only air bubbles are supplied. Oxygen can be supplied to a region where it has been difficult to supply oxygen by a method such as aeration. At the same time, it is not necessary to separately procure water for oxygen supply, so that the water for oxygen supply can be collected,
Manufacturing and transportation costs can be reduced. In order to achieve the purpose of supplying the oxygen-enriched fluid, the oxygen addition step may be performed before the soil pore water is sucked from the purification target soil and re-supplied.

【0014】更に、本願発明者らは、PAH(多環芳香
族炭化水素;polycyclicaromatic
hydrocarbon)に含まれるクレオソート成
分、特に、ナフタレン及びその誘導体が、PAHの中で
も水に対する溶解度が高く、PAHを分解する微生物の
分解活性を阻害することを見出した。従って、上記特徴
手段において、請求項3に記載されているように、前記
阻害物質がナフタレン又はその誘導体である場合に、本
法を採用することで、高い微生物活性を得ることができ
る。尚、前記ナフタレン誘導体とは、前記ナフタレンと
類似した構造を有し、類似した性質を示すものをいい、
例えば、メチルナフタレン、クロルナフタレン、ニトロ
ナフタレン、ナフタレンスルホン酸等が挙げられる。
Further, the inventors of the present invention have proposed PAH (polycyclic aromatic hydrocarbon; polycyclic aromatic).
It has been found that creosote components, particularly naphthalene and derivatives thereof, contained in hydrocarbon have high solubility in water among PAHs and inhibit the activity of decomposing microorganisms that degrade PAH. Therefore, in the above characteristic means, when the inhibitor is naphthalene or a derivative thereof as described in claim 3, high microbial activity can be obtained by employing this method. The naphthalene derivative has a structure similar to that of the naphthalene and refers to a material having similar properties.
For example, methylnaphthalene, chloronaphthalene, nitronaphthalene, naphthalenesulfonic acid and the like can be mentioned.

【0015】更に、請求項4に記載されているように、
前記吸着剤が活性炭であると、前記ナフタレン類をはじ
めとして種々の阻害物質を吸着することができるので好
ましい。
Further, as described in claim 4,
It is preferable that the adsorbent is activated carbon because it can adsorb various inhibitors such as the naphthalenes.

【0016】又、特に、土壌間隙に地下水等の水分が充
満した状態の土壌は比重が高く、又、湧出する地下水の
除去も同時に行なわなければならないので、掘削が困難
であり、地中深くに存在する前記浄化対象土壌まで処理
しようとすると、手間と費用が甚大である。従って、請
求項5に記載されているように、前記浄化対象土壌を原
位置で処理することができると、前記浄化対象土壌の処
理を、迅速に低コストで行なうことができる。
Further, in particular, soil in which the soil gap is filled with water such as groundwater has a high specific gravity, and it is necessary to simultaneously remove the groundwater that springs out. When it is attempted to treat the existing soil to be purified, the labor and cost are enormous. Therefore, if the soil to be purified can be treated in situ as described in claim 5, the treatment of the soil to be purified can be performed quickly and at low cost.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1に、本発明に係る土壌浄化方
法を実施するための原位置レメディエーション設備の一
実施形態を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an in-situ remediation facility for implementing a soil purification method according to the present invention.

【0018】この設備が設置される浄化対象土壌1は、
表層付近が土壌間隙が水分で飽和されていない不飽和土
壌11となっており、この領域では、土壌間隙における
酸素供給が比較的容易に行なわれる。この不飽和土壌1
1の下層には、地下水で土壌間隙が満たされた飽和土壌
12が存在する。この飽和土壌12領域では、水の滞留
によって前記土壌間隙内での空気の移動が起こり難く、
微生物による有機物分解が行なわれ難い。
The soil 1 to be purified in which this equipment is installed is:
The vicinity of the surface layer is the unsaturated soil 11 in which the soil gap is not saturated with moisture. In this region, oxygen supply in the soil gap is relatively easily performed. This unsaturated soil 1
In the lower layer of 1, there is a saturated soil 12 in which the soil gap is filled with groundwater. In this saturated soil 12 region, the movement of air in the soil gap hardly occurs due to the accumulation of water,
Organic substances are hardly decomposed by microorganisms.

【0019】前記原位置レメディエーション設備は、前
記飽和土壌12中に取水部(図示省略)を設けた回収部
2(例えば、細孔を多数穿設したパイプ、井戸)と、前
記飽和土壌12中に注入部(図示省略)を設けた供給部
3(例えば、細孔を多数穿設したパイプ、井戸)とを有
し、これらを前記浄化対象土壌1中に離間して設けてあ
る。
The in-situ remediation equipment includes a recovery unit 2 (for example, a pipe or a well having a large number of pores) provided with a water intake unit (not shown) in the saturated soil 12, And a supply section 3 (for example, a pipe or a well with a large number of pores) provided with an injection section (not shown), which are provided separately in the soil 1 to be purified.

【0020】又、前記回収部2と前記供給部3との間に
は吸着塔5が設けられていて、この吸着塔5の収容部5
1には、前記微生物の生育や有機物分解活性を阻害する
阻害物質を吸着する吸着剤52が内装されている。
An adsorption tower 5 is provided between the recovery section 2 and the supply section 3, and a storage section 5 of the adsorption tower 5 is provided.
1 is provided with an adsorbent 52 that adsorbs an inhibitory substance that inhibits the growth of the microorganism and the activity of decomposing organic substances.

【0021】前記回収部2と前記吸着塔5の収容部51
とは回収管21で接続され、ポンプP1を駆動すること
によって前記回収部2から前記吸着塔5に前記飽和土壌
12中の土壌間隙水が搬送されるように構成されてい
る。又、前記収容部51と前記供給部3とは供給管31
で接続され、ポンプP2を駆動することによって、前記
収容部51を通過した回収液52(土壌間隙水)が前記
供給部3に注入されるように構成されている。
The collecting section 2 and the accommodating section 51 of the adsorption tower 5
Is connected to the adsorption tower 5 from the collection unit 2 by driving the pump P1 so that the soil pore water in the saturated soil 12 is conveyed. The storage section 51 and the supply section 3 are connected to the supply pipe 31.
, And by driving the pump P <b> 2, the collected liquid 52 (soil interstitial water) that has passed through the storage section 51 is injected into the supply section 3.

【0022】更に、前記供給部3の近傍の前記飽和土壌
12には、ポンプP3から空気を注入される通気部4
(例えば、細孔を多数穿設したパイプ)が穿設されてお
り、前記飽和土壌12に対して、空気(気泡)を供給す
る。
Further, the saturated soil 12 near the supply section 3 is provided with a ventilation section 4 into which air is injected from a pump P3.
(For example, a pipe having a large number of pores) is bored, and air (bubbles) is supplied to the saturated soil 12.

【0023】前記回収部2、供給部3、通気部4は、浄
化対象である土壌に対して、同数ずつ設けてあってもよ
いが、何れかが他方に対して高い比率で設けられてもよ
く、これらの設置比率、基数は、土質、浄化範囲、浄化
深度などを考慮して定めることができる。
The same number of the recovery unit 2, the supply unit 3, and the ventilation unit 4 may be provided for the soil to be purified, but one of them may be provided at a higher ratio than the other. Often, these installation ratios and base numbers can be determined in consideration of soil quality, purification range, purification depth, and the like.

【0024】上述した原位置レメディエーション設備の
前記ポンプP1を駆動すると、前記飽和土壌12中の土
壌間隙水(回収液)は、前記回収管21を通じて、前記
吸着塔5に移送される。これにより、前記飽和土壌12
の土壌間隙は他の領域に比べると減圧状態になり、他の
領域から水が流入し易くなる。他方、前記供給部3に
は、前記吸着塔5から供給管31を通じて前記回収液が
流入し、他の領域に比べると加圧状態となり、前記回収
液は前記供給部3から遠方に浸透し易くなる。よって、
前記回収液は、図1の矢印に示すように、前記供給部3
から前記回収部2に向かって略水平方向に流れることと
なる。このとき、前記3の近傍に設けられた通気部4か
ら空気が供給されることによって、前記供給部3から前
記回収部2に向かう水流には、前記回収部2から回収さ
れた土壌間隙水と比べて溶存酸素濃度の高い回収液、即
ち、酸素供給用水が流れ、前記飽和土壌12の広い範囲
に亘って、前記酸素供給用水が浸透する。このようにす
ることによって、前記飽和土壌12内を流動する前記土
壌間隙水が酸素キャリアとなって前記土壌間隙の隅々に
行きわたり、前記飽和土壌12に存在する好気的微生物
の生育及び活動を促進することができるので、微生物に
よる有機物分解が促進される。
When the pump P 1 of the above-mentioned in-situ remediation facility is driven, the soil pore water (recovered liquid) in the saturated soil 12 is transferred to the adsorption tower 5 through the recovery pipe 21. Thereby, the saturated soil 12
The pressure in the soil gap is reduced as compared with other areas, and water easily flows in from other areas. On the other hand, the recovered liquid flows into the supply unit 3 from the adsorption tower 5 through the supply pipe 31 and is in a pressurized state as compared with other regions, and the recovered liquid easily permeates far from the supply unit 3. Become. Therefore,
As shown by the arrow in FIG.
, And flows in a substantially horizontal direction toward the collecting section 2. At this time, when air is supplied from the ventilation part 4 provided in the vicinity of the part 3, the water flow from the supply part 3 to the collection part 2 includes soil pore water collected from the collection part 2 and water. The recovered liquid having a higher dissolved oxygen concentration, that is, the water for oxygen supply flows, and the water for oxygen supply permeates over a wide range of the saturated soil 12. In this way, the soil pore water flowing in the saturated soil 12 becomes an oxygen carrier and reaches every corner of the soil gap, and the growth and activity of aerobic microorganisms existing in the saturated soil 12. Can be promoted, so that decomposition of organic substances by microorganisms is promoted.

【0025】ここで、前記回収液は、前記吸着塔5を一
旦通過して前記供給部3に再供給されるものであって、
前記吸着塔5を通過する際に、前記収容部51に内装さ
れた前記吸着剤52と接触する。このとき、前記処理対
象土壌1の土壌間隙水に溶出している前記阻害物質は、
前記吸着剤52に吸着される。そして、前記阻害剤52
が除去された前記回収液が、酸素を富化された後に前記
酸素供給用水として前記供給部3から前記浄化対象土壌
1に再供給されるので、前記吸着塔5に土壌間隙水を繰
り返し循環させることで、前記土壌間隙水中の前記阻害
物質濃度が減少し、これによって、更に、前記微生物の
生育、増殖、有機物分解活性等を増強し、浄化対象有機
物の分解除去を促進することができる。
Here, the recovered liquid passes through the adsorption tower 5 once and is supplied again to the supply section 3,
When passing through the adsorption tower 5, it comes into contact with the adsorbent 52 provided in the storage section 51. At this time, the inhibitor eluted in the soil pore water of the treatment target soil 1 is:
Adsorbed by the adsorbent 52. And the inhibitor 52
The recovered liquid from which is removed is re-supplied from the supply unit 3 to the purification target soil 1 as the oxygen supply water after enriched with oxygen, so that soil pore water is repeatedly circulated to the adsorption tower 5. Thereby, the concentration of the inhibitor in the soil pore water is reduced, whereby the growth, proliferation, organic matter decomposition activity and the like of the microorganism can be further enhanced, and the decomposition and removal of the organic matter to be purified can be promoted.

【0026】尚、前記取水部及び前記注入部の設置面積
を広くしたり、垂直方向の設置長さを調節することによ
っても、前記酸素供給用水の浸透範囲や速度を調整する
ことができる。
The permeation range and speed of the oxygen supply water can also be adjusted by increasing the installation area of the water intake section and the injection section or by adjusting the installation length in the vertical direction.

【0027】前記微生物は、土着のものでもよいが、特
に除去対象となる有機物の分解能力の高い微生物を外部
から導入することによって、更に、効率よく有機物の分
解が進行する。前記微生物の導入方法としては、地表に
散布して前記飽和土壌12への移住を待ってもよいし、
前記供給部3、通気部4から、前記回収液や空気と共に
前記飽和土壌12に送り込んでもよい。この場合、添加
する微生物の選択は、分解対象である有機物との関係で
任意に選択することができる。例えば、分解対象有機物
の分解速度が速い微生物、一般の微生物の生育を阻害す
る濃度の分解対象有機物に抵抗性を示す微生物、他の微
生物と協働して有機物分解を促進する微生物などが好適
であり、1種だけでなく複数種を混合し或いは浄化処理
ステージに合わせて順次添加することができる。
The microorganisms may be indigenous, but the introduction of microorganisms having a high ability to decompose organic substances to be removed from the outside further promotes the decomposition of organic substances more efficiently. As a method of introducing the microorganisms, it may be spread on the ground surface and wait for migration to the saturated soil 12,
From the supply part 3 and the ventilation part 4, it may be sent to the saturated soil 12 together with the recovered liquid and air. In this case, the microorganism to be added can be arbitrarily selected in relation to the organic substance to be decomposed. For example, microorganisms that have a high rate of decomposition of organic substances to be degraded, microorganisms that exhibit resistance to organic substances to be decomposed at a concentration that inhibits the growth of general microorganisms, and microorganisms that promote the decomposition of organic substances in cooperation with other microorganisms are suitable. In addition, not only one kind but also a plurality of kinds can be mixed or added sequentially according to the purification treatment stage.

【0028】又、前述した酸素供給用液の供給は、連続
的に行なって循環サイクルを常時形成しておいてもよい
が、連続的に循環させなければならないほど酸素要求量
が高くない場合、前記阻害物質の溶出速度が遅い場合に
は、間欠的に前記土壌間隙水を循環させることによって
運転コストを削減することができる。尚、前記供給工程
は、前記吸引工程を行なうことによって生じた土壌間隙
中の負圧が存在する間に行なうと、前記酸素供給用水の
移動が促進されるので好ましい。
The supply of the oxygen-supplying liquid may be continuously performed to form a circulation cycle at all times. However, if the oxygen demand is not so high as to require continuous circulation, When the dissolution rate of the inhibitor is low, the operating cost can be reduced by intermittently circulating the soil pore water. Note that it is preferable that the supply step be performed while the negative pressure in the soil gap generated by performing the suction step exists, because the movement of the oxygen supply water is promoted.

【0029】又、前記浄化対象土壌は、掘削してリアク
ターに投入してもよい。しかし、地下水などの水分を多
量に含んで前記浄化対象土壌の比重が重くなっているこ
とや、湧出した地下水の処理の問題を考えると、掘削す
ることなく原位置で有機物分解を行なうことが効率的で
あるので好ましい。
Further, the soil to be purified may be excavated and charged into a reactor. However, considering that the specific gravity of the soil to be purified is large due to the large amount of water such as groundwater and the problem of treatment of the groundwater that has been spouted, it is efficient to perform organic matter decomposition in situ without excavation. It is preferable because it is a target.

【0030】更には、前記回収液52を前記飽和土壌1
2に再度供給する際に、除去対象有機物を分解する微生
物が好む養分を供給すると、前記微生物による分解効果
が高まる。
Further, the recovered liquid 52 is mixed with the saturated soil 1
When the nutrients preferred by the microorganisms that decompose the organic matter to be removed are supplied at the time of re-supply to 2, the decomposition effect by the microorganisms is increased.

【0031】[0031]

【実施例】以下に、本発明の実施例を、浄化による除去
対象たる有機物がタールであって、このタールに含まれ
るナフタレン類(ナフタレン及びその誘導体)が阻害物
質である場合を例示して、図面に基づいて説明する。
EXAMPLES Examples of the present invention will be described below by exemplifying a case in which an organic substance to be removed by purification is tar, and naphthalenes (naphthalene and derivatives thereof) contained in the tar are inhibitors. This will be described with reference to the drawings.

【0032】ナフタレン類を多く含むタールを人工的に
含有させた浄化対象土壌(タール含浸土壌)を作製し、
このタール含浸土壌とタール分解微生物との混合物62
のうち50gを分取し、図2に示すように、収容部61
を有するカラム6の前記収容部61内部に圧密して収容
した。前記収容部61には、上下端に80〜100μm
の孔径をもつ焼結ステンレスのフィルタ63、63を取
り付けてあって、前記タール含浸土壌が前記収容部61
から流出しないようにしてある。さらに、吸着剤として
の活性炭71を10g充填した吸着カラム7を設け、こ
の吸着カラム7と前記収容部61の上下端とを送水管8
1,82により連結して送液ポンプP3で前記送水管8
1,82内の水溶液を循環させる水溶液循環経路を形成
すると共に、前記吸着カラム7と前記収容部61の下端
とを連結する前記送水管81に空気供給管9を接続し
て、エアポンプP4からの酸素供給経路を形成した。こ
のようにして、原位置でのバイオレメディエーション及
びリアクターに浄化対象土壌を収容した非スラリー法に
よる土壌処理系を模した実験系を構築し、以下に説明す
る実験に供した。
A soil to be purified (tar-impregnated soil) containing artificially containing tar containing a large amount of naphthalenes is prepared.
Mixture 62 of this tar impregnated soil and tar degrading microorganisms
Out of the container 61, as shown in FIG.
And housed in the housing part 61 of the column 6 having a pressure-tightness. The accommodating part 61 has 80 to 100 μm
Filters 63, 63 made of sintered stainless steel having a pore diameter of
From leaking from Further, an adsorption column 7 filled with 10 g of activated carbon 71 as an adsorbent is provided, and a water pipe 8
1, 82, and connected to the water pipe 8 by the liquid pump P3.
An air supply pipe 9 is connected to the water supply pipe 81 that connects the adsorption column 7 and the lower end of the storage section 61 while forming an aqueous solution circulation path that circulates the aqueous solution in the first and second pumps 82. An oxygen supply path was formed. In this way, an in-situ bioremediation and experimental system simulating a non-slurry soil treatment system in which the soil to be purified was accommodated in a reactor was constructed and subjected to the experiments described below.

【0033】〔実験例1〕前記水溶液循環経路に、養分
として、0.1%K2HPO4及び0.1%NH4NO3
含有する水溶液(以下、NP培地)を流通させることに
よって、前記NP培地を、前記カラム6の収容部61内
を下部から上部に向かって移動する方向に浸入させ、前
記タール含浸土壌の土壌間隙を前記NP培地で満たし
た。
Experimental Example 1 An aqueous solution containing 0.1% K 2 HPO 4 and 0.1% NH 4 NO 3 as nutrients (hereinafter referred to as an NP medium) was passed through the aqueous solution circulation path. The NP medium was infiltrated in the direction of moving from the lower part to the upper part in the storage part 61 of the column 6, and the soil gap of the tar-impregnated soil was filled with the NP medium.

【0034】前記送液ポンプP3を駆動して、前記収容
部61の内部に、下部から上部に向かって2.0mL/
分の流速で前記NP培地を供給した。前記収容部61か
ら放出された前記NP培地を、前記送水管82を通じて
前記吸着カラム7に送り、ここで前記吸着カラム7に内
装された活性炭71と接触させて、更に、前記送水管8
1を通じて前記カラム6の収容部61に再度供給した。
尚、このとき、前記エアポンプP4は駆動しておらず、
上述した操作は、主として、前記混合物62から前記活
性炭に吸着される物質を除去する、洗浄作業であるとい
える。
The liquid feed pump P3 is driven to move 2.0 mL /
The NP medium was supplied at a flow rate of 1 minute. The NP culture medium released from the storage section 61 is sent to the adsorption column 7 through the water supply pipe 82, where it is brought into contact with the activated carbon 71 provided in the adsorption column 7, and
1 and was again supplied to the storage section 61 of the column 6.
At this time, the air pump P4 is not driven,
The above-mentioned operation can be said to be a washing operation for mainly removing the substance adsorbed on the activated carbon from the mixture 62.

【0035】上述した洗浄作業を7日間続けた後、前記
カラム6から前記混合物62を取り出し、5000rp
mで10分間遠心分離して固液分離した。分離した固体
(前記混合物52)12gと前記NP培地20mLを3
00mL容三角フラスコに収容し、通気性のある綿栓で
封をして30℃、175rpmで12週間振とう培養し
た(スラリー処理)。培養開始時及び培養開始から1,
2,4,8,12週間後の前記タール含浸土壌中におけ
るタールの残存量を、その主成分であるPAH濃度を測
定してモニタした。尚、前記PAH濃度は、次のように
して測定した。採取した前記タール含浸土壌をドラフト
内で2日以上風乾した。この風乾した前記タール含浸土
壌を粉砕し、前記タール含浸土壌1gに対して2mLの
アセトニトリルを添加して、60℃で30分間湯浴した
後、3000rpmで10分間遠心分離を行ない、これ
によって得られた上清をHPLCにて分析した。この結
果を、図3に示す。また、前記活性炭71に吸着した物
質をトルエン−ソックスレー抽出法によって抽出し、活
性炭が吸着したPAHの量と種類をHPLCにて分析し
た。この結果を、図4に示す。
After the above-described washing operation was continued for 7 days, the mixture 62 was taken out of the column 6 and 5,000 rpm.
m and centrifuged for 10 minutes to perform solid-liquid separation. 12 g of the separated solid (the mixture 52) and 20 mL of the NP medium
The mixture was placed in a 00 mL Erlenmeyer flask, sealed with a breathable cotton plug, and cultured with shaking at 30 ° C. and 175 rpm for 12 weeks (slurry treatment). At the start of culture and from the start of culture,
The residual amount of tar in the tar-impregnated soil after 2, 4, 8, and 12 weeks was monitored by measuring the concentration of the main component, PAH. The PAH concentration was measured as follows. The collected tar-impregnated soil was air-dried in a fume hood for at least two days. The air-dried tar-impregnated soil is pulverized, 2 mL of acetonitrile is added to 1 g of the tar-impregnated soil, and the resultant is subjected to a water bath at 60 ° C. for 30 minutes, and then centrifuged at 3000 rpm for 10 minutes to obtain the tar-impregnated soil. The supernatant was analyzed by HPLC. The result is shown in FIG. The substance adsorbed on the activated carbon 71 was extracted by a toluene-Soxhlet extraction method, and the amount and type of PAH adsorbed on the activated carbon were analyzed by HPLC. The result is shown in FIG.

【0036】〔比較例1〕比較のために、上述した洗浄
作業を行なっていない前記混合物12gと前記NP培地
とを300mL容三角フラスコに収容し、通気性のある
綿栓で封をして、30℃、175rpmで、12週間振
とう培養した。培養開始時及び培養開始から1,2,
4,8,12週間後の前記タール含浸土壌中におけるタ
ールの残存量を、その主成分であるPAHの濃度を測定
してモニタした。この結果を、図5に示す。
[Comparative Example 1] For comparison, 12 g of the mixture not subjected to the above-mentioned washing operation and the NP medium were placed in a 300 mL Erlenmeyer flask, and sealed with a breathable cotton stopper. Shaking culture was performed at 30 ° C. and 175 rpm for 12 weeks. At the start of culture and from the start of culture
The remaining amount of tar in the tar-impregnated soil after 4, 8, and 12 weeks was monitored by measuring the concentration of PAH as the main component. The result is shown in FIG.

【0037】図3に示すように、前記活性炭71に前記
NP培地を接触させて前記活性炭71に吸着される物質
を除去した実験例1では、前記PAHの約10%が、前
記タール含浸土壌から除去されていた。そして、この後
のスラリー処理により、前記PAHの約63%が前記タ
ール分解微生物によって分解されていた。
As shown in FIG. 3, in Experimental Example 1 in which the NP medium was brought into contact with the activated carbon 71 to remove substances adsorbed on the activated carbon 71, about 10% of the PAH was removed from the tar-impregnated soil. Had been removed. Then, by the subsequent slurry treatment, about 63% of the PAH was degraded by the tar-degrading microorganism.

【0038】一方、比較例1では、図5に示すように、
12週間のスラリー処理を経ても、前記タール含浸土壌
中のPAH濃度が殆ど変動していなかった。
On the other hand, in Comparative Example 1, as shown in FIG.
Even after the slurry treatment for 12 weeks, the PAH concentration in the tar-impregnated soil hardly changed.

【0039】一般に、スラリー処理は培地を攪拌するの
で酸素供給が活発に行なわれるものであり、又、微生物
が分解対象となる有機物と接触する機会が多いことか
ら、微生物による有機物分解が速やかに進行することが
知られている。このスラリー処理を施しても、前記比較
例1では前記PAHの分解進まなかったことから、前記
タールの分解抑制要因が、酸素不足や前記タール成分と
前記タール分解微生物との接触不足ではないことが推測
される。そして、前記実験例1と前記比較例1との実験
条件の違いが前記洗浄作業の有無であることから、前記
活性炭71に吸着された物質が、前記タール分解微生物
によるタール分解を抑制していると考えられる。
In general, in the slurry treatment, the medium is agitated, so that oxygen is actively supplied. In addition, since there are many opportunities for the microorganisms to come in contact with the organic matter to be decomposed, the decomposition of the organic matter by the microorganisms proceeds rapidly. It is known to Even when the slurry treatment was performed, in Comparative Example 1, the PAH did not decompose, so that the factor inhibiting the decomposition of the tar was not oxygen shortage or insufficient contact between the tar component and the tar decomposing microorganism. Guessed. And, since the difference between the experimental conditions of the experimental example 1 and the comparative example 1 is the presence or absence of the washing operation, the substance adsorbed on the activated carbon 71 suppresses the tar decomposition by the tar decomposing microorganism. it is conceivable that.

【0040】ここで、前記実施例1で使用した活性炭7
1に吸着したPAHは、図4に示すように、主として、
2〜4環式PAHであって、特に2環式PAHであるナ
フタレンが約70%を占めていた。これらのPAHは、
難溶性であるPAHのなかで、比較的水に対する溶解度
が高いものである。よって、これらのPAHは、前記タ
ール含浸土壌から前記NP培地中に溶出して前記水循環
経路内を循環する過程で前記活性炭71に捕捉されたも
のと考えられる。従って、実験例1では、ナフタレン等
の比較的水溶性の高いPAH類を前記浄化対象土壌1か
ら除去することによって、前記NP培地中のPAH濃度
上昇を抑制し、これによって、前記タール分解微生物に
よるPAH分解が促進されたものと考えられる。
Here, the activated carbon 7 used in Example 1 was used.
As shown in FIG. 4, the PAH adsorbed on No. 1 was mainly
Naphthalene, a 2- to 4-cyclic PAH, especially a bicyclic PAH, accounted for about 70%. These PAHs
Among the poorly soluble PAHs, they have relatively high solubility in water. Therefore, it is considered that these PAHs were eluted from the tar-impregnated soil into the NP medium and captured by the activated carbon 71 in the process of circulating in the water circulation path. Therefore, in Experimental Example 1, PAHs having relatively high water solubility such as naphthalene were removed from the soil 1 to be purified, thereby suppressing an increase in the concentration of PAH in the NP medium. It is considered that PAH decomposition was promoted.

【0041】〔実験例2〕実験例2では、前記送液ポン
プP3を駆動して、前記収容部61の内部に、下部から
上部に向かって2mL/分の流速で前記NP培地を供給
しながら、前記エアポンプP4を駆動して、前記空気供
給管9から前記NP培地に対して300mL/分の流速
で前記収容部61の下部から上部に向かって空気を供給
した。前記収容部61上部から排出された前記NP培地
は、前記送液管82を通じて吸着カラム7に運ばれてこ
れに内装された前記活性炭71に接触し、再び、前記吸
着カラム7から前記送液管81を通じて前記収容部61
に送られて前記タール含浸土壌に供給した。
[Experimental Example 2] In Experimental Example 2, the liquid supply pump P3 was driven to supply the NP medium into the housing section 61 from the lower part to the upper part at a flow rate of 2 mL / min. Then, the air pump P4 was driven to supply air from the lower part to the upper part of the housing part 61 at a flow rate of 300 mL / min from the air supply pipe 9 to the NP medium. The NP culture medium discharged from the upper part of the storage part 61 is conveyed to the adsorption column 7 through the liquid feed pipe 82 and comes into contact with the activated carbon 71 provided therein, and again from the adsorption column 7 to the liquid feed pipe. 81 to the accommodation section 61
And supplied to the tar impregnated soil.

【0042】前記送液ポンプP3は、ここでは、前記N
P培地を前記タール含浸土壌から吸引すると同時に、酸
素富化した前記NP培地を前記タール含浸土壌に供給す
る働きがある。前記タール含浸土壌からの前記NP培地
の吸引と供給がスムーズに行なわれることによって、前
記NP培地は、酸素及び養分のキャリアとして前記ター
ル含浸土壌中を隈なく移動する。
Here, the liquid sending pump P3 is connected to the N
At the same time that the P medium is sucked from the tar-impregnated soil, the function is to supply the oxygen-enriched NP medium to the tar-impregnated soil. By smoothly sucking and supplying the NP medium from the tar-impregnated soil, the NP medium moves throughout the tar-impregnated soil as a carrier for oxygen and nutrients.

【0043】この操作を2週間続けた結果、前記タール
含浸土壌中の2〜4環式のPAHが約15%減少してい
た。
As a result of continuing this operation for two weeks, the PAH of the 2- to 4-cyclic in the tar-impregnated soil was reduced by about 15%.

【0044】〔比較例2〕前記吸着カラム7を設けなか
った以外は、実験例2と同じ条件とした比較例2では、
2週間の処理後の2〜4員環式のPAHの減少率は約5
%であった。
Comparative Example 2 In Comparative Example 2, the conditions were the same as in Experimental Example 2 except that the adsorption column 7 was not provided.
After 2 weeks of treatment, the rate of reduction of the 2- to 4-membered cyclic PAH is about 5
%Met.

【0045】実験例2と比較例2との間でも、やはり、
吸着剤としての活性炭の有無によって、PAHの分解率
が大幅に異なっており、前記活性炭によってナフタレン
等を除去することによって、前記タール分解微生物によ
るタール分解を促進していることがわかる。
Also between Experimental Example 2 and Comparative Example 2,
It can be seen that the decomposition rate of PAH differs greatly depending on the presence or absence of activated carbon as an adsorbent, and that the activated carbon removes naphthalene and the like, thereby promoting tar decomposition by the tar-decomposing microorganism.

【0046】〔別実施形態〕以下に別実施形態を説明す
る。 (イ) 上記実施例においては、除去対象たる有機物が
タールである場合を例示したが、本発明に係る土壌浄化
方法は、除去対象が有機物であれば特に制限されるもの
ではない。本法は、活性炭によって吸着可能な他の阻害
物質や、活性炭以外の吸着剤(例えば、ゼオライト、モ
レキュラーシーブ、シリカゲル等)によって吸着可能な
阻害物質が、除去対象となる有機物を分解する微生物の
活性を阻害している場合に用いると効果的である。 (ロ) 又、上記実施例においては、除去対象である有
機物を分解する微生物を浄化対象土壌に外部より添加し
て、その浄化対象土壌に元来生息する土着の微生物の働
きを補強したが、本法は、前記浄化対象土壌に生息する
土着の微生物を活性化することによって、前記有機物の
分解効率を向上させるために用いることもできる。 (ハ) 又、上記実施形態において、前記通気部4を前
記飽和土壌12に穿設したが、前記回収部2より下流側
に曝気槽を設けたり、前記回収管21や前記供給管31
にエアポンプを用いて給気することによって、前記浄化
対象土壌1に供給する前記回収液を酸素富化して酸素供
給用水とすることもできる。 (ニ) 又、前記実施例においては、微生物の栄養源と
なるNP培地を循環させたが、循環させる流体は、浄化
対象となる有機物を分解するのに有用な微生物の栄養要
求性を考慮して適宜変更することができる。或いは、浄
化対象土壌の土壌間隙から回収した液体を、そのまま再
利用してもよく、この液体に栄養分を補給して再供給し
てもよい。
[Another Embodiment] Another embodiment will be described below. (B) In the above embodiment, the case where the organic substance to be removed is tar is illustrated, but the soil purification method according to the present invention is not particularly limited as long as the target to be removed is an organic substance. In this method, other inhibitors that can be adsorbed by activated carbon and inhibitors that can be adsorbed by adsorbents other than activated carbon (eg, zeolites, molecular sieves, silica gels, etc.) can reduce the activity of microorganisms that decompose organic substances to be removed. It is effective when used when it is inhibiting. (B) In the above embodiment, a microorganism that decomposes organic matter to be removed is added to the soil to be purified from the outside to reinforce the function of indigenous microorganisms that naturally inhabit the soil to be purified. The present method can also be used to improve the efficiency of decomposing the organic matter by activating indigenous microorganisms living in the soil to be purified. (C) In the above embodiment, the ventilation section 4 is formed in the saturated soil 12. However, an aeration tank may be provided downstream of the collection section 2, or the collection pipe 21 and the supply pipe 31 may be provided.
By supplying air using an air pump, the recovered liquid supplied to the purification target soil 1 can be enriched with oxygen and used as oxygen supply water. (D) In the above embodiment, the NP medium, which is a nutrient source of the microorganism, was circulated. However, the circulating fluid was determined in consideration of the nutritional requirement of the microorganism, which is useful for decomposing the organic matter to be purified. Can be changed as appropriate. Alternatively, the liquid collected from the soil gap of the soil to be purified may be reused as it is, or the liquid may be replenished with nutrients and re-supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本法の実施形態を表わす概略図FIG. 1 is a schematic diagram illustrating an embodiment of the present method.

【図2】本法の実施例で使用した土壌浄化モデル系の概
略図
FIG. 2 is a schematic diagram of a soil purification model system used in an example of the present method.

【図3】本法によるタール分解結果を表わすグラフFIG. 3 is a graph showing the results of tar decomposition by the present method.

【図4】本法によるタール成分除去結果を表わすグラフFIG. 4 is a graph showing the result of removing tar components by the present method.

【図5】従来法によるタール分解結果を表わすグラフFIG. 5 is a graph showing the results of tar decomposition by a conventional method.

【符号の説明】[Explanation of symbols]

1 浄化対象土壌 2 回収部 3 供給部 4 通気部 5 吸着塔 11 不飽和土壌 12 飽和土壌 52 吸着剤 Reference Signs List 1 soil to be purified 2 collection unit 3 supply unit 4 ventilation unit 5 adsorption tower 11 unsaturated soil 12 saturated soil 52 adsorbent

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 17/32 B09B 3/00 ZABE C09K 101:00 5/00 S Fターム(参考) 2D043 DA04 EB06 4D004 AA41 AB10 AC04 AC07 CA18 CA47 CC02 4D024 AA05 AB04 BA02 BC01 DB14 4H026 AA01 AA10 AB04 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C09K 17/32 B09B 3/00 ZABE C09K 101: 00 5/00 SF term (reference) 2D043 DA04 EB06 4D004 AA41 AB10 AC04 AC07 CA18 CA47 CC02 4D024 AA05 AB04 BA02 BC01 DB14 4H026 AA01 AA10 AB04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 浄化対象土壌に含まれる有機物を、微生
物を用いて除去する土壌浄化方法において、 前記浄化対象土壌中の土壌間隙水を吸引する吸引工程
と、 前記吸引工程で吸引した前記土壌間隙水を、前記微生物
による前記有機物の除去を阻害する阻害物質を吸着する
吸着剤に接触させる吸着工程と、 前記吸着工程で前記吸着剤に接触させた前記土壌間隙水
を、前記浄化対象土壌に供給する供給工程とを有する土
壌浄化方法。
1. A soil purification method for removing organic substances contained in a soil to be purified using microorganisms, wherein: a suction step of sucking soil pore water in the soil to be purified; and the soil gap sucked in the suction step. An adsorption step of bringing water into contact with an adsorbent that adsorbs an inhibitor that inhibits the removal of the organic substance by the microorganism; and supplying the soil pore water that has been brought into contact with the adsorbent in the adsorption step to the soil to be purified. A soil purification method comprising:
【請求項2】 前記土壌間隙水に酸素を添加する酸素添
加工程を有する請求項1に記載の土壌浄化方法。
2. The soil purification method according to claim 1, further comprising an oxygen addition step of adding oxygen to the soil pore water.
【請求項3】 前記阻害物質がナフタレン又はその誘導
体である請求項1又は2に記載の土壌浄化方法。
3. The soil purification method according to claim 1, wherein the inhibitor is naphthalene or a derivative thereof.
【請求項4】 前記吸着剤が活性炭である請求項1〜3
の何れか1項に記載の土壌浄化方法。
4. The method according to claim 1, wherein said adsorbent is activated carbon.
The soil purification method according to any one of the above.
【請求項5】 前記浄化対象土壌を原位置で処理する請
求項1〜4の何れか1項に記載の土壌浄化方法。
5. The soil purification method according to claim 1, wherein the soil to be purified is treated in situ.
JP2001008963A 2001-01-17 2001-01-17 Soil purification method Expired - Fee Related JP4988989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008963A JP4988989B2 (en) 2001-01-17 2001-01-17 Soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008963A JP4988989B2 (en) 2001-01-17 2001-01-17 Soil purification method

Publications (2)

Publication Number Publication Date
JP2002210453A true JP2002210453A (en) 2002-07-30
JP4988989B2 JP4988989B2 (en) 2012-08-01

Family

ID=18876514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008963A Expired - Fee Related JP4988989B2 (en) 2001-01-17 2001-01-17 Soil purification method

Country Status (1)

Country Link
JP (1) JP4988989B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221969A (en) * 2013-05-13 2014-11-27 鹿島建設株式会社 Soil desaturation system and soil improvement method
CN111441337A (en) * 2020-04-30 2020-07-24 华中科技大学 Microorganism induced mineralization reinforcement soil body grouting method introducing urease inhibitor
CN115055504A (en) * 2022-06-29 2022-09-16 煜环环境科技有限公司 Microbial leaching reaction device and soil remediation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510083A (en) * 1991-07-05 1993-01-19 James J Malot Method of electric vacuum purifying
JPH0523692A (en) * 1991-07-19 1993-02-02 Ebara Res Co Ltd Treatment and device for organochlorine compound
JPH08192138A (en) * 1994-10-20 1996-07-30 Xerox Corp Method and apparatus for removing pollutant
JPH1043733A (en) * 1996-08-07 1998-02-17 Taisei Corp Decomposing method of petroleum compound
WO2000002676A1 (en) * 1998-07-10 2000-01-20 Hazama Corp. Method for purifying polluted soil and cleaning agent for soil purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510083A (en) * 1991-07-05 1993-01-19 James J Malot Method of electric vacuum purifying
JPH0523692A (en) * 1991-07-19 1993-02-02 Ebara Res Co Ltd Treatment and device for organochlorine compound
JPH08192138A (en) * 1994-10-20 1996-07-30 Xerox Corp Method and apparatus for removing pollutant
JPH1043733A (en) * 1996-08-07 1998-02-17 Taisei Corp Decomposing method of petroleum compound
WO2000002676A1 (en) * 1998-07-10 2000-01-20 Hazama Corp. Method for purifying polluted soil and cleaning agent for soil purification

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221969A (en) * 2013-05-13 2014-11-27 鹿島建設株式会社 Soil desaturation system and soil improvement method
CN111441337A (en) * 2020-04-30 2020-07-24 华中科技大学 Microorganism induced mineralization reinforcement soil body grouting method introducing urease inhibitor
CN111441337B (en) * 2020-04-30 2022-03-18 华中科技大学 Microorganism induced mineralization reinforcement soil body grouting method introducing urease inhibitor
CN115055504A (en) * 2022-06-29 2022-09-16 煜环环境科技有限公司 Microbial leaching reaction device and soil remediation method
CN115055504B (en) * 2022-06-29 2023-06-16 煜环环境科技有限公司 Microorganism leaching reaction device and soil restoration method

Also Published As

Publication number Publication date
JP4988989B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US5246309A (en) System and method for decontamination of contaminated ground
US7531709B2 (en) Method for accelerated dechlorination of matter
JPH07265898A (en) Method and device for pollutant removal
EP1361002A2 (en) Method and apparatus for purifying a layer of contaminated soil
KR100798763B1 (en) The method to remediate pol(petroleum, oil, lubricant) contaminated soil by in-situ thermal desorption approach, and the apparatus for the same
JPH0796289A (en) Apparatus and method for purifying contaminated ground water due to soil contamination
CN213763431U (en) Pollute good oxygen biological repair system of soil normal position
JP2002210453A (en) Method for purifying soil
JP2001347280A (en) Method for cleaning ground water polluted with halogenated organic compound
JP2015077571A (en) Method for purifying pollutant-containing medium
JP2008279403A (en) In situ cleaning method of contaminated soil and contaminated underground water
JP2005279548A (en) Method for purifying contaminated soil
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
US20030207440A1 (en) Decontamination of soil and groundwater
JP3458688B2 (en) Method and apparatus for repairing groundwater contamination
JP4375592B2 (en) Soil and groundwater purification methods
JP2005205299A (en) Method for purifying contaminated soil and contaminated water
JP4636679B2 (en) Soil purification method
JP3695348B2 (en) Soil and / or groundwater contaminant treatment agent and method
JP2008221167A (en) Soil purification method and apparatus
JP3374228B2 (en) How to restore contaminated groundwater and soil
JP2007514533A (en) How to remove contaminants from contaminated groundwater
JP2000176487A (en) Method of remediation of contaminated groundwater and contaminated bed and remediation system
JP2007260611A (en) Method of cleaning contaminated soil
JP2006026552A (en) Water flow anaerobic biosystem and treating method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees