JP2002208751A - Method of manufacturing semiconductor laser device - Google Patents

Method of manufacturing semiconductor laser device

Info

Publication number
JP2002208751A
JP2002208751A JP2002006030A JP2002006030A JP2002208751A JP 2002208751 A JP2002208751 A JP 2002208751A JP 2002006030 A JP2002006030 A JP 2002006030A JP 2002006030 A JP2002006030 A JP 2002006030A JP 2002208751 A JP2002208751 A JP 2002208751A
Authority
JP
Japan
Prior art keywords
light
solder
shielding member
laser element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002006030A
Other languages
Japanese (ja)
Other versions
JP3660305B2 (en
Inventor
Kimio Shigihara
君男 鴫原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002006030A priority Critical patent/JP3660305B2/en
Publication of JP2002208751A publication Critical patent/JP2002208751A/en
Application granted granted Critical
Publication of JP3660305B2 publication Critical patent/JP3660305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To shade the return light to exactly control an APC. SOLUTION: A shade member 23 for shading the return light from a front area is disposed in front of a photodetector 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信や光ディス
ク用の光源となる半導体レーザ装置およびその製造方法
に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor laser device serving as a light source for optical communication and optical disks, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図9は従来例の半導体レーザ装置を示す
断面図である。図9において、1はステム、2,3,4
はボンディングポスト、5はキャップ、6はガラス、7
はホトダイオード取付け台、8はホトダイオード素子用
サブマウント、9はホトダイオード、10はブロック、
11はレーザダイオード素子用サブマウント、12はレ
ーザダイオード素子、13は前面光、14は後面光、1
5は反射による戻り光である。
2. Description of the Related Art FIG. 9 is a sectional view showing a conventional semiconductor laser device. In FIG. 9, 1 is a stem, 2, 3, 4
Is a bonding post, 5 is a cap, 6 is glass, 7
Is a photodiode mounting base, 8 is a submount for a photodiode element, 9 is a photodiode, 10 is a block,
11 is a sub-mount for a laser diode element, 12 is a laser diode element, 13 is front light, 14 is rear light, 1
Reference numeral 5 denotes return light due to reflection.

【0003】上記半導体レーザ装置において、レーザダ
イオード素子12は、通常へき開にて端面を作製するた
め、1個の素子で前端面と後端面の2つの端面を有す
る。よって、レーザダイオード素子12の駆動時には、
前面光13と後面光14の両方が発生することになる。
前面光13の強度と後面光14とは1対1のリニアな関
係にあるので、後面光14をホトダイオード9で受け、
該ホトダイオード9で発生するモニター電流を検出し
て、レーザダイオード素子12への駆動電流を前記モニ
ター電流が常に一定になるように制御しながら流せば、
前面光13の強度は常に一定となる(Automati
c Power Control:以下、APC制御と
称す)。
In the above-described semiconductor laser device, the laser diode element 12 usually has two end faces, a front end face and a rear end face, in order to produce an end face by cleavage. Therefore, when driving the laser diode element 12,
Both front light 13 and rear light 14 will be generated.
Since the intensity of the front light 13 and the rear light 14 have a one-to-one linear relationship, the rear light 14 is received by the photodiode 9,
If a monitor current generated by the photodiode 9 is detected and a drive current to the laser diode element 12 is supplied while controlling the monitor current to be always constant,
The intensity of the front light 13 is always constant (Automati
c Power Control: hereinafter referred to as APC control).

【0004】[0004]

【発明が解決しようとする課題】従来例の半導体レーザ
装置では、レーザダイオード素子12の前面光13が自
由空間に放出されるような場合であれば、戻り光15が
存在しないので容易にAPC制御することができる。し
かしながら、通常のレーザダイオード素子12は、光学
系を通して光ファイバや光ディスクと結合するような構
造として使用されることが多い。この場合、前記光学
系、光ファイバおよび光ディスクから反射があり、これ
が戻り光15となってレーザダイオード素子12に返っ
て来る。該戻り光15がレーザダイオード素子12へ与
える影響は2種類あって、1つには、レーザダイオード
素子12の端面に直接返ってきてレーザダイオード素子
12の発振特性を変化させるものであり、もう1つは、
直接ホトダイオード9へ入ってモニター電流を変化させ
るものである。後者の場合は、見かけ上、モニター電流
が増えるので、正確なAPC制御ができなくなるといっ
た欠点があった。
In the conventional semiconductor laser device, if the front light 13 of the laser diode element 12 is emitted into free space, the return light 15 does not exist, so that the APC control is easily performed. can do. However, the ordinary laser diode element 12 is often used as a structure that is coupled to an optical fiber or an optical disk through an optical system. In this case, there is a reflection from the optical system, the optical fiber and the optical disk, which returns to the laser diode element 12 as return light 15. The return light 15 has two kinds of effects on the laser diode element 12. One is that the return light 15 returns directly to the end face of the laser diode element 12 and changes the oscillation characteristics of the laser diode element 12. One is
It directly enters the photodiode 9 and changes the monitor current. In the latter case, since the monitor current apparently increases, there is a disadvantage that accurate APC control cannot be performed.

【0005】本発明は、上記課題に鑑み、戻り光を遮光
して正確なAPC制御を可能にし得る半導体レーザ装置
およびその製造方法を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a semiconductor laser device and a method of manufacturing the same, which enable accurate APC control by blocking return light.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
課題解決手段は、レーザ素子の上面に第1の半田を介し
て遮光部材を搭載する工程と、マウント部材の上面に第
2の半田を介してレーザ素子を搭載する工程と、前記レ
ーザ素子の後端面側に光強度モニタ用受光素子を配する
ことにより前記レーザ素子の前端面側と前記受光素子と
の間に前記遮光部材を介在させる工程とを備え、前記遮
光部材を搭載する工程において、前記第1の半田に前記
第2の半田より高融点のものを使用する。
According to a first aspect of the present invention, there is provided a method of mounting a light shielding member on a top surface of a laser element via a first solder, and a step of mounting a second light shielding member on a top surface of a mount member. Mounting the laser element via solder, and arranging the light intensity monitoring light receiving element on the rear end face side of the laser element so that the light shielding member is provided between the front end face side of the laser element and the light receiving element. And a step of mounting the light shielding member, wherein the first solder having a higher melting point than the second solder is used.

【0007】[0007]

【発明の実施の形態】[第1の実施例] (構成)図1および図2は本発明の第1の実施例を示す
図である。本実施例の半導体レーザ装置は、光学系を通
して光ファイバや光ディスクと結合するようにして使用
されるもので、端面発光型レーザ素子21(レーザダイ
オードチップ)と、該レーザ素子21の後端面側(後
方)に配された光強度モニタ用受光素子22(ホトダイ
オード)と、前記レーザ素子21の前端面側(前方)と
前記受光素子22との間で光を遮蔽する遮光部材23と
を備えたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment (Configuration) FIGS. 1 and 2 show a first embodiment of the present invention. The semiconductor laser device of the present embodiment is used by being coupled to an optical fiber or an optical disk through an optical system, and includes an edge-emitting laser element 21 (laser diode chip) and a rear end face side of the laser element 21 (laser diode chip). A light intensity monitoring light receiving element 22 (photodiode) disposed on the rear side) and a light shielding member 23 for shielding light between the front end face side (front) of the laser element 21 and the light receiving element 22. It is.

【0008】前記レーザ素子21はその端面がへき開に
て形成され前後両端面方向へ光を発するよう構成され
る。該レーザ素子21の裏面電極は、図4および図5に
示した半田35(第2の半田)にて銅−タングステン等
からなる放熱用サブマウント24(第1のマウント部
材)の上面に接着されている。該サブマウント24は、
ブロック25(第2のマウント部材)を介して例えば円
板状のステム26の中央部に図4および図5に示した半
田34(前記半田35と同様の第2の半田)にて接着さ
れている。なお、図2中の21aはレーザ素子21の発
光領域である。
The laser element 21 is formed so that its end face is cleaved and emits light toward the front and rear end faces. The back electrode of the laser element 21 is adhered to the upper surface of the heat-dissipating submount 24 (first mounting member) made of copper-tungsten or the like with the solder 35 (second solder) shown in FIGS. ing. The submount 24 is
Via a block 25 (second mounting member), for example, a central portion of a disk-shaped stem 26 is adhered with solder 34 (second solder similar to the solder 35) shown in FIGS. I have. Incidentally, reference numeral 21a in FIG. 2 denotes a light emitting region of the laser element 21.

【0009】前記受光素子22は、前記レーザ素子21
からの後面光をモニター光として検出しその強度を制御
するために用いるもので、表面周囲部が金属膜等で覆わ
れることで表面中央部に所定の径の受光領域27を有し
ている。該受光素子22の裏面電極は図示しない半田等
にて放熱用サブマウント28の上面に接着されている。
なお、前記サブマウント28は板状の取付け台29を介
して前記ステム26の中央部の図示しない電極に接着さ
れてAPC制御回路SCに接続される。該APC制御回
路SCは、前記受光素子22からのモニター電流値を検
出する電流検出手段Sc1と、該電流検出手段Sc1で
の検出結果に基づいて前記モニター電流が常に一定にな
るように前記レーザ素子21への駆動電流を制御する駆
動制御手段Sc2とを備える。該駆動制御手段Sc2は
前記レーザ素子21を駆動する駆動回路DCに接続され
る。
The light receiving element 22 is provided with the laser element 21.
It is used to detect the rear surface light from the monitor as monitor light and to control its intensity, and has a light receiving region 27 having a predetermined diameter at the center of the surface by covering the surface periphery with a metal film or the like. The back electrode of the light receiving element 22 is adhered to the upper surface of the heat dissipating submount 28 by solder or the like (not shown).
The submount 28 is adhered to an electrode (not shown) at the center of the stem 26 via a plate-like mount 29 and connected to the APC control circuit SC. The APC control circuit SC includes a current detecting means Sc1 for detecting a monitor current value from the light receiving element 22, and the laser element so that the monitor current is always constant based on a detection result of the current detecting means Sc1. And a drive control means Sc2 for controlling a drive current to the power supply 21. The drive control means Sc2 is connected to a drive circuit DC for driving the laser element 21.

【0010】前記遮光部材23は、例えば図3乃至図5
の如く、前記放熱用サブマウント24と同様の銅−タン
グステン等の金属板23aと、該金属板23aの上下両
面に形成されたチタン−金等の金属薄膜23b,23b
とから構成されており、図3、図4および図5に示した
半田33(第1の半田)にて前記レーザ素子21の上面
電極に接着され、ボンディングワイヤ31を介して前記
ステム26のポスト32に接続される。前記半田33の
融点は、前記半田34,35に比べて高温度に設定され
る。また、該遮光部材23の幅は、前記受光素子22の
受光領域の径より大きく形成され、具体的には、前記レ
ーザ素子21の幅より大とされ、前記レーザ素子21用
サブマウント24の幅と略同等とされている。また、該
遮光部材23の奥行きは、前記レーザ素子21の上面電
極との接続抵抗が増大しない程度であればよく、例えば
前記レーザ素子21の奥行きと略同等とされている。
The light shielding member 23 is provided, for example, in FIGS.
And a metal plate 23a of copper-tungsten or the like similar to that of the submount 24 for heat radiation, and metal thin films 23b, 23b of titanium-gold formed on both upper and lower surfaces of the metal plate 23a.
And is bonded to the upper surface electrode of the laser element 21 with the solder 33 (first solder) shown in FIGS. 3, 4, and 5, and the post of the stem 26 is bonded via the bonding wire 31. 32. The melting point of the solder 33 is set to a higher temperature than the solders 34 and 35. Further, the width of the light shielding member 23 is formed to be larger than the diameter of the light receiving area of the light receiving element 22, specifically, larger than the width of the laser element 21, and the width of the submount 24 for the laser element 21. It is assumed to be substantially equivalent to Further, the depth of the light shielding member 23 may be such that the connection resistance with the upper surface electrode of the laser element 21 does not increase, and is, for example, substantially equal to the depth of the laser element 21.

【0011】(製造方法)まず、遮光部材23の一方の
金属薄膜23bの表面に高融点の半田33を塗布し、図
3の如く、遮光部材23を半田33が上面側となるよう
配置して、半田33の上面にレーザ素子21をその上面
電極が接するように載置する。そして、半田33の溶融
温度まで昇温して遮光部材23とレーザ素子21をダイ
ボンディングする。次にブロック25の上面に半田34
を介してサブマウント24を載置し、さらにサブマウン
ト24の上面に半田35を介して一体となった遮光部材
23およびレーザ素子21を載置する。このとき、図4
の如く、レーザ素子21の裏面電極がサブマウント24
の上面の半田35に接するように上下反転させて載置す
る。しかる後、半田33,34,35の溶融温度まで昇
温してブロック25とサブマウント24、およびサブマ
ウント24とレーザ素子21の裏面電極を夫々ダイボン
ディングする。そして、一体となった遮光部材23、レ
ーザ素子21、サブマウント24およびブロック25
を、予め受光素子22が取り付けられたステム26に取
り付け、図1、図2および図5の如く、ボンディングワ
イヤ31を接続する。そして、ステム26の背面からA
PC制御回路SCおよび駆動回路DCを接続し、半導体
レーザ装置は完成する。
(Manufacturing method) First, a high-melting-point solder 33 is applied to the surface of one of the metal thin films 23b of the light-shielding member 23, and as shown in FIG. Then, the laser element 21 is mounted on the upper surface of the solder 33 such that the upper electrode thereof is in contact with the upper surface electrode. Then, the temperature is raised to the melting temperature of the solder 33 and the light shielding member 23 and the laser element 21 are die-bonded. Next, the solder 34 is provided on the upper surface of the block 25.
The sub-mount 24 is placed via the sub-mount 24, and the integrated light-shielding member 23 and laser element 21 are further placed on the upper surface of the sub-mount 24 via the solder 35. At this time, FIG.
The back electrode of the laser element 21 is
Is placed upside down so as to be in contact with the solder 35 on the upper surface of. Thereafter, the temperature is raised to the melting temperature of the solders 33, 34, and 35, and the block 25 and the submount 24, and the submount 24 and the back surface electrode of the laser element 21, are die-bonded. Then, the integrated light shielding member 23, laser element 21, submount 24 and block 25 are integrated.
Is attached to a stem 26 to which a light receiving element 22 is attached in advance, and a bonding wire 31 is connected as shown in FIGS. 1, 2 and 5. Then, from the back of the stem 26, A
The semiconductor laser device is completed by connecting the PC control circuit SC and the drive circuit DC.

【0012】ここで、遮光部材23のレーザ素子21上
へのマウントを高融点の半田33を用いて行っているの
で、さらに遮光部材23上に別のチップ等を搭載したい
場合に、半田33よりも低融点の半田を用いて搭載すれ
ば、半田33の溶融温度より低い温度でチップ等を半田
付けできる。すなわち、半導体レーザ装置に他の機能を
付加することが容易に可能となり、設計の自由度が増
す。また、高融点半田を用いることで、低融点半田を用
いる場合に比べて半田の経時的変化によるウィスカー
(髭状の突起)の成長を防止でき、レーザ素子の他の部
材とのショートを防止できる。
Here, since the light shielding member 23 is mounted on the laser element 21 using the solder 33 having a high melting point, if another chip or the like is to be mounted on the light shielding member 23, the solder 33 is used. Also, if a low melting point solder is used, a chip or the like can be soldered at a temperature lower than the melting temperature of the solder 33. That is, other functions can be easily added to the semiconductor laser device, and the degree of freedom in design increases. Also, by using the high melting point solder, it is possible to prevent the growth of whiskers (whisker-like projections) due to the change over time of the solder as compared with the case of using the low melting point solder, and it is possible to prevent the laser element from being short-circuited with other members. .

【0013】(使用方法)上記半導体レーザ装置におい
て、レーザ素子21の駆動時には、図1の如く、前面光
ch1と後面光ch2の両方が発生する。前面光ch1
の強度と後面光ch2とは1対1のリニアな関係にある
ため、後面光ch2を受光素子22で受け、受光素子2
2で発生するモニター電流をAPC制御回路SCで検出
して、駆動回路DCでのレーザ素子21への駆動電流を
モニター電流が常に一定になるように制御し、前面光c
h1の強度を常に一定となるようAPC制御する。
(Usage Method) In the above-described semiconductor laser device, when the laser element 21 is driven, both the front light ch1 and the rear light ch2 are generated as shown in FIG. Front light ch1
Has a linear relationship of one-to-one with the intensity of the rear light ch2, the rear light ch2 is received by the light receiving element 22 and the light receiving element 2
2 is detected by the APC control circuit SC, and the drive current to the laser element 21 in the drive circuit DC is controlled so that the monitor current is always constant.
APC control is performed so that the intensity of h1 is always constant.

【0014】ここで、光学系を通して光ファイバや光デ
ィスクと結合するようにして使用する場合、光学系、光
ファイバまたは光ディスクから反射があり、これが戻り
光ch3となってレーザ素子21に返って来る。また、
戻り光ch3に外乱光が含まれることもある。このと
き、戻り光ch3は遮光部材23の前面に当たって遮光
されるため、受光素子22への入射を阻止される。した
がって、後面光ch2を受光素子22で受けてAPC制
御する際に、戻り光ch3の影響をなくすことができ、
精度良いAPC制御が可能となる。
Here, when the optical device is used by being coupled to an optical fiber or an optical disk through an optical system, there is reflection from the optical system, the optical fiber or the optical disk, and this is returned to the laser element 21 as return light ch3. Also,
The return light ch3 may include disturbance light. At this time, since the return light ch3 hits the front surface of the light shielding member 23 and is shielded, the light is prevented from entering the light receiving element 22. Therefore, when the rear light ch2 is received by the light receiving element 22 and APC controlled, the influence of the return light ch3 can be eliminated.
Accurate APC control becomes possible.

【0015】[第2の実施例]図6は本発明の第2の実
施例を示す図である。本実施例の半導体レーザ装置は、
端面発光型レーザ素子21(レーザダイオードチップ)
と、該レーザ素子21の後端面側(後方)に配された光
強度モニタ用受光素子22(ホトダイオード)と、前記
レーザ素子21の前端面側(前方)と前記受光素子22
との間で光を遮蔽する遮光部材とを備えたものである点
で、第1の実施例と同様であるが、第1の実施例では前
記遮光部材を金属板およびその上下両面の金属薄膜で構
成していたのに対し、本実施例では前記遮光部材を結線
帯41(導電リボン)で構成する点が異なる。
[Second Embodiment] FIG. 6 is a diagram showing a second embodiment of the present invention. The semiconductor laser device of the present embodiment
Edge-emitting laser element 21 (laser diode chip)
A light intensity monitoring light receiving element 22 (photodiode) disposed on a rear end face side (rear side) of the laser element 21; a front end face side (front) of the laser element 21 and the light receiving element 22;
In the first embodiment, the light shielding member is a metal plate and a metal thin film on both upper and lower surfaces thereof. However, the present embodiment is different from the first embodiment in that the light shielding member is constituted by a connection band 41 (conductive ribbon).

【0016】該結線帯41は、可塑変形可能な金等の導
電性の良い金属で構成され、その一端がレーザ素子21
の表面電極に他端がステム26のポスト32に夫々半田
等を介して接続されて、前記レーザ素子21への給電機
能を有せしめられる。また、前記結線帯41の幅は、前
記受光素子22の受光領域27の径より大きく形成され
ている。ここで、ステム26のポスト32は前記受光素
子22の上方に配置されており、結線帯41が上記のよ
うに接続されることで、前記受光素子22の受光領域2
7の前方は結線帯41により遮蔽される。その他の構成
は第1の実施例と同様であるため、その説明は省略す
る。
The connection band 41 is made of a metal having good conductivity such as plastically deformable gold, and one end of the connection band 41 is
The other end is connected to the post 32 of the stem 26 via solder or the like, respectively, to provide a power supply function to the laser element 21. Further, the width of the connection band 41 is formed to be larger than the diameter of the light receiving region 27 of the light receiving element 22. Here, the post 32 of the stem 26 is disposed above the light receiving element 22, and the connection band 41 is connected as described above, so that the light receiving area 2
7 is shielded by a connection strip 41. The other configuration is the same as that of the first embodiment, and the description is omitted.

【0017】本実施例において、前方から戻り光ch3
が進入してきても、該戻り光ch3は遮光部材としての
結線帯41の前面に当たって遮光されるため、第1の実
施例と同様に受光素子22への入射を阻止される。した
がって、後面光ch2を受光素子22で受けてAPC制
御する際に、戻り光ch3の影響をなくすことができ、
精度良いAPC制御が可能となる。
In this embodiment, the return light ch3 from the front
When the light enters, the return light ch3 hits the front surface of the connection band 41 as a light shielding member and is blocked, so that the light is prevented from entering the light receiving element 22 as in the first embodiment. Therefore, when the rear light ch2 is received by the light receiving element 22 and APC controlled, the influence of the return light ch3 can be eliminated.
Accurate APC control becomes possible.

【0018】また、本実施例では、結線帯41を通じて
給電を行うので、結線帯41以外にボンディングワイヤ
を結線する必要がなくなる。
In this embodiment, since power is supplied through the connection band 41, there is no need to connect a bonding wire other than the connection band 41.

【0019】[第3の実施例]図7および図8は本発明
の第3の実施例を示す図である。本実施例の半導体レー
ザ装置は、端面発光型レーザ素子21(レーザダイオー
ドチップ)と、該レーザ素子21の後端面側(後方)に
配された光強度モニタ用受光素子22(ホトダイオー
ド)と、前記レーザ素子21の前端面側(前方)と前記
受光素子22との間で光を遮蔽する遮光部材23とを備
えたものである点で、第1の実施例と同様であるが、第
1の実施例では遮光部材23の幅を前記レーザ素子21
の幅より大としていたのに対し、本実施例では前記レー
ザ素子21の幅より小でかつ受光素子22の受光領域2
7の径より大としている点が異なる。また、本実施例で
は、ステム26のポスト32との間に結線されるボンデ
ィングワイヤ31は、前記レーザ素子21の露出した上
面に直接接続される。すなわち、第1の実施例では遮光
部材23を導電部材として機能させていたのに対し、本
実施例では、遮光部材23を導電部材として機能させる
必要がなくなり、安価な材料を用いることで、部材コス
トを低減できる。また、ボンディングワイヤ31にて直
接レーザ素子21に接続されるので、電気的接続に遮光
部材23を介在させていた第1の実施例に比べて、電気
的抵抗を低減できる。
Third Embodiment FIGS. 7 and 8 show a third embodiment of the present invention. The semiconductor laser device of this embodiment includes an edge-emitting laser element 21 (laser diode chip), a light-intensity monitoring light-receiving element 22 (photodiode) disposed on the rear end face side (rear side) of the laser element 21, The second embodiment is similar to the first embodiment in that a light-shielding member 23 for shielding light is provided between the front end face side (front) of the laser element 21 and the light receiving element 22. In the embodiment, the width of the light shielding member 23 is
In this embodiment, the width of the light receiving region 2 of the light receiving element 22 is smaller than the width of the laser element 21.
The difference is that the diameter is larger than the diameter of 7. In this embodiment, the bonding wire 31 connected between the stem 26 and the post 32 is directly connected to the exposed upper surface of the laser element 21. That is, while the light shielding member 23 functions as a conductive member in the first embodiment, the light shielding member 23 does not need to function as a conductive member in the present embodiment. Cost can be reduced. Further, since the laser element 21 is directly connected by the bonding wire 31, the electrical resistance can be reduced as compared with the first embodiment in which the light shielding member 23 is interposed in the electrical connection.

【0020】本実施例において、前方から戻り光ch3
が進入してきても、該戻り光ch3は遮光部材23の前
面に当たって遮光されるため、第1の実施例と同様に受
光素子22への入射を阻止される。したがって、後面光
ch2を受光素子22で受けてAPC制御する際に、戻
り光ch3の影響をなくすことができ、精度良いAPC
制御が可能となる。
In this embodiment, the return light ch3 from the front
When the light enters, the return light ch3 impinges on the front surface of the light shielding member 23 and is blocked, so that the light is prevented from entering the light receiving element 22 as in the first embodiment. Therefore, when the rear light ch2 is received by the light receiving element 22 and APC is controlled, the influence of the return light ch3 can be eliminated, and the APC with high accuracy
Control becomes possible.

【0021】[変形例] (1)図3乃至図5に示すように、第1の実施例におい
て、遮光部材を金属板および該金属板の上下両面の金属
薄膜で構成していたが、金属板のみで構成してもよい。
[Modifications] (1) As shown in FIGS. 3 to 5, in the first embodiment, the light shielding member is constituted by the metal plate and the metal thin film on the upper and lower surfaces of the metal plate. You may comprise only a board.

【0022】[0022]

【発明の効果】本発明の請求項1によると、遮光部材の
レーザ素子上へのマウントを高融点の第1の半田を用い
て行っているので、さらに遮光部材上にチップ等を搭載
したい場合に、低融点半田を用いて搭載すれば、第1の
半田の溶融温度より低い温度でチップ等を半田付けでき
る。すなわち、半導体レーザ装置に他の機能を付加する
ことが容易に可能となり、設計の自由度が増す。また、
高融点半田を用いることで、低融点半田を用いる場合に
比べて、半田の経時的変化によるウィスカーの発生を防
止でき、レーザ素子の他の部材とのショートを防止でき
るという効果がある。
According to the first aspect of the present invention, since the light-shielding member is mounted on the laser element using the first solder having a high melting point, it is desired to mount a chip or the like on the light-shielding member. On the other hand, if a low-melting point solder is used for mounting, chips and the like can be soldered at a temperature lower than the melting temperature of the first solder. That is, other functions can be easily added to the semiconductor laser device, and the degree of freedom in design increases. Also,
By using the high melting point solder, it is possible to prevent the occurrence of whiskers due to the change over time of the solder and to prevent a short circuit with other members of the laser element as compared with the case of using the low melting point solder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例の半導体レーザ装置を
示す斜視図である。
FIG. 1 is a perspective view showing a semiconductor laser device according to a first embodiment of the present invention.

【図2】 本発明の第1の実施例の半導体レーザ装置の
要部を示す正面図である。
FIG. 2 is a front view showing a main part of the semiconductor laser device according to the first embodiment of the present invention.

【図3】 本発明の第1の実施例の半導体レーザ装置の
製造工程を示す斜視図である。
FIG. 3 is a perspective view illustrating a manufacturing process of the semiconductor laser device according to the first embodiment of the present invention.

【図4】 本発明の第1の実施例の半導体レーザ装置の
製造工程を示す斜視図である。
FIG. 4 is a perspective view illustrating a manufacturing process of the semiconductor laser device according to the first embodiment of the present invention.

【図5】 本発明の第1の実施例の半導体レーザ装置の
製造工程を示す斜視図である。
FIG. 5 is a perspective view illustrating a manufacturing process of the semiconductor laser device according to the first embodiment of the present invention.

【図6】 本発明の第2の実施例の半導体レーザ装置を
示す斜視図である。
FIG. 6 is a perspective view showing a semiconductor laser device according to a second embodiment of the present invention.

【図7】 本発明の第3の実施例の半導体レーザ装置を
示す斜視図である。
FIG. 7 is a perspective view showing a semiconductor laser device according to a third embodiment of the present invention.

【図8】 本発明の第3の実施例の半導体レーザ装置の
要部を示す正面図である。
FIG. 8 is a front view showing a main part of a semiconductor laser device according to a third embodiment of the present invention.

【図9】 従来例の半導体レーザ装置の側面視断面図で
ある。
FIG. 9 is a side sectional view of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

21 レーザ素子、22 受光素子、23 遮光部材、
24,25 マウント部材、27 受光領域、34,3
5 第1の半田、41 結線帯。
21 laser element, 22 light receiving element, 23 light shielding member,
24, 25 mounting member, 27 light receiving area, 34, 3
5 First solder, 41 connection strip.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ素子の上面に第1の半田を介して
遮光部材を搭載する工程と、 マウント部材の上面に第2の半田を介してレーザ素子を
搭載する工程と、 前記レーザ素子の後端面側に光強度モニタ用受光素子を
配することにより前記レーザ素子の前端面側と前記受光
素子との間に前記遮光部材を介在させる工程とを備え、 前記遮光部材を搭載する工程において、前記第1の半田
に前記第2の半田より高融点のものを使用する半導体レ
ーザ装置の製造方法。
1. A step of mounting a light shielding member on a top surface of a laser element via a first solder, a step of mounting a laser element on a top surface of a mount member via a second solder, and after the laser element. Interposing the light shielding member between the front end surface side of the laser element and the light receiving element by disposing a light intensity monitoring light receiving element on an end face side, wherein the step of mounting the light shielding member comprises: A method for manufacturing a semiconductor laser device, wherein a first solder having a higher melting point than the second solder is used.
JP2002006030A 2002-01-15 2002-01-15 Manufacturing method of semiconductor laser device Expired - Lifetime JP3660305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006030A JP3660305B2 (en) 2002-01-15 2002-01-15 Manufacturing method of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006030A JP3660305B2 (en) 2002-01-15 2002-01-15 Manufacturing method of semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30791593A Division JP3318083B2 (en) 1993-12-08 1993-12-08 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2002208751A true JP2002208751A (en) 2002-07-26
JP3660305B2 JP3660305B2 (en) 2005-06-15

Family

ID=19191178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006030A Expired - Lifetime JP3660305B2 (en) 2002-01-15 2002-01-15 Manufacturing method of semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3660305B2 (en)

Also Published As

Publication number Publication date
JP3660305B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US6678292B2 (en) Top contact VCSEL with monitor
US20050196112A1 (en) Transmitting optical subassembly capable of monitoring the front beam of the semiconductor laser diode
US20070063125A1 (en) Semiconductor light source with optical feedback
JP2007059692A (en) Optical module
KR20050029010A (en) A semiconductor laser diode having a lead frame of pcb tpye
JP2006351610A (en) Optical module
JPH02254783A (en) Semiconductor laser device
JPWO2021014568A1 (en) TO-CAN type optical transmission module
JP2002374027A (en) Semiconductor laser device
JPS5996789A (en) Photosemiconductor device
JP3318083B2 (en) Semiconductor laser device
JPH0810496B2 (en) Optical head manufacturing method
JP3245838B2 (en) Semiconductor laser device
JP3660305B2 (en) Manufacturing method of semiconductor laser device
JP2001208939A (en) Optical element module, manufacturing method of it and monitor-attached laser chip, and mounting method of laminated chip
JP2013110138A (en) Light emitting module
JPH11274654A (en) Semiconductor laser device
TWM582709U (en) Laser apparatus
JP2005026333A (en) Semiconductor laser equipment
JP2000101182A (en) Semiconductor laser
JPH04352377A (en) Submount for semiconductor laser element
JPH0563309A (en) Semiconductor laser device
JP2003046178A (en) Element arrangement in optical semiconductor module
JP3642535B2 (en) Semiconductor laser array
JPS62143492A (en) Submount and photoelectron device provided with this submount

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8