JP2002200662A - Method and apparatus for predicting weld line - Google Patents
Method and apparatus for predicting weld lineInfo
- Publication number
- JP2002200662A JP2002200662A JP2000400179A JP2000400179A JP2002200662A JP 2002200662 A JP2002200662 A JP 2002200662A JP 2000400179 A JP2000400179 A JP 2000400179A JP 2000400179 A JP2000400179 A JP 2000400179A JP 2002200662 A JP2002200662 A JP 2002200662A
- Authority
- JP
- Japan
- Prior art keywords
- analysis
- weld line
- flow
- virtual particle
- shape model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、射出成形品、ダイ
カスト品やチクソモールディング品、鋳造品などの成形
品の成形過程において、成形型内で溶融成形材料の複数
の流れが合流する部位に形成されるウェルドラインや成
形品型内の肉厚差によって流速が著しく変化する部位に
発生するウェルドラインの位置を予測する方法および装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for forming a molded product such as an injection molded product, a die-cast product, a thixomolded product, a cast product, etc., at a portion where a plurality of flows of a molten molding material are joined in a molding die. The present invention relates to a method and an apparatus for estimating a position of a weld line generated at a portion where a flow velocity changes significantly due to a weld line to be performed or a thickness difference in a molded product mold.
【0002】[0002]
【従来の技術】従来、ウェルドライン予測は、流動解析
を行い、その結果求められる流動パターンから、複数の
流れが合流する合流角度である会合角(図9参照)を算
出し、会合角が小さいほど強いウェルドラインが生成す
ると考えられてきた。例えば、特開平7−1529号公
報に樹脂の射出成形品におけるウェルドラインの外観上
の強弱を予測する方法が開示されている。以下の(1)〜
(4)にその方法についての手順を示す。 (1)成形製品型形状を多数の要素に分割して各要素にお
ける溶融樹脂の速度ベクトルを流動解析により求める。 (2)隣接する二つの要素において速度ベクトルが同一平
面にあって交差すれば、両要素の界面がウェルドライン
になるとして、そのような要素を、全要素の中から、ウ
ェルドラインを構成するウェルド要素として選択する。 (3)隣接する複数のウェルド要素の速度ベクトルがなす
角度を、製品型内で溶融樹脂の複数の流れが合流する合
流角度として求める。 (4)全ての合流角度を比較し、合流角度が大きい程ウェ
ルドラインが強く現れ、合流角度が小さい程ウェルドラ
インが弱く現れると予測する。2. Description of the Related Art Conventionally, in weld line prediction, a flow analysis is performed, and from a flow pattern obtained as a result, an association angle (see FIG. 9), which is a merge angle at which a plurality of flows join, is calculated, and the association angle is small. It has been believed that moderately strong weld lines are created. For example, Japanese Unexamined Patent Publication (Kokai) No. 7-1529 discloses a method for predicting the strength of the appearance of a weld line in a resin injection-molded product. The following (1) ~
(4) shows the procedure for the method. (1) The shape of a molded product mold is divided into a number of elements, and the velocity vector of the molten resin in each element is obtained by flow analysis. (2) If the velocity vectors of two adjacent elements are on the same plane and intersect, the interface between the two elements is considered to be a weld line. Select as element. (3) An angle formed by the velocity vectors of a plurality of adjacent weld elements is determined as a merging angle at which a plurality of flows of the molten resin merge in the product mold. (4) Comparing all the merging angles, it is predicted that the larger the merging angle is, the stronger the weld line appears, and the smaller the merging angle is, the weaker the weld line appears.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術の場合、
流動解析によって求められた複数の流れが合流する合流
角度(会合角)がある規定の角度(例えば180度)にな
るとウェルドラインとして表示することが出来なくな
り、ウェルドラインはあたかも消滅したように扱われ
る。実際のウェルドライン生成現象を考えると、溶融樹
脂は高粘性のものが多く、乱流が起こりにくいため、分
岐していた流れが合流してからも異なる流れから運ばれ
た溶融樹脂同士が混ざり合うことはほとんど無い。その
ため、たとえ合流角度がある規定の角度(例えば180
度)になった場合であっても、ウェルドラインは流動が
停止する部位もしくは、形状の端部に到達するまで消滅
しないことが多い。このため、流動解析によって求めら
れた合流角がある規定の角度(例えば180度)になった
ときにウェルドラインが消滅したと考える従来技術は実
際のウェルドライン生成現象を正確に把握しきれていな
い。In the case of the above prior art,
When the merging angle (association angle) at which multiple flows merged by the flow analysis reaches a certain angle (for example, 180 degrees), it cannot be displayed as a weld line, and the weld line is treated as if it had disappeared. . Considering the actual weld line generation phenomenon, the molten resin is often of high viscosity and turbulence is unlikely to occur, so even after the branched flows merge, the molten resins transported from different flows are mixed together Very little. Therefore, even if the merging angle is a certain angle (for example, 180
Even in the case where the temperature becomes zero, the weld line often does not disappear until it reaches the part where the flow stops or the end of the shape. For this reason, the conventional technology that considers that the weld line disappears when the merge angle obtained by the flow analysis reaches a certain prescribed angle (for example, 180 degrees) cannot accurately grasp the actual weld line generation phenomenon. .
【0004】本発明は以上のような状況に鑑みてなされ
たもので、実際のウェルドラインの生成現象をより正確
に把握し、より容易にウェルドラインの位置を予測する
方法および装置ならびにこれらを利用した成形品の製造
方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and a method and apparatus for more accurately grasping the actual phenomenon of weld line generation and more easily predicting the position of a weld line, and utilizing these. It is an object of the present invention to provide a method for manufacturing a molded article.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めに本発明によれば、成形品の成形過程における流動解
析によりウェルドライン位置を予測するに際し、前記成
形品の解析形状モデル、材料物性データおよび成形条件
データをメモリ上に読み込む解析条件読み込み工程と、
前記解析形状モデル、前記材料物性データおよび上記成
形条件データに基づいて流動解析を行う流動解析工程
と、前記流動解析工程の出力結果に基づいて前記解析形
状モデルにおける各要素または節点における流動ベクト
ルを求める流動ベクトル作成工程と、ウェルドラインの
起点となる仮想粒子の位置を求める仮想粒子発生工程
と、前記仮想粒子が前記流動ベクトルに沿って移動した
軌跡を求める仮想粒子追跡工程とを有し、前記軌跡をウ
ェルドラインとすることを特徴とするウェルドライン予
測方法が提供される。According to the present invention, in order to solve the above-mentioned problems, in predicting a weld line position by a flow analysis in a molding process of a molded article, an analytical shape model of the molded article, material physical properties, An analysis condition reading step of reading data and molding condition data into a memory;
A flow analysis step of performing a flow analysis based on the analysis shape model, the material property data and the molding condition data; and obtaining a flow vector at each element or node in the analysis shape model based on an output result of the flow analysis step. A flow vector creation step, a virtual particle generation step of finding a position of a virtual particle serving as a starting point of a weld line, and a virtual particle tracking step of finding a trajectory of the virtual particle moving along the flow vector, Is a weld line, a weld line prediction method is provided.
【0006】また、本発明の別の形態によれば、成形品
の成形過程における流動解析によりウェルドライン位置
を予測するに際し、前記成形品の解析形状モデル、材料
物性データおよび成形条件データをメモリ上に読み込む
解析条件読み込み手段と、前記解析形状モデル、前記材
料物性データおよび上記成形条件データに基づいて流動
解析を行う流動解析手段と、前記流動解析手段の出力結
果に基づいて前記解析形状モデルにおける各要素または
節点における流動ベクトルを求める流動ベクトル作成手
段と、ウェルドラインの起点となる仮想粒子の位置を求
める仮想粒子発生手段と、前記仮想粒子が前記流動ベク
トルに沿って移動した軌跡を求める仮想粒子追跡手段と
を有し、前記軌跡をウェルドラインとすることを特徴と
するウェルドライン予測装置が提供される。According to another aspect of the present invention, in predicting a weld line position by flow analysis in a molding process of a molded product, an analysis shape model of the molded product, material property data, and molding condition data are stored in a memory. Analysis condition reading means, and the analysis shape model, a flow analysis means for performing a flow analysis based on the material property data and the molding condition data, each of the analysis shape model based on the output result of the flow analysis means Flow vector creation means for finding a flow vector at an element or a node, virtual particle generation means for finding the position of a virtual particle serving as a starting point of a weld line, and virtual particle tracking for finding a trajectory of the virtual particle moving along the flow vector Means, and the trajectory is a weld line. Predicting apparatus is provided.
【0007】また、本発明の別の形態によれば、上記の
ウェルドライン予測方法の各工程をコンピュータを用い
て実行するためのコンピュータプログラムが提供され
る。According to another aspect of the present invention, there is provided a computer program for executing each step of the above weld line prediction method using a computer.
【0008】また、本発明の別の形態によれば、上記の
コンピュータプログラムを記憶したコンピュータ読み取
り可能な記憶媒体が提供される。According to another aspect of the present invention, there is provided a computer-readable storage medium storing the above-described computer program.
【0009】また、本発明の別の形態によれば、上記の
ウェルドライン予測方法を用いてウェルドライン位置を
予測し、成形品の形状、材料物性および成形条件を最終
決定し、この結果に基づいて成形品を製造する成形品の
製造方法が提供される。According to another aspect of the present invention, the position of a weld line is predicted using the above-described method for predicting a weld line, and the shape, material properties and molding conditions of a molded product are finally determined. A method for producing a molded article is provided.
【0010】以下、用語の定義をする。Hereinafter, the terms will be defined.
【0011】本発明において、「解析形状モデル」はコ
ンピュータを使った流動解析に使用される節点、要素、
要素特性などで記述されるデータのことをいう。「流動
ベクトル」は各要素もしくは各節点での溶融材料の流れ
の方向を表したベクトルのことをいう。流動ベクトルは
さらに流れの速さを含んでいてもよく、各方向の速さの
成分の組として保持されるものであってもよい。「成形
条件」は溶融材料温度、充填時間、充填速度、充填圧
力、金型温度などのことをいう。In the present invention, the "analysis shape model" refers to nodes, elements, and the like used for flow analysis using a computer.
Refers to data described by element characteristics and the like. The “flow vector” refers to a vector representing the direction of the flow of the molten material at each element or each node. The flow vector may further include the velocity of the flow, and may be held as a set of velocity components in each direction. "Molding conditions" refer to the molten material temperature, filling time, filling speed, filling pressure, mold temperature, and the like.
【0012】[0012]
【発明の実施の形態】以下、添付図面を参照して、本発
明のウェルドライン予測方法及び装置の実施形態を説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method and apparatus for predicting a weld line according to the present invention will be described with reference to the accompanying drawings.
【0013】図1は、本発明のウェルドライン予測を行
う装置の一実施例を示すブロック図である。本実施形態
例において、(100)はコンピュータ、(101)は
キーボード、(102)はマウス、(103)はディス
プレイ、(104)は補助記憶装置である。(104)
にはハードディスクの他、FD、MO(光磁気ディスク)、
PD、DVD(デジタル多目的ディスク)等の取り外し可能
な補助記憶装置も利用可能である。FIG. 1 is a block diagram showing one embodiment of an apparatus for performing weld line prediction according to the present invention. In this embodiment, (100) is a computer, (101) is a keyboard, (102) is a mouse, (103) is a display, and (104) is an auxiliary storage device. (104)
In addition to hard disk, FD, MO (Magneto-optical disk),
Removable auxiliary storage devices such as PDs, DVDs (digital versatile discs), etc. are also available.
【0014】補助記憶装置(104)には、CADデータ
記憶手段(105)、解析形状モデル記憶手段(10
6)、流動解析結果記憶手段(107)、仮想粒子追跡
軌跡記憶手段(108)が含まれる。The auxiliary storage device (104) includes a CAD data storage means (105) and an analysis shape model storage means (10
6), a flow analysis result storage means (107), and a virtual particle tracking trajectory storage means (108).
【0015】コンピュータ(100)にはCPUおよびメ
モリ上に展開したサブルーチンからなる、CADデータ作
成手段(109)、解析形状モデル作成手段(11
0)、解析条件読み込み手段(111)、流動解析手段
(112)、流動解析結果読み込み(113)、流動ベ
クトル作成手段(114)、仮想粒子発生手段(11
5)、仮想粒子追跡手段(116)が含まれる。The computer (100) includes a CPU and a CAD data creating means (109) and an analysis shape model creating means (11) comprising a subroutine developed on a memory.
0), analysis condition reading means (111), flow analysis means (112), flow analysis result reading (113), flow vector creation means (114), virtual particle generation means (11)
5), a virtual particle tracking means (116) is included.
【0016】CADデータ作成手段(109)は、成形品
形状をコンピュータ上で作成する手段であり、I-DEAS
(SDRC社製)、CATIA(Dassult社製)、UniGraphics(U
GS社製)といった多くのCADに搭載されている既存の技
術である。The CAD data creation means (109) is a means for creating a molded product shape on a computer,
(SDRC), CATIA (Dassult), UniGraphics (U
This is an existing technology installed in many CAD systems such as GS.
【0017】解析形状モデル作成手段(110)は、CA
Dデータ作成手段(109)で作成されたCADデータに対
して、図3に示すようにCADデータから中立面を作成
し、2次元シェル要素を自動作成したり、また3次元ソリ
ッド要素を自動作成する。このようにCADデータから解
析形状モデルを作成する方法は、I-DEAS(SDRC社製)、
CATIA(Dassult社製)、UniGraphics(UGS社製)といっ
た多くのCADに搭載されている既存の技術である。The analysis shape model creation means (110)
For the CAD data created by the D data creation means (109), a neutral plane is created from the CAD data as shown in FIG. 3 to automatically create a two-dimensional shell element or automatically create a three-dimensional solid element. create. As described above, methods for creating an analysis shape model from CAD data include I-DEAS (made by SDRC),
CATIA (Dassult), UniGraphics (UGS) and other existing CAD technologies.
【0018】流動解析手段(112)は、解析形状モデ
ル作成手段(110)で作成した解析形状モデルと解析
条件読み込み手段(111)でメモリ上に読み込んだ材
料物性や解析条件に基づいて、流動時の圧力と温度、流
速などを求める手段であり、TIMON(東レ)、MOLDFLOW
(MOLDFLOW社)といった流動解析ソフトに搭載されてい
る既存の技術である。そして形状、材料物性、成形条件
のメモリへの読み込みは、補助記憶装置(104)から
行ってもよいが、すでにメモリ上に展開されているデー
タをそのまま利用する場合は、上記展開をもって読み込
みが行われたものとみなす。The flow analysis means (112) performs a flow analysis based on the analysis shape model created by the analysis shape model creation means (110) and the material properties and analysis conditions read into the memory by the analysis condition reading means (111). To obtain the pressure, temperature, flow velocity, etc., of TIMON (Toray), MOLDFLOW
(MOLDFLOW) is an existing technology installed in flow analysis software. The shape, material properties, and molding conditions may be read into the memory from the auxiliary storage device (104). However, when the data already developed on the memory is used as it is, the reading is performed with the above development. Is considered to have been done.
【0019】流動ベクトル作成手段(114)は、流動
解析手段(112)でなされた流動解析の結果の1つで
ある、任意の解析ステップでの各要素もしくは各節点の
速度ベクトルを作成し、これを流動ベクトルとする。ま
た、流動解析手段(112)でなされた流動解析の結果
の1つである流動先端到達時間データを基に、流動先端
到達時間勾配ベクトルを作成し、これを流動ベクトルと
してもよい。The flow vector creation means (114) creates a velocity vector of each element or each node in an arbitrary analysis step, which is one of the results of the flow analysis performed by the flow analysis means (112). Is a flow vector. Also, a flow front arrival time gradient vector may be created based on the flow front arrival time data, which is one of the results of the flow analysis performed by the flow analysis means (112), and this may be used as the flow vector.
【0020】仮想粒子発生手段(115)はウェルドラ
インの形成が行なわれる起点を発生させるもので、例え
ば、流動解析手段(112)でなされた流動解析の出力
結果の1つである流動先端到達時間データを基に、流動
先端をグループ化し、異なるグループの流動先端が合流
する位置をウェルドラインの起点発生位置とする。ある
いは、流動解析手段(112)でなされた流動解析実施
時に流動先端をグループ分けし、異なるグループの流動
先端が合流する位置をウェルドライン起点発生位置とし
てもよい。また、流動解析手段(112)でなされた流
動解析の実施時に任意の会合角以下となる位置をウェル
ドライン起点としてもよい。また、流動解析手段(11
2)でなされた流動解析から出力される会合角分布の結
果から、任意の会合角以下となる位置をウェルドライン
起点とする。前記任意の会合角は樹脂の種類や要素の大
きさなどによって、ユーザーが設定する。そして、前記
ウェルドライン起点発生位置には仮想粒子を発生させ
る。The virtual particle generation means (115) generates a starting point at which a weld line is formed. For example, the flow tip arrival time, which is one of the output results of the flow analysis performed by the flow analysis means (112), Based on the data, the flow fronts are grouped, and the position where the flow fronts of different groups meet is defined as the starting point of the weld line. Alternatively, the flow fronts may be grouped at the time of the flow analysis performed by the flow analysis means (112), and the position where the flow fronts of different groups merge may be set as the weld line start position. In addition, a position that is equal to or smaller than an arbitrary angle of association when the flow analysis performed by the flow analysis unit (112) is performed may be set as the weld line starting point. In addition, the flow analysis means (11
From the results of the association angle distribution output from the flow analysis performed in 2), a position at or below an arbitrary association angle is defined as a weld line starting point. The arbitrary association angle is set by the user according to the type of resin and the size of the element. Then, virtual particles are generated at the weld line start position.
【0021】仮想粒子追跡手段(116)は、流動ベク
トル作成手段(114)で作成された流動ベクトルに沿
って前記仮想粒子を移動させ、各時刻で前記仮想粒子が
到達した位置の座標を記憶する。あるいは、前記各時刻
で前記仮想粒子が到達した位置の座標から最も近い節点
の位置を記憶する。The virtual particle tracking means (116) moves the virtual particle along the flow vector created by the flow vector creation means (114) and stores the coordinates of the position where the virtual particle has arrived at each time. . Alternatively, the position of the node closest to the coordinates of the position where the virtual particle has reached at each time is stored.
【0022】前記記憶した各時刻での仮想粒子が到達し
た位置の座標あるいは節点をつなげたラインがウェルド
ラインとなる。A line connecting the coordinates or nodes of the positions where the virtual particles have reached at the stored times is a weld line.
【0023】図4以下に、具体的なウェルドライン予測
例を示す。FIG. 4 shows a specific example of weld line prediction.
【0024】図4は中央に直径15mmの孔があいている、
150mm×50mmで肉厚は2mmから5mmのテーパーを有する平
板の図面及びCADデータである。図5は2次元シェル要
素にて自動的に作成させた解析形状モデルで、622個
の節点と1116個の要素で構成されている。FIG. 4 shows a hole having a diameter of 15 mm at the center.
Drawing and CAD data of a flat plate having a taper of 150 mm x 50 mm and a thickness of 2 mm to 5 mm. FIG. 5 shows an analysis shape model automatically created by two-dimensional shell elements, which is composed of 622 nodes and 1116 elements.
【0025】図5の形状について、東レ社製ナイロン6
の樹脂物性データを用いて、▲位置をゲートにして流動
解析を実施した流動パターンを図6に示す。For the shape shown in FIG. 5, nylon 6 manufactured by Toray Industries, Inc.
FIG. 6 shows a flow pattern in which a flow analysis was performed using the resin physical property data of FIG.
【0026】図7は従来技術の流動会合角の解析によっ
て得られるウェルドラインである。FIG. 7 is a weld line obtained by analyzing the flow association angle according to the prior art.
【0027】図8は本形態によって出力されるウェルド
ラインである。このように、従来技術である会合角では
摘出しきれない、ウェルドラインの位置を捉えることが
出来る。FIG. 8 shows a weld line output according to this embodiment. In this manner, the position of the weld line, which cannot be completely extracted by the conventional angle of association, can be grasped.
【0028】このようにして、ウェルドラインの位置を
予測することにより、任意の製造条件下のウェルドライ
ンの位置を知ることが出来るので、必要に応じて、成形
品形状、材料物性および成形条件を適宜修正することで
所望の位置にウェルドラインを移動させるなどして最終
的な製造条件を決定し、この結果に基づいて実際に成形
品を製造すればよい。By estimating the position of the weld line in this way, the position of the weld line can be known under any manufacturing conditions. If necessary, the shape of the molded product, material properties and molding conditions can be changed. The final manufacturing conditions may be determined by moving the weld line to a desired position by making appropriate corrections, and the molded product may be actually manufactured based on the results.
【0029】なお、上記のように本形態のウェルドライ
ン予測装置はコンピュータとこれにロードされたソフト
ウェア(プログラム)により実現されている。かかるソ
フトウェアは、フロッピー(登録商標)ディスク、CD-R
OMなどの有形記憶媒体または無線もしくは有線のネット
ワークなどの伝送手段を通じて流通される。As described above, the weld line prediction device of the present embodiment is realized by a computer and software (program) loaded on the computer. Such software is available on floppy disks, CD-R
It is distributed through a tangible storage medium such as an OM or a transmission means such as a wireless or wired network.
【0030】[0030]
【発明の効果】本発明によれば、流動解析を実施した結
果を基に、容易に正確なウェルドラインの位置を予測す
ることが出来る。これによって、製品肉厚やゲート位置
の変更などによるウェルドラインの位置を製品・金型設
計の段階から検討することが出来、製品・金型設計の効
率化を図ることができる。According to the present invention, it is possible to easily and accurately predict the position of the weld line based on the result of the flow analysis. As a result, the position of the weld line due to a change in the product thickness or the gate position can be examined from the product / die design stage, and the product / die design can be made more efficient.
【図1】本発明の一実施形態例の構成を示すブロック図
である。FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.
【図2】本発明の実施形態例のフローチャートである。FIG. 2 is a flowchart of an embodiment of the present invention.
【図3】CAD形状と解析形状モデル図である。FIG. 3 is a diagram showing a CAD shape and an analysis shape model.
【図4】150×50×(2〜5)テーパ肉厚の平板図およ
び前記平板図のCADデータである。FIG. 4 is a plan view of a 150 × 50 × (2 to 5) taper wall thickness and CAD data of the plan view.
【図5】図5の平板に対する解析形状モデルである。FIG. 5 is an analysis shape model for the flat plate of FIG. 5;
【図6】図6の解析形状モデルに対する流動パターンで
ある。FIG. 6 is a flow pattern for the analysis shape model of FIG. 6;
【図7】図7の流動パターンに対する従来技術によるウ
ェルドライン表示である。FIG. 7 is a conventional weld line display for the flow pattern of FIG. 7;
【図8】図7の流動パターンに対する本発明によるウェ
ルドライン表示である。FIG. 8 is a weld line display according to the present invention for the flow pattern of FIG. 7;
【図9】会合角説明図FIG. 9 is an explanatory diagram of an association angle.
100 コンピュータ 101 キーボード 102 マウス 103 ディスプレイ 104 補助記憶装置 105 CADデータ記憶手段 106 解析形状モデル記憶手段 107 流動解析結果記憶手段 108 ウェルドライン起点移動軌跡記憶手段 109 CADデータ作成手段 110 解析形状モデル作成手段 111 流動解析手段 112 流動解析結果読み込み手段 113 流動ベクトル作成手段 114 仮想粒子発生手段 115 仮想粒子追跡手段 100 Computer 101 Keyboard 102 Mouse 103 Display 104 Auxiliary storage device 105 CAD data storage means 106 Analysis shape model storage means 107 Flow analysis result storage means 108 Weld line origin movement locus storage means 109 CAD data creation means 110 Analysis shape model creation means 111 Flow Analysis means 112 Flow analysis result reading means 113 Flow vector creation means 114 Virtual particle generation means 115 Virtual particle tracking means
Claims (5)
ウェルドライン位置を予測するに際し、前記成形品の解
析形状モデル、材料物性データおよび成形条件データを
メモリ上に読み込む解析条件読み込み工程と、前記解析
形状モデル、前記材料物性データおよび上記成形条件デ
ータに基づいて流動解析を行う流動解析工程と、前記流
動解析工程の出力結果に基づいて前記解析形状モデルに
おける各要素または節点における流動ベクトルを求める
流動ベクトル作成工程と、ウェルドラインの起点となる
仮想粒子の位置を求める仮想粒子発生工程と、前記仮想
粒子が前記流動ベクトルに沿って移動した軌跡を求める
仮想粒子追跡工程とを有し、前記軌跡をウェルドライン
とすることを特徴とするウェルドライン予測方法。1. A method for predicting a weld line position by flow analysis in a molding process of a molded article, an analysis condition reading step of reading an analytical shape model, material property data and molding condition data of the molded article into a memory; A shape model, a flow analysis step of performing a flow analysis based on the material property data and the molding condition data, and a flow vector for obtaining a flow vector at each element or node in the analysis shape model based on an output result of the flow analysis step A virtual particle generation step of obtaining a position of a virtual particle serving as a starting point of a weld line; and a virtual particle tracking step of obtaining a trajectory of the virtual particle moving along the flow vector, wherein the trajectory is welded. A method for predicting a weld line, wherein the method is a line.
ウェルドライン位置を予測するに際し、前記成形品の解
析形状モデル、材料物性データおよび成形条件データを
メモリ上に読み込む解析条件読み込み手段と、前記解析
形状モデル、前記材料物性データおよび上記成形条件デ
ータに基づいて流動解析を行う流動解析手段と、前記流
動解析手段の出力結果に基づいて前記解析形状モデルに
おける各要素または節点における流動ベクトルを求める
流動ベクトル作成手段と、ウェルドラインの起点となる
仮想粒子の位置を求める仮想粒子発生手段と、前記仮想
粒子が前記流動ベクトルに沿って移動した軌跡を求める
仮想粒子追跡手段とを有し、前記軌跡をウェルドライン
とすることを特徴とするウェルドライン予測装置。2. An analysis condition reading means for reading an analysis shape model, material physical property data and molding condition data of a molded article into a memory when predicting a weld line position by a flow analysis in a molding process of the molded article; A flow model for performing flow analysis based on the shape model, the material property data and the molding condition data, and a flow vector for obtaining a flow vector at each element or node in the analysis shape model based on an output result of the flow analysis means Creating means, virtual particle generating means for determining a position of a virtual particle serving as a starting point of a weld line, and virtual particle tracking means for determining a trajectory of the virtual particle moving along the flow vector, wherein the trajectory is welded. A weld line predicting device characterized by a line.
各工程をコンピュータを用いて実行するためのコンピュ
ータプログラム。3. A computer program for executing each step of the weld line prediction method according to claim 1 using a computer.
記憶したコンピュータ読み取り可能な記憶媒体。4. A computer-readable storage medium storing the computer program according to claim 3.
用いてウェルドライン位置を予測し、成形品の形状、材
料物性および成形条件を最終決定し、この結果に基づい
て成形品を製造する成形品の製造方法。5. A molding for predicting a weld line position using the weld line prediction method according to claim 1, finalizing the shape, material properties and molding conditions of the molded product, and manufacturing the molded product based on the result. Product manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000400179A JP4603153B2 (en) | 2000-12-28 | 2000-12-28 | Weld line prediction method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000400179A JP4603153B2 (en) | 2000-12-28 | 2000-12-28 | Weld line prediction method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002200662A true JP2002200662A (en) | 2002-07-16 |
JP4603153B2 JP4603153B2 (en) | 2010-12-22 |
Family
ID=18864824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000400179A Expired - Lifetime JP4603153B2 (en) | 2000-12-28 | 2000-12-28 | Weld line prediction method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4603153B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003145577A (en) * | 2001-09-03 | 2003-05-20 | Toray Ind Inc | Flow analyzing method, flow analyzer, and computer program and memory medium therefor |
JP2009181847A (en) * | 2008-01-31 | 2009-08-13 | D D K Ltd | Molding method of insulator, mold structure and connector using insulator manufactured by its molding method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071529A (en) * | 1993-06-14 | 1995-01-06 | Toyota Motor Corp | Estimating method of strength of weld line of injection molded product |
JPH10128818A (en) * | 1996-11-01 | 1998-05-19 | Denki Kagaku Kogyo Kk | Weldline length-estimating method for molded product |
JPH1177782A (en) * | 1997-09-03 | 1999-03-23 | Toyota Central Res & Dev Lab Inc | Estimation of weld of molded product |
JP2000343575A (en) * | 1999-06-03 | 2000-12-12 | Nissan Motor Co Ltd | Method for analyzing flow of resin |
-
2000
- 2000-12-28 JP JP2000400179A patent/JP4603153B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071529A (en) * | 1993-06-14 | 1995-01-06 | Toyota Motor Corp | Estimating method of strength of weld line of injection molded product |
JPH10128818A (en) * | 1996-11-01 | 1998-05-19 | Denki Kagaku Kogyo Kk | Weldline length-estimating method for molded product |
JPH1177782A (en) * | 1997-09-03 | 1999-03-23 | Toyota Central Res & Dev Lab Inc | Estimation of weld of molded product |
JP2000343575A (en) * | 1999-06-03 | 2000-12-12 | Nissan Motor Co Ltd | Method for analyzing flow of resin |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003145577A (en) * | 2001-09-03 | 2003-05-20 | Toray Ind Inc | Flow analyzing method, flow analyzer, and computer program and memory medium therefor |
JP2009181847A (en) * | 2008-01-31 | 2009-08-13 | D D K Ltd | Molding method of insulator, mold structure and connector using insulator manufactured by its molding method |
Also Published As
Publication number | Publication date |
---|---|
JP4603153B2 (en) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ravi et al. | Decision criteria for computer-aided parting surface design | |
Chen et al. | Computer-aided feature-based design for net shape manufacturing | |
Mercado-Colmenero et al. | A new procedure for the automated design of ejection systems in injection molds | |
JP7249144B2 (en) | How to assemble product parts | |
JP7456767B2 (en) | Mechanical part design | |
Zhou et al. | A numerical simulation of the filling stage in injection molding based on a surface model | |
Wu et al. | Semi-automated parametric design of gating systems for die-casting die | |
Wu et al. | Feature-based parametric design of a gating system for a die-casting die | |
Choi et al. | A study on development of a die design system for diecasting | |
JP2002200662A (en) | Method and apparatus for predicting weld line | |
WO1999048032A1 (en) | Die design system and recording medium | |
Fuh et al. | Development of a semi-automated die casting die design system | |
Woon et al. | Development of a die design system for die casting | |
JP2008001088A (en) | Prediction method, apparatus, its program, storage medium for secondary weld line, manufacturing method of moldings by using them | |
JP4032755B2 (en) | Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program | |
JP7093472B2 (en) | Casting plan design method and its system | |
Singh et al. | Computer aided design of gating system for a die-casting die | |
Kumar et al. | Recognition of undercut features and parting surface of moulded parts using polyhedron face adjacency graph | |
Torres-Alba et al. | Conformal cooling systems design and dimensioning for injection molds | |
JP2002321265A (en) | Method for forecasting weldline and system therefor | |
Weinert et al. | On the use of problem-specific candidate generators for the hybrid optimization of multi-objective production engineering problems | |
Dong et al. | Development of a computer-aided design system for casting process based on UG/KF language | |
JP2021131852A (en) | Simulation for structure of machine component | |
Chua et al. | Parametric modelling of drinking bottles | |
Yang et al. | A novel approach for automatic venting system generation on complex surfaces in injection mold design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050602 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071029 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4603153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |